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Variational Bayesian-Based Maximum Correntropy
Cubature Kalman Filter Method for State-of-Charge

Estimation of Li-Ion Battery Cells
Ishaq Hafez , Member, IEEE, Ali Wadi , Member, IEEE, Mamoun F. Abdel-Hafez , Senior Member, IEEE,

and Ala A. Hussein , Senior Member, IEEE

Abstract—State-of-charge estimation is an essential part of a
battery management system. Charging and discharging batteries
involve complex chemical processes that could lead to undesired
consequences, such as premature end of life or fire hazards if
the battery’s state-of-charge is not closely monitored. This work
proposes a state-of-charge estimation method that compensates
for noisy measurements and parametric uncertainties in a battery
cell to improve the estimation accuracy. In this work, a robust
and adaptive estimation scheme based on a Cubature Kalman
filter is proposed. The algorithm utilizes the Variational Bayesian
method to identify the measurements noise covariance magnitude
online. Additionally, the algorithm is augmented with the ability to
suppress outliers based on the Maximum Correntropy Criterion.
The proposed filter is experimentally verified on standard tests
including aggressive electric vehicle drive cycles, and it is compared
against the extended Kalman filter, the Cubature Kalman filter, and
the Variational Bayesian Cubature Kalman filter.

Index Terms—Battery cell, estimation, extended kalman filter,
state-of-charge.

NOMENCLATURE

Ah Ampere-hour.
ALS Autocovariance least square.
BMS Battery management system.
CKF Cubature Kalman filter.
EKF Extended Kalman filter.
KF Kalman filter.
Li-ion Lithium-ion.
LA92 Unified Dynamometer Driving Schedule.
MAE Mean absolute error.
MCC Maximum Correntropy Criterion
MLE Maximum-Likelihood Estimation.
OCV Open-circuit voltage.
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SOC State of charge.
UKF Unscented Kalman filter.
US06 A Supplemental Federal Test Procedure.
VB Variational Bayesian.
VBMCCKF Variational Bayesian Maximum Correntropy Cri-

terion Kalman filter.

I. INTRODUCTION

ENERGY storage plays a crucial role in renewable energy
solutions and applications. Amongst the different types of

batteries introduced in the last two decades, Li-ion batteries are
considered an ideal choice in many energy storage applications
due to their efficient energy utilization, high energy density, and
long lifespan [1]. Their use varies from low-power applications
such as portable electronics, and high-power applications such
as electric vehicles and grid storage.

Practically, the main objective of a BMS is monitoring the
cells in a battery pack to achieve efficient and safe operation
by preventing the battery cells from destructive over-charge
or discharge [2], [3]. In general, a BMS measures the cells’
voltages, the battery’s current, the battery’s temperature, and
the cells’ SOC. Unlike the fuel level in a vehicle where it can be
easily determined using a simple fuel gauge and the runtime can
be accurately calculated, the SOC, which indicates the energy
level stored in the battery cell and is conceptually similar to a
vehicle’s fuel tank, is estimated since it cannot be measured. The
SOC of a cell is defined as the ratio between the cell’s available
capacity and the maximum capacity the battery can hold (in
Ah) at a specific temperature. Different methods have been
proposed over the past years for SOC estimation. These methods
can be classified into three categories [4], namely: 1) analytical
methods, 2) model-based methods and 3) data-driven methods.
Analytical methods such as current-integration (also known
as coulomb counting) and OCV-based methods are simple in
general but have compromised performance. For example, the
current- integration method suffers from accumulated noise in
the current measurement and requires prior knowledge of the ini-
tial SOC. The OCV allows one-to-one correspondence between
OCV and SOC. However, its main drawback is that it demands
a long rest time and hence, cannot be used in real-time [5]. On
the other hand, model-based methods such as the Kalman filter
and its variants are extremely accurate due to their closed-loop
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nature; however, they demand a very accurate dynamic model for
the battery cell, which is a challenge in some cases. Data-driven
methods, such as neural networks and machine learning exhibit
an extremely robust performance due to their massive parallel
structure; however, they demand huge data banks for training to
provide high performance, which could be a challenge in some
cases when the operating environment differs from that in the
training phase.

A benchmark method that has been tremendously proposed
for SOC estimation is the KF and its variants. A KF estimates
the SOC optimally in the minimum mean squared error sense.
Although this method can solve the problem of cumulative errors
and uncertain initial SOC, it is only optimal for linear systems.
As the dynamics of a battery cell are nonlinear, linearization
is needed to approximate the nonlinear system by a linear
time-varying system [5], [6], [7]. The extended KF (EKF), the
nonlinear version of the conventional KF, is utilized for systems
with nonlinear dynamic models [7], [8], [9], [10]. However, it
should be noted that such an approximation may lead to reduced
SOC estimation accuracy and may even cause the estimator to
diverge [11].

Among other nonlinear algorithms are the UKF and CKF
[12], [13]. These filters avoid Taylor series approximation and
use a set of sigma points to approximate the statistics of a
Gaussian random variable that undergoes a nonlinear transfor-
mation [14], [15]. The CKF avoids linear approximation and
uses a spherical-radial cubature rule to compute multivariate
moment integrals encountered in the nonlinear Bayesian filter
[13]. The process and measurement noise covariances are usu-
ally known and stationary when implementing these filters. As
the distribution of the variables is assumed to be Gaussian, the
estimation process may perform well when the noise covariances
are Gaussian with known statistics. However, in the case of
non-Gaussian distribution, the statistics of the process and mea-
surement noise sequences are unknown. Also, it should be noted
that the state estimation process will fail, diverge, and produce an
imprecise state estimate when the non-Gaussian measurement
noise statistics are unknown, time-varying, and corrupted by
outliers. The estimation performance under non-Gaussian mea-
surement noise sequences can be improved by utilizing robust
and adaptive filtering strategies [16], [17]. An Adaptive EKF has
been proposed in [19] and [20], and an adaptive UKF algorithm
has been proposed in [21] and [22]. These adaptive techniques
only enhance the estimation’s performance to possible unknown
or changes in the statistics of the measurement or dynamics noise
sequences.

Other adaptive filtering strategies have been proposed in the
literature. Some of the proposed methods that estimate the
unknown and time-varying measurement noise statistics include
Sage-Husa (SH) filters, Gauss sum (GS) filters, and Variational
Bayesian (VB) filters [16], [17]. The Sage-Husa-based filter
recursively estimates the unknown statistics of the system noises.
This filter is based on Autoregressive Moving Average (ARMA).
Therefore, due to its recursive estimation process, the estimated
noise statistics at a certain instant will highly depend on the
priory estimated noise statistics. If the estimated noise statistics
become contaminated, the filter’s estimation performance will

be affected and may diverge. Gauss sum filters use a weighted
sum of Gaussian density functions to approximate the state’s
conditional probability density [16] and [17]. On the other hand,
the Variational Bayesian-based filter is an adaptive filter that
iteratively estimates the unknown time-varying measurement
noise statistics by embedding the VB strategy into the filter’s
framework. The estimation process by this filter is not based
on the recursive estimation process. Therefore, the previously
estimated statistics at the time step k − 1 will not affect the
estimated statistics at the following time step k [15]. The VB
method can be incorporated into a robust filtering algorithm,
and it has been proven to successfully deal with state estimation
problems under non-Gaussian noise distribution [16] and [17].

Practically, measurements can be corrupted by outliers,
and that will adversely affect many of the traditional methods
proposed to monitor the SOC. This explains why many existing
SOC methods are good only in the laboratory environment.
To overcome this problem, a robust filter that can effectively
suppress outliers should be developed. Some of the methods that
have been proposed in the literature include the Huber-based fil-
ter (also called M-estimation), the H∞ filter, and the MCC filter.
The Huber-based filter is a hybrid method that uses minimum l1-
and l2- norm filters to achieve robustness for nonlinear systems
with non-Gaussian distribution, [18] and [19]. This method
has been applied to many applications such as underwater
target tracking [23] and embedded in many state-estimation
filters to enhance the estimation performance. In addition, the
Huber-based filter was embedded into a VB-based Unscented
Kalman Filter in [24] to improve filtering performance and
robustness. The H∞ filter is another robust filtering algorithm
that has been proven to perform well against uncertain noises
[24]. The filter can guarantee bounded state estimation error,
but it cannot perform well under Gaussian noise with certain
conditions [19], [25]. The Maximum Correntropy Criterion
(MCC) technique, on the other hand, has been proposed in [25],
[26]. This filter measures the similarity between two random
variables (correntropy) using information from higher-order
signal statistics. The MCC filter has been widely used in machine
learning techniques and state estimation under non-Gaussian
distributions due to its high robustness against outliers.

In this paper, an adaptive VBMCCKF algorithm is proposed to
achieve high-accuracy SOC estimation. The method is compared
with the EKF, CKF, and VBCKF algorithms. The proposed
algorithm is a follow-up to the ALS and MLE noise covariance
identification approaches proposed earlier to enhance the SOC
estimation accuracy in [26] and [28]. In contrast to the ALS and
MLE approaches, the proposed method has lower computational
requirements as it does not involve the manipulation of large-
dimension matrices and can be therefore deployed online. This
is especially advantageous in applications where the BMS may
not have the processing power to routinely run computationally
demanding algorithms to estimate the SOC of each cell. Further,
the MCC component of the proposed algorithm adds a layer
of robustness that is neither present in the ALS nor in the
MLE approaches. This is valuable as it allows for online noise
covariance magnitude identification despite possible erroneous
measurements.
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Fig. 1. Schematic diagram of the ESC model.

The rest of the paper is organized as follows: Section II
presents the dynamic battery cell model and its parameter identi-
fication process using the Particle Swarm Optimization method.
Section III describes the formulation of the proposed filter.
Experimental verification of the proposed algorithm along with
comparative analysis against available algorithms is demon-
strated in Section IV. Finally, Section V concludes the paper.

II. BATTERY MODEL

A. The Enhanced Self-Correcting (ESC) Cell Model

To compare the performance of the proposed SOC estimator, a
discrete-time state-space model that represents the dynamics of a
battery cell must first be defined. The Enhanced Self-Correcting
cell model is utilized in this paper, see Fig. 1 [10]. The model
combines four elements, namely, an ohmic resistance R0 , a
parallel RC network, a voltage source (OCV ) as a function of
SOC, and a non-linear hysteresis element (hyst).

The SOC dynamics are represented as [10],

SOCk+1 = SOCk − ΔT

Cn
ηk ik (1)

where ΔT is the sampling period in hours, cn is the battery cell
capacity in Ampere-Hour (Ah), ηk is the coulombic efficiency
of the cell, and ik is cell current at discrete-time index k.

The second state element is the Diffusion-resistor current
term, iR. The dynamics of iR passing through the RC circuit is
given by:

iR, k+1 = ARCiR, k +BRCik (2)

where ARC = exp
(

−ΔT
R1Cn

)
and BRC = 1 − exp

(
−ΔT
R1Cn

)
.

The third state element is the hysteresis state, h , which
implements a linear-time varying difference equation described
as,

hk+1 = AH hk −BH sgn (ik) (3)

In the above equation, AH = exp
(
−|−ηk γ ΔT ik

Cn
|
)

and

BH = 1 − exp
(
−|−ηk γ ΔT ik

Cn
|
)

, γ is a unit-less hysteresis

rate constant and sgn(ik) is 1 if ik is positive,−1 if ik is negative,
and 0 otherwise.

The state equations are expressed in vector form as,⎡
⎣SOCk+1

iR, k+1

hk+1

⎤
⎦ =

⎡
⎣1 0 0

0 ARC 0
0 0 AH

⎤
⎦
⎡
⎣SOCk

iR,k

hk

⎤
⎦+

⎡
⎣ −ΔT

Cn
ηkik

BRCik
BH sgn (ik)

⎤
⎦

(4)

Fig. 2. Block diagram for the parameter identification process.

The measurement equation of the ESC model which outputs
the cell’s voltage, zk, is given by:

zk = OCV (SOCk) + hyst+R1iR1, k +R0ik (5)

In the above equation, the OCV term is obtained from a
lookup table for a given SOC and the hyst term computes the
instantaneous change in hysteresis voltage as the sign of current
changes. This term can be expressed as:

hyst = M0sk +M Hk (6)

where M0 is the magnitude of the change in instantaneous hys-
teresis,M is a constant that represents the maximum polarization
due to hysteresis, and sk is a term that stores the memory of the
previous sign of non-zero cell current value and is given by,

sk =

{
sgn (ik) , |ik| > 0
sk+1 , otherwise

(7)

B. Model Parameter Identification

The ESC model contains several parameters that need to be
identified to represent the dynamics of the battery cell. This
parameter identification problem is then converted to an opti-
mization problem using an objective or min-cost function. The
mean square error will be used as a min-cost function and is
expressed by the equation,

minJ =
1
N

N∑
i=1

[zAtcual, i − zEstimate, i]
2 (8)

where J is the objective function, i is the index term, N is
the number of data samples, and z is the terminal voltage.
The main objective of this process is to fit the output of the
estimated model with the actual measurement obtained by an
actual battery, i.e., the output of the ESC model should match
the actual measurement. Fig. 2 describes the block diagram of the
ESC model parameter identification process by an optimization
algorithm.

The ESC model parameters to be identified are included in
the parameter vector X , as follows:

X = [M0 M γ R0 R1 Cn]
T (9)

The selected optimization algorithm that will be used for
parameter identification is the Particle Swarm Optimization
algorithm and it is discussed in the following subsection. It is
noteworthy to mention that a standard HPPC test was used to
characterize the model and identify its parameters.
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C. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a bio-inspired
and meta-heuristic search technique that simulates the behavior
observed in a swarm of a biological system such as a flock of
birds [29] and [30]. In the PSO algorithm, a swarm of parti-
cles is randomly initialized following uniform distribution with
predefined upper and lower bounds of the problem search space
where the particle’s position represents a potential solution. Each
particle is evaluated against a predefined objective function, as
shown in (8), to find the optimal solution. Each particle has a
velocity term that controls its next movement, [28] and [29]. The
velocity of a particle is updated according to its best solution
(pbest, i) and the best solution obtained by the entire swarm
(gbest) [28].

The velocity vi, n+1 and position xi, n+1 of an ith particle
for the next nth iteration is updated according to the following
equations,

vi, n+1 = wnvi, n+c1r1 (pBest,i−xi, n)+c2r2 (gBest−xi, n)
(10)

xi, n+1 = xi, n + vi, n+1 (11)

In (10), c1 and c2 are the acceleration coefficients, r1 and r2

are random numbers ranging from [0, 1], and wn is known as
the inertia weight factor at the nth iteration [28].

The inertia weight factor plays a significant role in the pro-
cesses of global exploration and local exploitation. It specifies
the contribution rate of a particle’s previous velocity to its current
velocity at the next nth iteration. There are many dynamically
adjusting inertia weight methods that have been proposed in
the literature. One of the effective methods, proposed by Shi
and Eberhart, is the linearly decreasing and time-varying inertia
weight method [29] and [30]. Authors have experimentally
proved that decreasing inertia weight from 0.9 to 0.4 gives the
optimal results. We should also note that the larger value for w
will allow the particle to perform global search exploration and
the smaller value will allow the particle to perform local search
exploitation. The linearly decreasing time-varying inertia weight
is iteratively calculated using the following equation [29],

wn =
wmax − wmin

kmax
(nmax − n) + wmax (12)

where, nmax is the maximum number of iterations, n is the cur-
rent iteration, wmax and wmin are the maximum and minimum
values of the inertia weight, respectively.

III. FILTER FORMULATION

In this section, the EKF, CKF, VBCKF, and VBMCCKF
algorithms are presented.

A. EKF

The KF is an efficient recursive sensor fusion algorithm that
is optimal for linear systems. The EKF was proposed as the non-
linear extension of the conventional KF. It uses the Taylor series
expansion to linearize the state space equations of a non-linear
system such as the ESC battery cell model [27], [31]. The system
input of the ESC model is defined in (4) and the measurement

output is defined in (5). The system state-space equations at
discrete-time index k can be expressed in vector form as,

xk = f (xk−1,uk, k) +wk (13)

zk = h (xk, uk) + vk (14)

where xk is the state of the system and zk is the measurement
obtained at time k , uk is the input signal, wk ∼𝒩(0, Qk)
is a normally distributed dynamics noise which is assumed of
0 mean and covariance matrix Qk, and vk ∼𝒩(0, Rk) is a
normally distributed measurement noise which is assumed of 0
mean and covariance matrix Rk.

Given the initial estimate of the state (x̂k−1|k−1) at time k − 1
and its associated covariance (P k−1|k−1), the EKF algorithm is
described as follows [27], [30], and [31],

1) Obtain the predicted state:

x̂k|k−1 = f
(
x̂k−1|k−1,uk, k

)
(15)

2) Obtain the prediction of the system state covariance ma-
trix:

P k|k−1 = F k−1P k−1|k−1F
T
k−1 +Qk (16)

where F k−1 is the linearized state dynamics
f(xk−1,uk, k) about x̂k−1|k−1, given by, F k−1 =
∂f(xk−1, k)

∂xk−1
|x̂k−1|k

3) Estimate the measurement Jacobean:

Hk =
zk

(
x̂k|k−1

)− zk−1
(
x̂k−1|k−1

)(
x̂k|k−1

)− (
x̂k−1|k−1

) (17)

4) Calculate the gain matrix Kk:

Kk = P k|k−1H
T
k

(
HkP k|k−1Hk +Rk

)−1
(18)

5) Obtain the estimates of the system state and its error
covariance matrix at discrete-time index k as follows:

x̂k|k = x̂k|k−1 +Kk

(
zk − zk

(
x̂k|k−1

))
(19)

P k|k = (I −KkHk)P k|k−1 (20)

In the EKF algorithm, as seen in the above equations, the
state-space model is linearized at each time instance. The main
drawbacks of this algorithm are as follows [30] and [31]:

1) When the higher-order terms of Taylor series expansions
are not negligible, the linearization process will cause
significant errors to the system or even affect the filter’s
stability; and

2) Jacobian matrices are calculated at every sample time.
This will lead to a high computational load for complicated
nonlinear models.

EKF SOC estimation did experience divergence due to the
linearization error as reported in [28]. Researchers in that study
also stated that the EKF estimation accuracy is sensitive to the
precision of the battery model.

Many researchers have applied variants of the EKF to estimate
the SOC of the battery. For instance, Lee et al. [4], have proposed
and implemented the dual EKF whereas Cheng et al. in [6] and
Chen et al. [32] have improved the nonlinear battery model with
EKF to estimate the SOC of a lithium-ion battery.
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B. CKF

The Cubature Kalman filter was proposed for the state estima-
tion of nonlinear dynamic systems [13]. CKF is a Jacobian-free
filter that utilizes the spherical-radial cubature rule to provide a
set of cubature points scaling linearly with the state-vector di-
mension to compute multivariate moment integrals encountered
in the nonlinear Bayesian filter [13], This makes the CKF a near-
optimal estimation algorithm that can be implemented to solve
a wide range of high-dimensional nonlinear filtering problems.
This filter has proven to have better nonlinear performance with
higher accuracy and stability given an accurate system model
under known Gaussian noise statistics compared to EKF [13].
The CKF estimation algorithm has been implemented in many
applications, such as spacecraft attitude, sensor data fusion for
positioning, and mobile station localization, among many more
[33], [34].

Considering the nonlinear system state-space equations at
discrete-time index k:

xk = f (xk−1,uk, k) +wk (21)

zk = h (xk, uk) + vk (22)

The CKF selects 2n Cubature points based on the third-order
spherical-radial cubature rule to approximate an n dimensional
Gaussian weighted integral values using the following weighting
equation, [13], [35], [36]:

I𝒩 (f) =

∫
Rn

f (x) 𝒩 (x, 0, I) dx ≈
m∑
i=1

ωif (ξi) (23)

where ξi =
√

m
2 [1]i and ωi =

1
m , i = 1, 2, . . . ,m = 2n. In

(23), ξi denotes the i’th cubature point located at the intersection
of the unit sphere, ωi is its corresponding weight, and n is the
dimension of the state vector. The estimation algorithm is then
described as follows:

The time-update process that involves computing the predic-
tive density is formulated in the following steps,

1) Factorize P k−1|k−1 according to the following equation,

P k−1|k−1 = Sk−1|k−1S
T
k−1|k−1 (24)

2) Evaluate the cubature points, (i = 1, 2, .., m; where
m = 2nx)

Xi, k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (25)

3) Evaluate the propagated cubature points, (i =
1, 2, . . . , m; where m = 2nx)

X∗
i,k|k−1 = f

(
Xi, k−1|k−1,uk, k

)
(26)

4) Estimate the predicted state,

x̂k|k−1 =
1
m

m∑
i=1

X∗
i,k|k−1 (27)

5) Estimate the predicted covariance,

P k|k−1 =
1
m

m∑
i=1

X∗
i,k|k−1X

∗
i,k|k−1

T

− x̂k|k−1x̂
T
k|k−1+Qk (28)

The second part of the algorithm is the measurement
update and is formulated as follows:

6) Factorize P k|k−1

P k|k−1 = Sk|k−1S
T
k|k−1 (29)

7) Evaluate the cubature points (i = 1, 2, . . . , m),

Xi, k−1|k−1 = Sk|k−1ξi + x̂k|k−1 (30)

8) Evaluate the propagated cubature points, (i =
1, 2, .., m; where m = 2nx)

Zi, k|k−1 = h
(
Xi, k|k−1,uk, k

)
(31)

9) Estimate the predicted measurement,

ẑk|k−1 =
1
m

m∑
i=1

Zi, k|k−1 (32)

10) Estimate the innovation covariance matrix,

P zz, k|k−1 =
1
m

m∑
i=1

Zi, k|k−1ẑ
T
i, k|k−1

− ẑk|k−1ẑ
T
k|k−1 +Rk (33)

11) Estimate the cross-covariance,

P xz, k|k−1=
1
m

m∑
i=1

Xi, k|k−1ẑ
T
i, k|k−1 − x̂k|k−1ẑ

T
k|k−1

(34)
12) Estimate the Kalman gain,

W k = P xz, k|k−1P
−1
zz, k|k−1 (35)

13) Finally, Update the state and its associated covariance,

x̂k|k = x̂k|k−1 +W k

(
zk − ẑk|k−1

)
(36)

P k|k = P k|k−1 +W kP zz, k|k−1W
T
k (37)

We should note that according to Peng et al. [9], in the case
when the predicted model error is small, the measurement model
is updated, or else the process model will only be propagated.

C. VBCKF

In the previously discussed CKF algorithm, it is generally
assumed that the statistics of the measurement noise are known
and constant throughout the estimation process. However, as
the SOC model, due to environmental or aging factors, involve
unknown and/or time-varying noise statistics, an adaptive filter
can be embedded into the estimation algorithm to be able to
handle the unknown noise statistic problem. Therefore, the ob-
jective of the adaptive filter is to approximate the joint posterior
distribution of the states and measurement noise covariances
p(xk, Rk|z1:k). This joint distribution can be approximated by
a free form factored distribution as [9], [16], and [17]:

p (xk, Rk|z1:k) ≈ Qx (xk) QR (Rk) (38)

where Qx (xk) and QR (Rk) are the unknown approximating
densities. The main purpose of the VB approximation is to
minimize the Kullback-Leibler (KL) divergence between the ap-
proximation and true posterior distribution [9], [16]. Minimizing
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the KL divergence between the two-probability distribution we
get:

Qx (xk) ∝ exp

(∫
log p (zk,xk,Rk|z1:k−1)QR (Rk) dRk

)
(39)

QR (Rk) ∝ exp

(∫
log p (zk,xk,Rk|z1:k−1)Qx (xk) dxk

)
(40)

The filtering distribution can then be approximated as the
product of Gaussian distribution and inverse Wishart (IW) dis-
tribution [16], [17], [19] and it is expressed as,

p (xk, Rk|z1:k ) ≈𝒩
(
xk|x̂+

k , P k

) · IW (Rk|vk, V k)
(41)

where,

𝒩
(
xk|x̂+

k , P k

) ∝ |P k|−
1
2 exp

(
−1

2
(xk

−x̂+
k

)T
P−1

k

(
x− x̂+

k

))
and

IW (Rk|vk, V k) ∝ |Rk|−
(vk+n+1)

2 exp

(
−1

2
tr (V kRk)

)

Here, tr(·) represents the trace of a matrix, Qx (xk) is the
Gaussian distribution, QR (Rk) is the inverse Wishart (IW)
distribution, vk is a parameter that represents the degree of
freedom, and V k is the inverse scale matrix. The VB-embedded
CKF algorithm is then summarized as follows [16], [17]:

For the non-linear discrete-time dynamical system described
in (21) and (22), given the initial conditions, xk−1|k−1 and
P k−1|k−1, the time update process is formulated as follows,

1) Factorize P k−1|k−1,

P k−1|k−1 = Sk−1|k−1S
T
k−1|k−1 (42)

2) Evaluate the cubature points, (i = 1, 2, .., m;wherem =
2nx)

Xi, k−1 = Sk−1|k−1ξi + x̂k−1 (43)

X∗
i,k−1 = f (Xi, k−1, k − 1) (44)

3) Estimate the predicted state,

x̂k|k−1 =
1
m

m∑
i=1

X∗
i,k−1 (45)

4) Estimate the predicted covariance,

P k|k−1 =
1
m

m∑
i=1

X∗
i,k−1X

∗
i,k−1

T − x̂k|k−1x̂
T
k|k−1 +Qk

(46)
5) Evaluate the inverse scale matrix and the degree of free-

dom parameter,

V k|k−1 = BV k−1B
T (47)

whereB is a matrix with a reasonable choice ofB =
√
ρI

and ρ is the forgetting factor that lies between 0 < ρ < 1

6) The degree of freedom parameter is calculated using the
equation,

vk|k−1 = ρ (vk−1 − n− 1) + n+ 1 (48)

where n is the number of state variables.

The measurement update process is performed as follows:

7) Evaluate the cubature points,

P k|k−1 = Sk|k−1S
T
k|k−1 (49)

Xi, k|k−1 = Sk|k−1ξi + x̂k|k−1 (50)

8) Evaluate the propagated cubature points, (i =
1, 2, .., m; where m = 2nx)

Zi, k|k−1 = h
(
Xi, k|k−1, k

)
(51)

9) Estimate the predicted measurement:

ẑk =
1
m

m∑
i=1

Zi, k|k−1 (52)

10) Compute the cross-covariance P xz ,

P xz, k=
1
m

m∑
i=1

(
Xi, k|k−1−x̂k|k−1

) (
Zi, k|k−1−ẑk

)T
(53)

11) Compute T zz ,

T zz, k =
1
m

m∑
i=1

(
Zi, k|k−1 − ẑk

) (
Zi, k|k−1 − ẑk

)T
(54)

Setting x̂
(0)
k = x̂k|k−1, P

(0)
k = P k|k−1, vk = 1 +

vk|k−1, and V
(0)
k = V k|k−1, iterate (55) to (62) for N

steps (j = 1, 2, . . . , N):
12) Estimate the measurement noise covariance using the

following equation,

R̂
j+1
k = (vk − n− 1)−1V j

k (55)

13) Compute the innovation covariance P zz

P j+1
zz, k = T zz, k + R̂

j+1
k (56)

14) Compute the Kalman gain,

Kj+1
k = P xz, k

[
P j+1

zz, k

]−1
(57)

15) Estimate the updated state and its associated covariance,

x̂j+1
k = x̂k|k−1 +Kj+1

k (zk − zk) (58)

P j+1
k = P k|k−1 −Kj+1

k P j+1
zz, k

[
Kj+1

k

]T
(59)

16) Evaluate the cubature points, (i = 1, 2, .., m; where
m = 2nx)

P j+1
k = Sj+1

k Sj+1T

k (60)

Xi, k = Sj+1
k ξi + x̂j+1

k (61)
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17) Update the inverse scale matrix,

V j+1
k = Vk|k−1 +

1
m

m∑
i=1

(zk − h (Xi, k, k)) (zk

− h (Xi, k, k))
T (62)

The variable that will be used in the next iteration j are,

x̂k = x̂N
k , P k = PN

k , andV k = V N
k

The VBCKF uses IW distribution to estimate the measure-
ment noise covariance [16]. It should be noted that this algorithm
assumes that the measurement noise covariance statistics are
unknown and time-varying [16]. In many practical applications,
measurement data will occasionally be corrupted with outliers
that cannot be handled by an adaptive filter. This issue is
commonly faced in BMSs where the battery cell’s measure-
ments such as voltage, current, or temperature, can easily drift
away from the true value due to the sensor’s non-idealities
(error accumulation, lack of calibration, aging, manufacturing
issues, failure, etc.), which may lead to bad SOC estimates or
even divergence. Unlike estimating the SOC through lab tests
where the experiments are run at predefined conditions with
highly accurate calibrated measurement tools, during a practical
operation, the operating conditions may change unexpectedly
leading the measurements model’s accuracy to deteriorate and
noise statistics to possibly change. Hence, the SOC estimation
algorithm must be able to handle all possible measurement un-
certainties of the battery cell to ensure highly reliable estimates.

D. VBMCCKF

As mentioned in the previous section, the VBCKF algorithm
will enhance the estimation accuracy by estimating the possibly
unknown, and time-varying measurement noise statistics. How-
ever, this performance may significantly degrade when outliers
corrupt the system’s measurements. Therefore, it is necessary to
develop a filter that can be adaptive and robust to such outliers.
In this subsection, the VBMCCKF algorithm is presented to
improve the SOC estimation robustness to measurement outliers

To detect measurement outliers, the general form of Corren-
tropy is defined as the measure of similarity between two random
variables X and Y . Its mathematical expression is given as [17]
as:

V (X, Y )=E [κ (X,Y )]=

∫∫
κσ (x, y) dFX,Y (x, y) dxdy

(63)
where E[·] is the expectation operator, and κ(·) is a shift-
invariant Mercer Kernel function and FX,Y (x, y) is the joint
distribution function. The kernel function selected for the MCC
filter is the Gaussian kernel function and is expressed as:

κ (X,Y ) = Gσ (e) = exp

(
− e2

2σ2

)
(64)

where e = x− y , and σ > 0 denotes the kernel bandwidth.
The Correntropy can be estimated using the sample mean as

follows,

Ŷ (X,Y ) =
1
N

N∑
i=1

Gσ (e (i)) (65)

Where e(i) = x(i)− y(i), with {x(i), y(i)}Ni=1 are the N
samples drawn from FX,Y .

Considering the non-linear discrete-time dynamical system
described in (20) and (21). The cost function-based MCC for
the non-linear system is given by,

JMCC (xk) = Gσ

∥∥xk − x̂k|k−1

∥∥2
P −1

k|k−1

+Gσ

(
‖zk −H (xk, uk)‖2

R−1
k

)
(66)

In this work, we are assuming the process noise to be Gaus-
sian. The cost function is modified as follows [17],

JMCC (xk) = α
∥∥xk − x̂k|k−1

∥∥2
P −1

k|k−1
+ βGσ

×
(
‖zk −H (xk, uk)‖2

R−1
k

)
(67)

where α and β are the adjusting weights. The robustness of
the filter with respect to measurement outliers increases with
smaller kernel bandwidth values, whereas larger kernel band-
width reduces the filter’s sensitivity toward the measurement
outliers [17]. In this case, it is recommended to assignα = 1 and
β = −2σ2 [17]. The MCC filter has been embedded into the
VBCKF framework to achieve robustness against measurement
outliers [17] in forming the VBMCCKF.

Given the initial conditions, xk−1|k−1 and P k−1|k−1, step (1)
to (6) formulate the time update process of the state estimate,

1) Factorize P k−1|k−1,

P k−1|k−1 = Sk−1|k−1S
T
k−1|k−1 (68)

2) Evaluate the cubature points, (i = 1, 2, .., m;wherem =
2nx)

Xi, k−1 = Sk−1|k−1ξi + x̂k−1 (69)

X∗
i,k−1 = f (Xi, k−1, k − 1) (70)

3) Estimate the predicted state,

x̂k|k−1 =
1
m

m∑
i=1

X∗
i,k−1 (71)

4) Estimate the predicted covariance,

P k|k−1 =
1
m

m∑
i=1

X∗
i,k−1X

∗
i,k−1

T − x̂k|k−1x̂
T
k|k−1 +Qk

(72)
5) Evaluate the inverse scale matrix and the degree of free-

dom parameter,

V k|k−1 = BV k−1B
T (73)

whereB is a matrix, and a reasonable choice isB =
√
ρI

and ρ is the forgetting factor that lies between 0 < ρ < 1
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6) The degree of freedom parameter is calculated using the
equation,

vk|k−1 = ρ (vk − n− 1) + n+ 1 (74)

Here, n is the number of state variables.

Next, the measurement update process of the filter is described
in steps (7) to (15).

7) Evaluate the cubature points,

P k|k−1 = Sk|k−1S
T
k|k−1 (75)

Xi, k|k−1 = Sk|k−1ξi + x̂k|k−1 (76)

8) Evaluate the propagated cubature points, (i =
1, 2, .., m; where m = 2nx)

Zi, k|k−1 = h
(
Xi, k|k−1, k

)
(77)

9) Estimate the predicted measurement,

ẑk =
1
m

m∑
i=1

Zi, k|k−1 (78)

10) Compute the cross-covariance P xz ,

P xz, k=
1
m

m∑
i=1

(
Xi, k|k−1−x̂k|k−1

) (
Zi, k|k−1−ẑk

)T
(79)

11) Compute T zz matrix,

T zz, k =
1
m

m∑
i=1

(
Zi, k|k−1 − ẑk

) (
Zi, k|k−1 − ẑk

)T
(80)

Setting x̂
(0)
k = x̂k|k−1, P

(0)
k = P k|k−1, vk = 1 +

vk|k−1, and V
(0)
k = V k|k−1, iterate (81) to (89) for N

steps; letting j = 1, 2, . . . , N. It is recommended to set
N = 2 for simple problems.

12) Estimate the measurement noise covariance using the
following equation,

R̂
j+1
k = (vk − n− 1)−1V j

k (81)

13) Compute the Kalman gain,

Lj+1
k = Gσ

(∣∣∣∣∣∣zk − hk

(
x̂j
k

)∣∣∣∣∣∣2(
R̂

j+1
k

)−1

)
(82)

Cj+1
k = Lj+1

k T zz, k + R̂
j+1
k (83)

Kj+1
k = Lj+1

k P xz, k

(
Cj+1

k

)−1
(84)

14) Estimate the updated state and its associated covariance
according to the following equation,

x̂j+1
k = x̂k|k−1 +Kj+1

k (zk − ẑk) (85)

P j+1
k = P k|k−1 + Lj+1

k P xz, k(C
j+1
k )

−T
P T

xz, k (86)

15) Compute the pseudo measurements z̃k,

z̃j+1
k = hk

(
x̂j
k

)
+ (Lj+1

k )
1
2
(
zk − hk

(
x̂j
k

))
(87)

Fig. 3. Experimental setup used to conduct the tests.

Xi, k = Skξi + x̂j+1
k , i = 1, 2, . . . , 2n (88)

V j+1
k = V k|k−1 +

1
m

m∑
i=1

(z̃j+1
k − h (Xi, k))

(
z̃j+1
k

− h (Xi, k)
)T

(89)

Finally, the below variables will be used in the next iteration:

x̂k = x̂N
k , P k = PN

k , V k = V N
k

The proposed algorithm estimates the measurement noise
covariance R using the Variational Bayesian approach. Ad-
ditionally, robustness against measurement outliers is realized
using the MCC approach. Moreover, the outlier suppression will
also facilitate the adaptive estimation of the measurement noise
covariance [17]. Hence, the combination of the VB approach and
MCC approach will improve the SOC estimation’s adaptability
and robustness when dealing with unknown measurement noise
covariance and possible measurement outliers [17].

IV. EXPERIMENTAL RESULTS

In this section, the proposed VBMCCKF filter was evaluated
and compared against the EKF, CKF, and VBCKF algorithms
in five experimental tests using a 3.6-V Li-ion battery cell. In
all the tests, the initial SOC was intentionally set at 80% (the
true initial value is 100%) with a covariance of 0.1, and the tests
cover the entire SOC range from 100% to 0%. The SOC was
wrongly initialized to assess the ability of the tested algorithms
to converge to the true SOC value. The experimental setup used
is shown in Fig. 3, where the cell to be tested is placed in a
thermal chamber with a Firing Circuits Universal Battery Tester.
The tests performed include constant pulsed-current discharge
and charge tests, a variable pulsed-current discharge test, US06,
LA92, HWFET, and UDDS standard electric vehicle drive cy-
cles. The first two tests serve to benchmark the algorithms on
simple tests, and the latter four present real-world tests with high
dynamic loads. Some of the data used are publicly available as
the LG 18650HG2 Li-ion dataset [37].

In the first test, the proposed VBMCCKF performs best
throughout the SOC range in both charging and discharging,
followed by the VBCKF, the CKF, and finally the EKF. Although
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Fig. 4. Terminal voltage comparison in the 1-A pulsed discharge test.

Fig. 5. SOC estimation performance in the 1-A pulsed discharge test.

superior performance is noticed with the VBMCCKF, the inher-
ent adaptation seems to have been slow initially, but tracking
performance improved and overcame the other algorithms. The
terminal voltage, estimation results, and the error dynamics of
the presented algorithms for the discharge test are shown in
Figs. 4–6. In the constant discharge pulsed test, the MAE
obtained is 2.10%when using the EKF, 1.59% utilizing the CKF,
0.86% using the VBCKF, and 0.68% using the VBMCCKF. The
charge test figures are omitted for brevity, but the statistics are
reported in Table I.

The second conducted test shows a similar trend to the first
test. The VBMCCKF performed best and the EKF performed

Fig. 6. SOC absolute error obtained utilizing the proposed filters for the 1-A
pulsed discharge test.

Fig. 7. Terminal voltage comparison utilizing the proposed filters in the
variable discharge pulsed-current test.

worst. Slightly better error dynamics are observed here as the
SOC estimate approaches the ground truth. This can be attributed
to the variable discharge pulsed test consistently exciting invok-
ling adaptation in the proposed algorithm. The terminal voltage,
estimated SOC, and the error dynamics are shown in Figs. 7–9.
Here, the MAE obtained is 2.32% using the EKF, 1.78% using
CKF, 1.27% using VBCKF, and 1.03% using VBMCCKF.

The remaining tests were carried out using the US06, LA92,
HWFET, and UDDS drive cycles, respectively. The terminal
voltage, estimated SOC, and the error dynamics are shown in
Figs. 10–21. The proposed VBMCCKF performs best, followed
by the VBCKF, the CKF, and finally the EKF. Unlike with
the first two tests, the estimation error diminishes much more
rapidly with these highly dynamic tests. In the US06 test, the
MAE obtained is 1.78% using the EKF, 1.88% using the CKF,
0.78% using the VBCKF, and 0.19% using the VBMCCKF. In
the LA92 test, the MAE obtained is 2.07% using the EKF, 1.63%
using the CKF, 0.62% using the VBCKF, and 0.12% using the
VBMCCKF. In the HWFET test, the MAE obtained is 0.87%
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TABLE I
MAE PERFORMANCE OF SEVERAL KF-BASED ALGORITHMS IN THE SIX TESTS UNDER THREE DIFFERENT CONDITIONS

Fig. 8. SOC estimation performance in the variable discharge pulsed-current
test.

Fig. 9. SOC absolute estimation error for the variable discharge pulsed-current
test.

using the EKF, 0.81% using the CKF, 0.28% using the VBCKF,
and 0.06% using the VBMCCKF. Lastly, in the UDDS test, the
MAE obtained is 2.83% using the EKF, 2.57% using the CKF,
and 0.01% using the VBCKF and VBMCCKF.

From the above experimental results, it can be noticed that all
algorithms have converged to the true state. In comparison with
the rest of the algorithms, the VBMCCKF converged towards
the true SOC faster and with minimum MAE compared with the

Fig. 10. Terminal voltage comparison in the US06 discharging dataset.

Fig. 11. SOC estimation performance in the US06 discharge dataset.
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Fig. 12. SOC absolute estimation error for the US06 discharge dataset.

Fig. 13. Terminal voltage comparison in the LA92 discharge dataset.

Fig. 14. SOC estimation performance for the LA92 discharging dataset.

Fig. 15. SOC absolute estimation error for the LA92 discharge dataset.

Fig. 16. Terminal voltage comparison in the HWFET discharge dataset erro-
neous measurements.

Fig. 17. SOC estimation performance for the HWFET discharging dataset
with erroneous measurements.
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Fig. 18. SOC absolute estimation error for the HWFET discharge dataset
erroneous measurements.

Fig. 19. Terminal voltage comparison in the UDDS discharge dataset erro-
neous measurements.

EKF, the CKF, and the VBCKF. Nonetheless, the above tests do
not adequately test the full capability of the proposed robust and
adaptive filter. Therefore, it is essential to test the robustness of
the proposed algorithm against varying operating environments
and outlier measurements.

All the tests presented above are processed again, once with
the environment in the thermal chamber at a different tem-
perature of 10 °C (instead of 25 °C) and another time with
simulated pseudo-outlier measurements. In the first test, the
testing conditions are the same as with previous tests, except
for the temperature change. In the second test, the voltage
measurements are replaced with wrong data for a brief period
of time, and it is noteworthy to mention that the temperature
in the thermal chamber was 25 °C at the beginning of the test.
This is done once with a constant level outlier and another time
with a constant level additive random noise injected into the
measurements sequence. For sake of brevity, we only show the
figures for the US06 cycle in the case of different operating
temperatures and the figures for the LA92 cycle with the injected
pseudo-outlier measurements.

Fig. 20. SOC estimation performance for the UDDS discharging dataset with
erroneous measurements.

Fig. 21. SOC absolute estimation error for the UDDS discharge dataset
erroneous measurements.

Figs. 22–24 showcase the US06 cycle under the new envi-
ronment temperature. The VBMCCKF once again performs best
with the other algorithms following a similar trend as seen in the
earlier tests. The level of error did, however, slightly increase on
average for all the algorithms. The dynamic nature of the test
also translates to the proposed estimator adapting quickly and
the SOC tracking the ground truth.

Figs. 25–27 showcase the LA92 cycle with the injected erro-
neous measurement sequence. The VBCKF and the VBMCCKF
are shown to handle the instances of outlier measurements much
better than the other algorithms, with them almost rejecting the
outlier entirely. Nevertheless, the proposed VBMCCKF is the
best performer amongst the tested algorithms due to the MCC
property of the filter. The EKF and CKF are noticed to exhibit
the largest deviation when the outlier sequence is injected, and
performance is still affected even after the outlier sequence ends.

The MAE comparison for all datasets and all test cases is
illustrated in Table I.

The computational burden associated with running the pro-
posed algorithm needs to be analyzed. Table II presents the
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Fig, 22. Terminal voltage comparison in the US06 discharging dataset in 10 °C
Environment.

Fig. 23. SOC estimation performance in the US06 discharge dataset in 10 °C
Environment.

average CPU time, in milliseconds, required to propagate the
entire algorithm with all tests. The more complex the algorithm
and the larger number of steps involved, the more time is required
to process measurement and generate an estimate. On average,
all the algorithms, which were implemented in the MATLAB
environment, require less than 0.5 ms CPU time to execute one
iteration. This computational complexity is minimal and can be
further brought down by optimizing the code to be run on a
low-level programming language, such as C-language.

Fig. 24. SOC absolute estimation error for the US06 discharge dataset in 10 °C
Environment.

Fig. 25. Terminal voltage comparison in the LA92 discharge dataset erroneous
measurements.

Fig. 26. SOC estimation performance for the LA92 discharging dataset with
erroneous measurements.
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Fig. 27. SOC absolute estimation error for the LA92 discharge dataset erro-
neous measurements.

TABLE II
COMPUTATIONAL BURDEN PER TIME STEP IN MILLISECONDS (COMPUTED BY

AVERAGING 100 RUN TIMES IN THE LA92 DRIVE CYCLE)

V. CONCLUSION

This paper proposes a VBMCCKF method to estimate the
SOC of different Li-ion battery cells. The algorithm utilizes the
Cubature Kalman filter to obtain high-accuracy SOC estimates
given adaptive measurement noise covariance identification and
robust suppression of measurement outliers. The measurement
error covariance is estimated using the Variational Bayesian
method, while the outliers are suppressed using the Maximum
Correntropy Criterion. The proposed VBMCCKF is verified
experimentally, and it is compared with the EKF, the CKF, and
the VBCKF. Experimental results performed using commercial
Li-ion battery cells show that the VBMCCKF has the best perfor-
mance, followed by the VBCKF, CKF, and EKF, respectively.
On average, the proposed VBMCCKF yielded a reduction in
MAE of 77%, 68%, and 49%, compared to the EKF, the CKF,
and the VBCKF, respectively. The improved estimation accuracy
and robustness of the VBMCCKF can be utilized in improving
the BMS operation and extending the service life of the battery.
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