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Abstract—Frequency-selective peak-to-average power ratio (PAPR) re-
duction is essential in networks such as 5G New Radio (NR) that support
frequency-domain multiplexing of users and services. However, stemming
from the frequency-selective shaping of the involved clipping noise, the
relation between the intended PAPR target and the actually realized PAPR
is known to be heavily nonlinear, which complicates the PAPR reduction. In
this article, a novel machine learning (ML)-based solution, called PAPRer,
is proposed to automatically and accurately tune the optimal PAPR target
for frequency-selective PAPR reduction. This is achieved by utilizing the
features related to the used clipping noise filter and minimization of the
defined loss function, through supervised learning, which quantifies the
PAPR target estimation accuracy. An analytical clipping noise power-based
method is also devised for reference purposes. Extensive numerical evalua-
tions in 5G NR context are provided and analyzed, showing that PAPRer can
very accurately predict and tune the optimal PAPR target. These results,
together with the provided complexity assessment, demonstrate that the
proposed PAPRer offers a favorable performance-complexity tradeoff in
choosing the optimal PAPR target for frequency-selective PAPR reduction.

Index Terms—5G NR, clipping and filtering, machine learning, PAPR,
power-efficiency, supervised learning.

I. INTRODUCTION

Fifth-generation New Radio (5G NR) is providing large improve-
ments in achievable wireless data rates, reliability, latency, and energy
consumption [1], [2]. Cyclic prefix (CP) orthogonal frequency-division
multiplexing (OFDM) is the main physical-layer waveform of 5G
NR, having multiple benefits against other physical-layer solutions;
however, CP-OFDM has also an inherent problem with high peak-to-
average power ratio (PAPR) [3]. To this end, iterative clipping and
filtering (ICF) [4], partial transmit sequence [5], selected mapping [6],
tone injection [7], and tone reservation (TR) [8] are among the promi-
nent PAPR reduction solutions in the literature. In general, the ICF is
among favorable methods as it offers a good balance between PAPR
reduction performance and processing complexity [4].

The support for heterogeneous quality-of-service (QoS) require-
ments is one modern feature of 5G networks [1], [2]. However, conven-
tional PAPR reduction methods do not support such feature. Specifi-
cally, ordinary ICF allocates clipping noise uniformly over the active
processing band, thus distorting the physical resource block (PRB)-
specific mean-squared error (MSE) or error vector magnitude (EVM)
requirements [4], [9]. Instead, clipping noise should be controlled at
PRB level to allow for efficient frequency-domain multiplexing of
services with different MSE/EVM limits.
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Inspired by the above, the frequency-selective PAPR reduction stud-
ied in [10] shapes the clipping noise based on the PRB-specific MSE
limits. The iterative clipping and weighted error filtering (ICWEF)
approach proposed in [9] is one effective example of such frequency-
selective PAPR reduction methods. However, the reported methods
shape the clipping noise in the frequency domain, which leads to
degradation in PAPR performance for certain PAPR targets [10]. Thus,
unlike in conventional methods such as ICF, there is a nonlinear relation
between the intended PAPR target and the actually realized PAPR. This
is a new challenging problem that is associated with frequency-selective
PAPR reduction, and the optimal PAPR target that leads to the lowest
PAPR value must be known to maximize the performance. The trivial
solution is to run the algorithm exhaustively for various different PAPR
targets and then pick the optimal PAPR target therefrom. However, this
is not a practical solution due to the involved high complexity.

This article proposes a machine learning (ML)-based solution,
called PAPRer, that tunes automatically the optimal PAPR target for
frequency-selective PAPR reduction, while considering ICWEF as an
example application. In general, there are huge number of possible
ICWEF masks [9], corresponding to applicable modulations and the
associated MSE/EVM requirements at different PRBs. Thus, as the
PAPR performance differs for each mask, the PAPR target used in
ICWEF algorithm should be dynamically adapted. Accordingly, the
PAPRer finds the nonlinear relation between the frequency-selective
ICWEF mask and the optimal PAPR target, utilizing supervised learn-
ing. Additionally, the PAPRer builds only on a few data features and
is thus suitable for multiple different ML algorithms. The PAPRer is
also applicable with any frequency-selective PAPR reduction method
— not only the considered ICWEF — as it exploits only the modulation
and coding scheme (MCS) configuration and the interval of all possible
PAPR targets, neither of which are intrinsic to ICWEF.

Furthermore, the PAPRer not only finds the optimal PAPR target, but
also predicts the achieved PAPR value quite accurately for any given
PAPR target. This is another crucial benefit which can be exploited for
optimal MCS configuration. Conventionally, PAPR performance is not
considered as criterion for feasible MCS values as it is not easy to esti-
mate the PAPR performance. However, as will be shown, the PAPRer
is efficient and accurate in estimating the optimal PAPR target, and can
thus be used to quantify the suitability of different MCSs. Additionally,
a reference method that is based on the analytical clipping noise power
estimation is also introduced and compared against the PAPRer. By
following the 5G NR specifications and guidelines, different numerical
evaluations are conducted and the performance-complexity tradeoffs
offered by the proposed PAPRer are assessed and shown.

Finally, for the purpose of clarity and presentation completeness,
it is noted that in [11], the importance of utilizing the optimal PAPR
target was also discussed — however, in more ordinary PAPR reduction
context without frequency-selective clipping noise shaping. Moreover,
multiple ML-based PAPR reduction methods, as such, have been pro-
posed in the recent literature. To this end, a model-driven TR method
was proposed in [12], involving an efficient training procedure. Training
efficiency was pursued also in [13], where an extreme learning TR
method was proposed. A PAPR reduction network called PRnet was,
in turn, proposed in [14], where good PAPR performance was obtained
by utilizing an autoencoder structure. Furthermore, an ML-based PAPR
reduction method was also proposed in [15], which targets a balance
between good bit error rate (BER) and PAPR performance. In [16], a
deep unfolding model was proposed to reduce the PAPR under transmit
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power constraints. An ML-based hyperparameter optimization method
was proposed in [17] to optimize efficiently the various parameters
of selected PAPR reduction schemes, with focus on massive multiple-
input multiple-output (MIMO) systems. However, none of these works
consider the frequency-selective PAPR reduction and the associated
optimal target PAPR selection problem which are the technical focus
of this article.

The rest of this article is organized as follows. In Section II, the
ICWEF processing is shortly reviewed, followed by the proposed clip-
ping noise power-based and ML-based PAPR target section methods.
Numerical results are provided and analyzed in Section III, together
with the PAPRer complexity assessment. Finally, conclusions are drawn
in Section IV.

II. SYSTEM MODEL AND PROPOSED SOLUTIONS

A. ICWEF Processing Principle

The ICWEF [9] starts with the OFDM waveform processing, with
Nact and NOFDM > Nact denoting the number of active subcarriers
and the nominal OFDM transform size, respectively. The active sub-
carriers are here assumed to be allocated symmetrically around the
direct-current (DC) bin by considering double-sided bin indexing.
Oversampling factor ofNov is also utilized to obtain accurate waveform
characteristics [18] and the size of the oversampled inverse discrete
Fourier Transfrom (IDFT) reads N = NOFDMNov.

At the IDFT output, the discrete-time OFDM symbol samples that
formally correspond to the 0th iteration of ICWEF read

x(0)[n] =
1√
Nact

Nact/2−1∑
k=−Nact/2

X(0)[k]ej2πkn/N , (1)

where n = 0, . . . , N − 1 is the relative sample index inside the OFDM
symbol and k ∈ {−Nact/2, . . ., Nact/2 − 1} denotes the active sub-
carrier index, with X(0)[k] denoting the data symbol at subcarrier k
while other IDFT bins are set to zero. The sample-wise PAPR of the
time-domain signal x(l)[n], with l denoting the ICWEF iteration index,
is computed as

PAPR
(
x(l)[n]

)
=

|x(l)[n]|2
1
N

∑N−1
n=0 |x(l)[n]|2 . (2)

The PAPR target is represented by λtarget and, if maxn=0,1,...,N−1

PAPR(x(l)[n]) > λtarget, the soft limiter-based clipping is applied as

x̄(l)[n] =

{
A(l−1)ej∠x(l−1)[n], if |x(l−1)[n]| > A(l−1),

x(l−1)[n], otherwise,
(3)

where ∠x and |x| represent the phase angle and modulus of a complex
number x, respectively. Moreover, the clipped version of x(l−1)[n] is
expressed by x̄(l)[n], while A(l−1) that denotes the amplitude threshold
value is computed as

A(l−1) =

√√√√λtarget · 1
N

N−1∑
n=0

|x(l)[n]|2. (4)

It is assumed that clipping function in (3) starts the next iteration and
to reflect that, the iteration index is increased by one in this step.

The clipped time-domain signal is converted to frequency domain
through discrete Fourier Transfrom (DFT) as

X̄(l)[k] =
1√
N

N−1∑
n=0

x̄(l)[n]e−j2πkn/N , (5)

while the prevailing clipping noise can be extracted as

C(l)[k] = X̄(l)[k]−X(0)[k]. (6)

Then the ICWEF mask to be used for out-of-band emission and
frequency-selective clipping noise filtering, is computed for the ith
considered modulation or MCS as [9]

H
(l)
ICWEF,i[k] =

⎧⎪⎨
⎪⎩

Ei

|C(l)[k]| , if k ∈ KMi
∧Ei < |C(l)[k]|,

1, if k ∈ KMi
∧Ei ≥ |C(l)[k]|,

0, if k �∈ KMi
,

(7)

where KMi
denotes the index set that includes the subcarriers that are

modulated with ith modulation of the modulation set KM. Moreover,
Ei is the level that the clipping noise sample C(l)[k] is filtered to,
stemming from the EVM threshold of the ith considered modulation,
viz. Ei =

EVMi [%]
100% .

However, in the ICWEF method, the set Kact does not only include
KMi

, but also the clipping noise-free subcarriers. This is expressed as

Kact = KF ∪
card(KM)⋃

i=1

KMi
, (8)

whereKF contains the clipping noise-free subcarriers. The full ICWEF
mask that is applied in lth iteration reads then

H
(l)
ICWEF[k] =

card(KM)∑
i=1

H
(l)
ICWEF,i[k], (9)

where card(·) is the cardinality of the argument set. Next, the ICWEF
filtering is applied and the filtered clipping noise is added to original
frequency-domain data signal, which reads

X(l)[k] = X(0)[k] +H
(l)
ICWEF[k]C

(l)[k]. (10)

This is then followed by IDFT to obtain x(l)[n]. When the PAPR target
is reached or L iterations are completed, OFDM waveform processing
is finalized with CP addition and weighted overlap-and-add (WOLA)
operations, and x(L)[n] is obtained. Algorithm 1 in [9] summarizes the
operations in the considered baseline ICWEF method.

Importantly, in (7), the ICWEF mask controls clipping noise level
inside the passband and the optimal PAPR target, λtarget,opt, should be
used in (3) and (4) to get the best PAPR performance under these
limitations. Hence, optimally tuning λtarget for any given ICWEF mask
is the main goal of this study.

B. Clipping Noise Power-Based PAPR Target Selection

As the first but secondary approach, we consider an analytical ap-
proximation to the PAPR target selection problem and use this scheme
as a reference for the ML-based PAPRer. The derivations build on [19]
for ordinary ICF while are here extended to the frequency-selective
ICWEF method.

Following the Bussgang theorem [20], by targeting λtarget ∈ KT (the
set of the utilized PAPR targets), the time-domain signal obtained after
first clipping operation becomes

x̄(1)[n] = αx(0)[n] + d(1)[n], (11)

where d(1)[n] is the nth sample of the uncorrelated clipping noise and
α is the attenuation factor, which is defined as

α = 1 − e−λtarget +

√
πλtarget

2
erfc

(√
λtarget

)
. (12)
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Similar to [19], the time-domain clipping noise after first clipping
operation can then be expressed using (11) as

c(1)[n] = x̄(1)[n]− x(0)[n] = (α− 1)x(0)[n] + d(1)[n]. (13)

The corresponding correlation function reads

Rc(1) [u] = (α− 1)2Rx(0) [u] +Rd(1) [u], (14)

where Rx(0) [u] is the uth sample of the autocorrelation of the original
OFDM signal and Rd(1) [u] is the uth sample of the correlation function
of the uncorrelated clipping noise. Then, the power spectral density
(PSD) of the clipping noise arising after the first clipping operation
reads

ρc(1) [k] =
1√
N

N−1∑
u=0

Rc(1) [u]e−j2πku/N . (15)

Then, to express the clipping noise power afterL iterations, the noise
enhancement factor can be defined as [19]

β(L)[k] =
E
[
C̃(L)[k]

(
C̃(1)[k]

)∗]
E
[
C̃(1)[k]

(
C̃(1)[k]

)∗] , (16)

where now C̃(l)[k] = H
(l)
ICWEF[k]C

(l)[k]. Here, to configure the mask,
no modulation limits are assumed for H

(l)
ICWEF[k]. The total clipping

noise power obtained after L iterations reads then

Pc(L) (λtarget) =

Nact/2−1∑
k=−Nact/2

β(L)[k]ρc(1) [k]. (17)

The maximum noise power that a given ICWEF mask can support reads
now

PICWEF =

card(KM)∑
i=1

E2
i card (KMi

) . (18)

Finally, the optimal PAPR target can be computed by comparing (18)
to the analytically obtained total clipping noise power levels in (17),
expressed as

λ̂target,opt = arg min
λtarget∈KT

|Pc(L)(λtarget)− PICWEF|. (19)

C. PAPRer: Proposed ML-Based PAPR Target Tuner

As established in the previous section, the maximum clipping noise
power that an ICWEF mask can support provides information about
the optimal PAPR target. The PAPRer utilizes a supervised learning
approach, and stemming from (18), it builds on the modulation set
KM, the sizes of the sets KMi

, and the set of used PAPR targets KT as
the features. Hence, the PAPRer can be mathematically expressed as

λ̂target,opt = F
(
KM1 ,KM2 , . . . ,KMcard(KM)

,KM,KT

)
. (20)

The ML algorithm that is used with PAPRer finds the nonlinear relation
F (·) between the features and the actual optimal PAPR target, while
then obtains λ̂target,opt using the detected pattern. In our numerical 5G
NR evaluations, four modulations are considered with the PAPRer, i.e.,
card(KM) = 4. However, the proposed PAPRer supports conceptually
any set of modulations/MSE limits, while card(KM) = 4 is just an
example configuration for the numerical evaluations.The overall pro-
cessing can be divided into the offline and online phases, which can be
summarized as follows.

TABLE I
FEATURES AND OUTPUT VARIABLE USED IN MODEL TRAINING

Fig. 1. Conceptual illustration of the PAPRer online processing for auto-tuning
of the PAPR target. The PAPRer is trained offline.

Offline/Training Phase: For creating the learning dataset, the KT

is set first as KT = {3 dB, 4 dB, . . . , 8 dB} and a high number of
random ICWEF masks is generated as in (9) by randomly varying
KMi

. Then, L iterations of the ICWEF algorithm are run for each mask
and the PAPR target, and the obtained PAPR values corresponding
to complementary cumulative distribution function (CCDF) level of
10−4, are collected. The training of the PAPRer builds on this dataset,
illustrated conceptually in Table I.

Online Phase: The online processing is illustrated conceptually in
Fig. 1. Based on the MCS configuration, the features are given to
the trained PAPRer. Then, PAPRer decides the λ̂target,opt, and PAPR
reduction is performed accordingly.

Next, the considered ML algorithms and the associated loss function
will be detailed. We note that conceptually, the PAPRer supports
not only deep neural networks (DNNs), but also decision tree-based
ensemble learning algorithms.

1) XGBoost Regressor: As a decision tree-based ensemble learn-
ing method, the eXtreme Gradient Boosting (XGBoost) is an effective
algorithm offering high algorithm speed and high prediction accu-
racy [21]. In addition, it also provides an analysis on the feature
importance and in this study, it is also used to determine the important
data features. In the evaluations, two different parametrizations are
considered for XGBoost. These are named as XGB#1 and XGB#2,
and are configured with 50 estimators/maximum depth of 10 and,
80 estimators/maximum depth of 20, respectively. Moreover, in both
regression models, learning rate of 0.1 is used.

2) Deep Neural Networks (DNNs): In this study, in addition to
input and output layers, multiple hidden layers are used in the consid-
ered DNN architecture. Accordingly, two different parametrizations are
considered also for DNN algorithm. The first case, DNN#1, contains
three hidden layers and one output layer, with the number of nodes
in each layer being 10, 6, 4, and 1, respectively. Similarly, the second
DNN case, DNN#2, is implemented with four hidden layers and one
output layer, with number of nodes in each layer being 40, 20, 12,
8, and 1, respectively. The DNN solutions are implemented using
the Keras library, running on top of TensorFlow framework. In the
implementation, the network weights are initialized using the normal
distribution and rectified linear activation function (ReLU) is used as
the activation function. In addition, stochastic gradient descent method
is used as the optimizer. In training, 150 iterations are run and batch
size of 10 is utilized.

It is further noted that the hyperparameters for both XGBoost and
DNN are determined based on the prediction performance. Utilizing
low number of hyperparameters also brings some reasonable prediction
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Fig. 2. Results for 20 MHz 5G NR channel with 30 kHz SCS and 51 PRBs. Two example ICWEF masks and the total clipping noise powers obtained after
L = 20 iterations of ICWEF are shown in (a). Black circles represent the PAPR targets that are selected by the analytical reference method. In (b), the actual and
predicted PAPR performance of the ML methods are shown at CCDF level of 10−4, for PAPR targets varying from 3dB to 8dB. In (c), the results for ΔPAPR
metric are shown in terms of CDF for the analytical reference method, the ML-based methods and the four example constant λtarget cases.

performance, but we target to achieve a good PAPR target prediction
accuracy and thus configure a rather high number of hyperparameters
in this work.

3) Loss Function: As the loss function, we utilize the well-known
modeling MSE, which for our problem scenario reads

L
(
λtarget,opt, λ̂target,opt

)
=

1
NTS

NTS∑
i=1

(
λtarget,opt(i)− λ̂target,opt(i)

)2
, (21)

where λtarget,opt(i) and λ̂target,opt(i) denote the actual and the predicted
optimal PAPR targets for the ith training sample, andNTS is the number
of training samples. In addition, the coefficient of determination (i.e., R2

score) is also utilized to quantify the performance of the ML algorithms,
expressed as

R2 = 1 − SSres

SStot
, (22)

where SSres =
∑

i(λtarget,opt(i)− λ̂target,opt(i))
2 and SStot =

∑
i

(λtarget,opt(i)− λtarget)
2 are the residual sum of squares and the total

sum of squares while λtarget =
1

NTS

∑NTS
i=1 λtarget,opt(i).

III. NUMERICAL RESULTS AND ANALYSIS

The PAPRer is next evaluated in terms of PAPR, MSE and R2 score.
For reference, also the analytical method from Section II-B building
on clipping noise power calculations is considered. Two different
radio interface numerologies, namely a 10 MHz 5G NR channel with
60 kHz subcarrier spacing (SCS) and 11 PRBs, and a 20 MHz 5G NR
channel with 30 kHz SCS and 51 PRBs, are considered based on the
5G NR specifications [22]. The CCDF is used to quantify the PAPR
performance. Specifically, the CCDF probability of 10−4 and PAPR
targets from 3dB to 8dB are considered. With ML-based approaches,
a training dataset that contains features and the actual PAPR targets is
created by running simulations for 1000 random ICWEF masks and the
trained models are validated with another 500 random ICWEF masks.

A. PAPR Performance

The proposed solutions are quantified in terms of Δtarget, which
is defined as the difference between the actual optimal PAPR target,
λtarget,opt, and the predicted PAPR target, λ̂target,opt. When calculating
λtarget,opt, PAPR values corresponding to CCDF probability level of 10−4

are considered as noted above. Furthermore,ΔPAPR that is the difference
between the PAPR values corresponding to CCDF level of 10−4 that

TABLE II
MUTUAL COMPARISON OF THE CONSIDERED SOLUTIONS IN TERMS OF

ΔTARGET, WHERE BOTH THE CCDF PROBABILITY LEVEL OF 10−4 AND THE

95% CI ARE SHOWN

are obtained with λtarget,opt and λ̂target,opt, respectively, are also quantified
for the 1000 different ICWEF masks.

The 20 MHz 5G NR channel is used as the main evaluation case.
First, to evaluate and illustrate the analytical reference method, an initial
evaluation is conducted for two distinctive ICWEF masks which are
shown in Fig. 2(a). Here, L = 20 iterations are considered with both
ICWEF and ICF. In Fig. 2(a), clipping noise power levels with respect
to several PAPR targets are given for ICF, which is analytically obtained
as in (17) and shown with the yellow line. Here, maximum noise power
levels that can be supported by the ICWEF masks are 11 dB and 4.2 dB,
respectively. These masks cannot reach particular PAPR targets because
they cannot support the required noise power levels. The PAPR targets
that are selected by the analytical reference method are shown with
black circles, the numerical values being 4.6 dB and 7.4 dB for the first
and second masks, respectively. However, the actual optimal PAPR
targets for these two masks are 5.2 dB and 7.2 dB, respectively, and
thus the average prediction error for these two cases is 0.4 dB, which
can be considered as a relatively high error level.

Next, the ML algorithms are evaluated by considering the training
and validation phases, and compared against the analytical reference
method as well as selected constant λtarget cases. The results are pre-
sented in Table II. Here in the last two columns, Δtarget results are given
for both the 10−4 CCDF level and the 95% confidence interval (CI). As
can be seen, the prediction performance with the reference method and
the two different constant λtarget cases is limited, resulting in high errors
of 0.44, 0.63 and 0.58 dB, respectively. In contrast, the XGBoost ML
approach provides good improvement over the reference method as the
average values of Δtarget are equal to 0.19 dB and 0.17 dB, respectively.
Here, both XGB#1 and XGB#2 perform similarly. Considering the
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TABLE III
MUTUAL COMPARISON OF THE CONSIDERED SOLUTIONS IN TERMS OF

ΔTARGET, WHERE BOTH THE CCDF PROBABILITY LEVEL OF 10−4 AND THE

95% CI ARE SHOWN

complexity advantages of XGB#1 (cf. Section III-B), it can be con-
sidered as the preferred choice. The DNN methods also provide huge
performance gains over the reference method, with the average Δtarget

values being 0.17 dB and 0.10 dB, respectively. Here, DNN#2 has
significantly better prediction performance than the other methods. It
also outperforms the analytical solution dramatically, the performance
gap being around 0.35 dB.

Next, the prediction performance is evaluated for the two masks
shown in Fig. 2(a), and the obtained results are shown in Fig. 2(b).
The PAPR result curves shown in this figure indicate the importance
of utilizing optimal PAPR target. Here, λtarget,opt for the first mask is
5.2 dB which leads to minimum realized PAPR value, and it is predicted
correctly by DNN#2 and both XGB solutions. With DNN#1 and the
analytical solution, Δtarget = 0.2 dB and Δtarget = 0.6 dB, respectively.
For the second mask, λtarget,opt is equal to 7.2 dB and all methods provide
Δtarget = 0.2 dB. Hence, the ML methods are robust and provide high
performance in both cases.

Next, ΔPAPR is assessed with respect to cumulative distribution
function (CDF) for the considered ML methods, the reference method
and the constant λtarget cases. While PAPR targets from 3 dB to 8 dB
were considered in other evaluations, we focus here on four different
constant PAPR targets that provide the best ΔPAPR performance. The
evaluation of ΔPAPR is essential as the achieved PAPR performance
is of highest interest while also evidencing the importance of robust
PAPR target estimation. The results are presented in Fig. 2(c), where
the distributions of ΔPAPR are provided for the 1000 random ICWEF
masks. As can be observed, DNN solutions perform very well, with
ΔPAPR being mostly around 0–0.05 dB. The XGB methods facilitate
also very good performance up to CDF levels of around 0.9–0.95 with
ΔPAPR being less than 0.1 dB. However, at very low probability levels in
the CDF tail, they show lower reliability with ΔPAPR values ranging up
to 0.5–0.7 dB. On the other hand, the reference method and the constant
λtarget cases are clearly inferior to the ML-based approaches.

To further assess the performance of the methods, the evaluations
for Δtarget and ΔPAPR are next carried out also for the 10 MHz 5G NR
channel case, with the obtained results being shown in Table III. Again,
the performance is limited for the analytical reference method and
the two constant λtarget cases, the average prediction error being 0.80,
1.01 and 0.73 dB, respectively. Furthermore, the XGBoost algorithm
again outperforms the reference cases significantly with the average
values of Δtarget being equal to 0.35 dB and 0.26 dB, for XGB#1 and
XGB#2, respectively. In this case, XGB#2 performs clearly better
than XGB#1. Additionally, the DNN methods provide again clear
performance advantages, with the DNN#2 being able to provide an
average prediction error of 0.18 dB, while the performance gap with
respect to the analytical reference solution is already around 0.60 dB.
Thus, based on the results for both the 10 MHz and 20 MHz 5G NR
channel cases, the DNN#2 can be seen as the preferred choice to

Fig. 3. The results in terms of the ΔPAPR metric for the analytical reference
method, the ML-based methods and the four example constant λtarget cases.
10 MHz 5G NR channel with 11 PRBs and 60 kHz SCS.

obtain near-optimal PAPR performance and thereon to maximize the
transmission power at the power amplifier (PA) output. Considering its
relatively low computational complexity (cf. Section III-B), it is also
feasible for practical implementations with great complexity benefits
compared to brute force search based optimal PAPR target selection.

Finally, the ΔPAPR metric is quantified for the 10 MHz 5G NR
channel case by considering the setup used for generating the results in
Fig. 2(c). The obtained results are presented in Fig. 3. In this case, the
DNN and XGB methods provide similar performance results, and they
again significantly outperform the analytical reference cases with the
ΔPAPR being less than 0.1 dB up to CDF levels of around 0.8–0.90. The
reference method and the constant λtarget cases perform clearly worse,
with ΔPAPR being usually higher than 0.1 dB. Specifically, the ΔPAPR

can reach up to 1 dB for the analytical solution.

B. Complexity

Complexity is an essential figure of merit for any processing solution.
As the PAPR reduction parameters are static, we focus here on the
complexity of the ML model online execution and omit the complexity
of the training phase. The XGBoost approach is computationally effi-
cient as it only uses conditional operators to find the optimal branches
for the given input. However, the cost of these is noticeable in the
corresponding time complexity which is thus next addressed. The time
complexity of the XGBoost algorithm can be denoted as O(NestNd),
where Nest and Nd are the number of trees and the maximum depth
of the trees [21]. The DNN solution, in turn, is a feedforward neural
network (NN) with multiple hidden layers. Hence, the complexity is
equal to O(NfeatNnode,1 +

∑Nlay−1
i Nnode,iNnode,i+1) with Nfeat, Nnode,i

and Nlay denoting the number of features, number of nodes that layer
i contains and the total number of layers, respectively. For reference,
the complexity of the original CP-OFDM processing is equal to the
complexity of one fast Fourier transform (FFT), i.e., O(N log2 N).

For the considered modulations and assuming the 20 MHz channel
case, NOFDM = 1024 and with an oversampling factor of four, N =
4096. On the other hand, since Nest = {50, 80} and Nd = {10, 20},
both XGB cases lead only to a small increase in complexity when
compared to basic CP-OFDM processing. Similarly, in the two DNN
cases, Nfeat = 9 while Nnode = {10, 6, 4, 1} and Nlay = 4 or Nnode =
{40, 20, 12, 8, 1} and Nlay = 5, thus the resulting complexity increase
is again very minor. Concretely, when evaluating the execution time
of XGB#2 and DNN#2 on a state-of-the-art central processing unit
(CPU), the proposed methods result only in some 25% complexity
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increase, with respect to the CP-OFDM waveform processing, high-
lighting the efficiency of the ML models.

IV. CONCLUSION

A novel solution was presented to solve the optimal PAPR target se-
lection problem in frequency-selective PAPR reduction, focusing on the
ICWEF as a concrete example. The proposed solution is an ML-based
method where certain features related to ICWEF mask are exploited to
accurately learn and predict the optimal PAPR target through supervised
learning. Moreover, an alternative analytical clipping noise power based
method was also described for reference. Specifically, this analytical
method computes the maximum clipping noise power that a given
ICWEF mask can support and then finds the applicable PAPR target. As
presented through 5G NR standard compliant numerical evaluations,
the analytical solution and the considered ML-based methods are able
to predict the optical PAPR targets with accuracies in the order of 	
0.4–0.5 dB and 	 0–0.2 dB, respectively. Moreover, the ML models
were shown to be computationally feasible and robust, making them
attractive candidates for optimizing the PAPR performance in 5G NR
and future 6G networks.
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