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A Deep Reinforcement Learning-Based
Offloading Scheme for Multi-Access Edge
Computing-Supported eXtended Reality Systems

Bao Trinh

Abstract—In recent years, eXtended Reality (XR) applications
have been widely employed in various scenarios, e.g., health care,
education, manufacturing, etc. Such application are now easily
accessible via mobile phones, tablets, or wearable devices. However,
such devices normally suffer from constraints in terms of battery
capacity and processing power, limiting the range of applications
supported or lowering Quality of Experience. One effective way to
address these issues is to offload the computation tasks to the edge
servers that are deployed at the network edges, e.g., base stations
or WiFi access point, etc. This communication fashion, also named
as Multi-access Edge Computing (MEC), is proposed to overcome
the limitations in terms of long latency due to long propagation
distance of traditional cloud computing approach. XR devices,
that are limited in computation resources and energy, can then
benefit from offloading the computation intensive tasks to MEC
servers. However, as XR applications are comprised of multiple
tasks with variety of requirements in terms of latency and energy
consumption, it is important to make decision whether one task
should be offloaded to MEC server or not. This paper proposes
a Deep Reinforcement Learning-based offloading scheme for XR
devices (DRLXR). The proposed scheme is used to train and derive
the close-to optimal offloading decision whereas optimizing a utility
function optimization equation that considers both energy con-
sumption and execution delay at XR devices. The simulation results
show how our proposed scheme outperforms the other counterparts
in terms of total execution latency and energy consumption.

Index Terms—Deep reinforcement learning, energy efficiency,
eXtended reality, multi-access edge computing, offloading, quality
of service.

I. INTRODUCTION

HE eXtended Reality (XR) applications benefit from the
latest developments in 5G and beyond network commu-
nications. XR can be defined as the combination of virtual 3D
objects with real world content [1] consumed via smart devices
such as handheld smart phones or head mounted glasses'*.?
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Fig. 1. Components of an XR system [4].

Depending on the balance between the amount of virtual content
and reality, XR is denoted as Augmented Reality (AR), Mixed
Reality (MR), or Virtual Reality (VR). However, regardless of
the labeling, there is an exponential increase in XR applications
in various scenarios, including in health care [2], tourism [3],
education, and manufacturing.

Fig. 1 illustrates a generic XR system, with the following
essential components:

® Input sensors that acquire information via various type of

built-in or companion sensors, such as: gyroscope, loca-
tion, cameras, etc.

® Processing modules are responsible for processing the

collected data, which is performed locally or via offloading
to a cloud server, fog server or edge server, depending
on the required computational complexity and available
processing power.

® Qutputs refer to post-processing actions that involve the

XR content display, including streaming of high definition
video content [5], activating actuators and interaction with
external devices. This stage uses head-mounted displays
(HMD) [6], handheld displays [7] and/or devices such as
haptic gloves, olfaction dispensers [8], etc.

Despite the latest fast pace of hardware design and devel-
opment, the mobile devices used for XR applications are still
limited in terms of resources in comparison to desktops or
servers. The cost of high mobility and reduced size is paid in
terms of battery capacity and processing power. On the other
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Fig. 2. General architecture of a MEC-enhanced cloud computing system.

hand, due to the complex algorithms used mostly in relation to
video content processing, XR applications require high compu-
tational resources. An effective way to cope with the challenge of
supporting immersive XR applications run on resource-limited
mobile devices is to offload the computation via the network to
resource-rich devices, such as cloud or edge servers.

Cloud computing has been a successful new computing
paradigm. Its intrinsic idea is the centralization of comput-
ing, storage and network management in the cloud, providing
support via data centers, backbone networks and cellular core
networks [9], [10]. In order to execute computation in the cloud,
the mobile devices and servers are required to operate offloading
frameworks, such as MAUI [11], or ThinkAir [12]. However,
recently, the function of cloud computing is being increasingly
moved towards the network edges, closer to user devices [13].
By harvesting the idle computation power and storage space dis-
tributed at network edges, sufficient support is made available to
XR applications to perform computation-intensive and latency-
critical tasks at user mobile devices. This principle is behind the
Multi-Access Edge Computing (MEC) [14] paradigm, in which
mobile devices can communicate and get support from MEC
servers via multiple wireless communications technologies such
as LTE, 5G, WiFi or a combination of them [15]. The general
architecture of a MEC system is illustrated in Fig. 2.

In a MEC-enhanced cloud computing context, the challenge
remains to decide which XR processing-related tasks are to be
offloaded and where, in order to best balance XR application
requirements on one hand and make efficient use of device, MEC
and cloud computational, storage and network resources, on the
other hand. This is not trivial and diverse solutions were pro-
posed using heuristic or complex optimisation approaches [16].

This paper proposes a Deep Reinforcement Learning-based
offloading scheme for XR applications (DRLXR) that dis-
tributes the computation between device, MEC and cloud in
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order to best balance the XR application performance and energy
efficiency in given networked system resource constraints.

The contributions of this paper are as follows:

¢ A three-layer architecture for XR systems is proposed, and
the energy-efficient computation offloading issue to min-
imize the overall power consumption while satisfying the
stringent delay constraints of XR applications is focused
on.

e The problem is formulated by using the Markov Deci-
sion Process (MDP) framework and the close-to-optimal
offloading decision making is derived via a Deep Rein-
forcement Learning (DRL) technique. The XR applications
are decomposed into small tasks and are represented using
Graph Theory.

¢ Finally, the proposed DRLXR solution is evaluated using
Network Simulator NS-3 and Open Gym Al library and is
benchmarked against other novel offloading schemes.

The rest of this paper is organized as follows: Section II

surveys some novel offloading schemes found in the research
literature. The technical background of the Deep Reinforcement
Learning (DRL) is discussed in Section III. Section IV provides
details about our proposed solution, including system archi-
tecture, problem formulation and the DRL-based offloading
algorithm. We evaluate the proposed scheme in a simulation
environment and discuss the results in Section V. Finally, the
paper is concluded in Section VI.

II. RELATED WORKS

This sections discusses some state-of-the-art offloading
schemes proposed in the research literature. According to their
type of offloading, four main groups of such schemes are con-
sidered: 1) binary offloading, ii) partial offloading, iii) stochastic
model-based and iv) deep learning-based offloading schemes.

A. Binary Offloading

Kumar et. al., [17] provided guidelines for making offloading
decisions with the aim to minimize both computation latency
and energy consumption for mobile devices in a traditional
cloud computing fashion. The key factors that are considered
for offloading include: CPU speed at mobile devices and cloud
servers, data size, and fixed rate of wireless communication
links. However, the assumptions made in this paper are not realis-
tic. The channel gain of wireless communication is time-varying.
Besides, the CPU power consumption increases in proportional
to CPU cycle frequency. So, adaptive offloading schemes are
necessary to overcome such limitations.

The authors of [18] and [19] employed an optimization
framework to formulate the offloading decision with the aim
to minimize energy consumption. In [18], the researchers con-
sidered multimedia applications, which require the task to be
completed within the deadline with a given probability 7. The
offloading decisions are made following which computation
modes (either local computing or offloading) incur less energy
consumption. Internet of Things (IoT) systems where sensor
nodes are powered using wireless power transfer (WPT) tech-
nology are considered in [19]. Alongside reducing the energy
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consumption, the optimization proposed in [19] also aims to
maximize the computation rate of all network nodes.

In reality, mobile applications normally consist of multiple
procedures/functions/components, like the components of the
XR system illustrated in Fig. 1. In this case, offloading the whole
program or completely performing local execution as suggested
by binary offloading is not suitable.

B. Partial Offloading

Partial offloading of tasks refers to the decomposition of
one application into two parts: one offloaded to edge servers
and the other one executed locally at the mobile device. Kao
et al. in [20] modeled the dependency between different proce-
dures/components of an application by using a Directed Acyclic
Graph (DAG). Next, the balance between energy consumption
and delay is formulated via an optimization equation. Saleem
et al. [21] studied the problem of minimizing latency by consid-
ering the local energy constraint, while taking into account the
limited energy availability at the user. This has a high impact on
the data segmentation decision. Despite the manifold benefits,
such partial offloading schemes are not examined under time-
varying radio communications channels, such as poor channel
conditions and scarce bandwidth may affect the offloading la-
tency. In such case, multiuser cooperative edge computing can
be considered as a promising solution, where proximal devices
can collaborate with each other to scale up the services. An
approach that combines MEC and Device-To-Device (D2D)
communications is proposed in [22]. Based on monitoring the in-
terference on the radio communications link, a device can decide
to offload task execution to the edge server, to another nearby
device, or execute it locally. [23] proposed a joint solution based
on Mixed-Integer Nonlinear Programming (MINLP) that con-
sidered multi-task partial computation offloading and network
flow scheduling problem in multi-hop network environments.
The output of the proposed optimization problem is a partial
offloading ratio.

C. Stochastic Task Model-Based Offloading

Hong and Kim [24], Zhang et al. [25], Zheng et al. [26],
and Ren et al. [27] are among solutions that consider stochastic
task models that are characterized by random task arrivals.
In [24], the problem of minimizing long-term execution cost was
solved via jointly optimizing computation latency and energy
consumption. The proposed scheme employed a semi-MDP
framework to control local CPU frequency, modulation scheme
and data rates. Zhang et al. [25] proposed an optimization based
offloading scheme for unmanned aerial vehicle (UAV) systems
that aim to minimize the energy consumption subject to the
constraints on the number of offloading computational tasks.
These tasks were assumed to arrive in stochastic manner and
be independent and identically distributed (iid). In [26], the
problem of stochastic computation offloading is formulated by
using the MDP framework and solved via using Q-learning
algorithm. A joint solution that combines channel allocation and
resource management for making offloading decision (JCRM)
with the aim to maximize network utility was proposed in [27].
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JCRM then leverages the Lyapunov optimization technique to
make optimal offloading decisions.

D. Reinforcement Learning-Based Offloading

Since there is limited training data and novel applications
appear continually, supervised learning becomes difficult for
feature learning. Although unsupervised learning is promising
to exploit the features of network traffic, it is challenging to
achieve real-time processing [28]. On the other hand, reinforce-
ment learning paradigm can be used without having access to
a pre-existing data set for training. Training can be achieved
via direct interaction between learning agent and surrounding
environment.

Li et al. [29], Hu et al. [30], and Ning et al. [31] proposed
to make use of reinforcement learning and/or combine it with
deep learning in order to propose diverse offloading schemes
for MEC-enhanced Internet of Vehicle (IoV) systems. In [29],
Li et. al., proposed an online reinforcement learning method
from the feedback and traffic patterns to balance traffic loads.
In order to fulfil high-efficient traffic management, a joint com-
munication, caching and computing problem was investigated
in [30]. [31] proposed an offloading scheme that addressed the
trade-off between energy consumption and delay for IoV system.
The RL based solution were then employed to derive offloading
strategy for oV nodes.

Min et al. [32] considered 10T nodes that are powered fol-
lowing energy harvesting. The proposed scheme allowed IoT
devices to select the edge server and offloading rate based on cur-
rent battery level and previously monitored radio transmission
rate. DRL was employed to improve the offloading performance
in a highly complex state space.

Wang et al. [33] transformed the original joint computation
offloading and content caching issue into a convex problem
then solved it in a distributed and efficient way. Hao et al. [34]
considered the offloading problem that takes into account both
constraint of computing and storage capacity of mobile devices
when optimizing the long term latency. The proposed scheme
was formulated by using DRL and the solution proposed showed
noticeable results in terms of convergence time and latency
reduction.

Wang et al. [35] proposed a Meta Reinforcement Learning-
based scheme (MRLCO) to provide optimal offloading decision
for User Equipment (UE). Mobile applications are modeled
as Directed Acyclic Graphs (DAG). The author employs Meta
Reinforcement Learning (MRL) in order to find the close-to-
optimal offloading decisions for UEs with the aim to reduce
latency. UE applications are defragmented into multiple sub-
tasks. Each sub-task is then decided to be processed locally
or offloaded to a virtual machine at MEC server. MRLCO
outperforms the other baseline algorithms in terms of average
latency. The main disadvantage of MRLCO is the lack of UE
mobility and energy consumption consideration.

Despite pursuing different avenues, most of the existing works
did not consider a holistic approach that takes into account the
complexity of the latest applications, such as the XR ones.
These applications comprise of many small tasks and their
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performance is influenced jointly by network conditions and
energy consumption. This gap is bridged in this article.

III. TECHNICAL BACKGROUND

This section briefly discusses the background related to
Markov Decision Process (MDP) and Deep Reinforcement
Learning (DLR), techniques used in the proposed solution.

A. Deep Reinforcement Learning

DRL is a research area of machine learning that combines
Deep Neural Network and Reinforcement Learning (RL). Deep
learning enables RL to scale problems that were previously
intractable, i.e., the environment with a high dimensional state
and large action spaces. Some successful applications of DRL
include video games, robotics, etc.

In general, DRL can be formulated as an Markov Decision
Process (MDP) framework using a tuple (S, A, P, R, ), where:

e S is a finite set of states

e A is a finite set of actions

e P is a state transition probability matrix,

P;lsr = P[St—i-l = S/|St = S,At = CL]

e 7R is areward function,

Rg = E[Rt+1|St = S,At = a]

e+ is a discount factor v € [0, 1]

MDP uses a definition of total expected return, return G, or
the total discounted reward from time-step ¢ as follows:

Gy =Ry +7Rip2 + -+ = Z’Yth+k+1~ (1
k=0

A policy 7 in an MDP is a distribution over actions given
states:

w(als) = P[A; = a|S; = s]. ()

The goal of MDP is to derive an optimal policy 7*(a|s) =
P[A; = a|S; = s], which is a distribution of actions in corre-
sponding states, so as to maximize the total discounted cumula-
tive reward.

In general, there are two main approaches to solving RL prob-
lems: value function based and policy search based methods.

1) Value functions methods are based on estimating the

value (or expected return) of being in a given state. The
state-value function v, (s) is the expected return when
starting from state s and following policy 7:

vr(s) = Ex[Gi|S: = s
= Eﬂ- [Rt-H + ’}/Uﬂ(St+1)|St = S}. (3)

The optimal policy, denoted as ¥, has a corresponding
state value function v,(s) that is defined as:

v4(8) = max v, (s). )

If we know the value of v,(s), the optimal policy can be
derived by choosing among all available actions in state s,
and picking the action a that maximizes F,  ~p (s, |s;,a)-
In a RL environment, as the state transition probability
matrix P is not available, another function, state-action
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Fig. 3. The concept of Actor-Critic [38]. The actor (policy) chooses an action
following the received state from environment. At the same time, the critic (value
function) receives the state and reward resulting from the last interaction. The
critic uses TD error calculated to update itself and the actor.

value function ¢, (s, a) is constructed as follows:

gr(s,a) = E;[Gt|S: = s, A; = a]
= Ex[Riv1 + 74 (St41, Ae1)[Se = s]. (5)

The best policy, given ¢, (s, a) can be found by choosing
a greedily in every state: argmaz,q,(s,a). Under this
policy, the value v,(s) can be derived by maximizing
Gx(s,a): v(s) = max, ¢ (s, a)

2) Policy search methods do not maintain a value function
model, but directly search for an optimal policy 7*. In
general, a parameterized policy 7y is chosen, where pa-
rameters ¢ are updated to maximize the expected return
E[R|0] using either gradient-based or gradient-free opti-
mization [36]. Gradient-free methods find the best policy
via using heuristic search across a predefined class of
models. For gradient-based learning, the gradient can be
estimated [37].

In order to combine the advantages of value function and
policy search methods, a hybrid solution that employs both value
functions and policy search, named Actor-Critic [38], was in-
troduced. Actor-Critic method combines a value function with
an explicit representation of the policy, resulting in actor-critic
methods, as shown in Fig. 3. The actor (policy) learns by using
feedback from the critic (value function). Actor-Critic methods
use the value function as the baseline for policy gradients, so
that the only fundamental difference between the actor-critic
method and other baseline methods is that the actor-critic method
utilizes a learnt value function. Some advantages of Actor-Critic
methods [38] include: i) they require minimum computation in
selecting actions in comparison to the other two methods; ii)
they can learn an explicitly stochastic policy or optimal prob-
abilities of selecting various actions. Due to these advantages,
the Actor-Critic method is employed as a decision maker for XR
device task offloading. This is discussed in details in the next
section.
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TABLE I
ABBREVIATIONS
Parameter Meaning
CPU Central Processing Unit
CSI Channel State Indicator
DAG Directed Acyclc Graph
DRL Deep Reinforcement Learning
LSTM Long Short Term Memorty
MEO Multi-Access Edge Orchestration
0SS Operations Support System
RSSI Received Signal Strength Indicator
VM Virtual Machine
&
XR Device
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Server ¥...
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Fig. 4. Testing topology.

IV. PROBLEM FORMULATION

This section discusses the proposed offloading scheme. First,
the system architecture is described and then the details of
problem formulation based on MDP are provided. Finally, the
DLR-based offloading scheme is introduced in details. We in-
clude all the abbreviations used in this paper in Table I.

In order to evaluate and compare our proposed schemes
against another algorithms, we use the following metrics:

® Average energy consumption (in Joules) over all devices

® Average total completion time of tasks

A. System Architecture

The general architecture of the MEC-enhanced network sys-
tem is considered to consist of three levels: core network, edge
network, and XR devices, as illustrated in Fig. 4.

The Operations Support System (OSS) and Multi-Access
Edge Orchestration (MEO) are located at the top core network
level. The OSS block is responsible for receiving requests from
customers, and determines requests granting, sending the re-
quests to MEO. MEO maintains an overall view of the MEC-
based system, knowing the available resources, services and de-
ployed MEC hosts, and it also monitors the topology. MEO also
selects the best hosts where to deploy an application, considering
available resources, services availability and constraints such as
latency.

At the Edge Network level, the major components are MEC
Server, and MEC Platform. The latter is responsible for man-
aging the life cycle of both applications and MEC platforms,
informing the MEO if any relevant event happens. MEC platform
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manager allows for platform configuration and applications life
cycle procedures.

Finally, at the bottom are XR devices that are running high
computation-intensive applications, such as: deep learning-
based object detection, 360° video streaming, etc. and need to
offload some tasks to MEC servers.

Next, the block diagram for MEC server and XR devices, as
illustrated in Fig. 6 is discussed.

® At mobile XR device: The Application Monitor block is

responsible for monitoring all applications running in par-
allel at the device. A Energy Consumption monitor block
notifies the remaining battery level and depletion rate. The
Channel State Information (CSI) module keeps tracking the
signal level, in terms of Received Signal Strength Indicator
(RSSI). All these three blocks provide information to the
Local Trainer for collecting data and Deep RL based De-
cision Maker for calculating the offloading decision. The
computation is either fed into Offloading Scheduler module
and then offloaded via Radio Transmission Unit to MEC
server or executed locally at Local Executor block.

® At MEC server: The Data Aggregation part collects all the

requests from all devices from Radio Transmission Unit in
the vicinity then feeds them into Traffic Management block.
The Traffic Management block manages all the Virtual
Machine (VM) and assigned resources for corresponding
mobile device’s requests. All requests are then processed
and the responds are sent back to XR devices via Remote
execution service block. MEC sever also has connections
to Remote Cloud servers, but in the scope of this paper, we
ignore the effect of such communications.

B. Definitions and Assumptions for the Optimization Model

1) Multitasking Application Modelling: In this paper, we
assume that an XR device is executing a resource-hungry mul-
titasking XR application by offloading some sub-tasks to the
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O Task to be executed locally
. Task to be offloaded to MEC server

Fig. 7. Example of a general dependencies model for XR application compu-
tation tasks.

MEC server. Such offloading decisions aim to minimize the
device’s energy consumption, whereas the predefined stringent
requirements of completion time of the application are met.

A multitasking application can be decomposed into a set of
fine granularity atomic non-preemtive tasks. We use a Directed
Acyclic Graph (DAG) to formulate the dependencies between
these tasks. Denote G = (V, E) as the construction of multi-
tasking, where V' is the tasks and E refers to the dependencies.
The total number of tasks of the applicationis N = |V].

Depending on how developers model the applications [39]
[40], there are, in general, three types of multitasking DAG:
i) Sequential, ii) Parallel, and iii) General dependencies. Due
to their simplicity, the Sequential and Parallel models cannot
reflect the complexity of dependencies between sub-tasks of an
XR application. Therefore, in this paper, we consider a general
dependencies model for XR applications, as illustrated in Fig. 7.
Each node from 1 to N = |V| represents a computation task
of the application that can be executed locally or offloaded to
the MEC server. Normally, for an XR initiated application, the
first and last steps (i.e. 1 and N), which receive I/O data and
display the final results on the device screen, respectively, must

service

Edge Level

/ ;

be executed at the XR device. XR devices decide for the tasks
associated with the remaining nodes (i.e. from 2 to N — 1) if
they will be offloaded or executed locally. The tasks that are
being offloaded to MEC server is highlighted in blue whereas
the pink ones refers to the tasks that are executed locally at XR
devices.
2) Energy Consumption Model: In general, the energy con-
sumption of mobile device can be decomposed into four parts:
e The energy consumption by the local CPU due to local
processing, denoted as €,,ocessing-
® The energy consumed by wireless network interface when
uploading to remote servers code source and data of of-
floaded tasks, denoted as €.
¢ The energy consumed by wireless network interface when
downloading task execution results from MEC servers,
denoted as €4oun
® The energy consumed by wireless network interface when
it is in idle mode. This mode is enabled when the mobile
device is waiting for the execution of offloaded tasks,
denoted as €;4j.
Using the model from [40], [41] and following the previous
considerations, the energy consumption € for task ¢ can be
derived as follows:

¢ ¢ t ¢ t
€ = 6u;o + €down + 6procesm'ng + Cidle- (6)
In case task  is executed locally, we have €,;, = €4own = 0.
By summing up, the total energy consumption E of the
application with n tasks is:

E(t)=) ¢. (7)

t=1

3) Completion Time: When the computation is executed lo-
cally, it will utilize the computing resources of the mobile device,
including CPU, memory, storage, battery capacity, etc. Denote
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CPU cycle frequency as f,,, task input-data size as L (bit),
computation workload/intensity X (in CPU cycles per bit), the
execution latency for local processing for task # is:

LX
7—ltocal = T (8)

For the task that is offloaded to the MEC server, the time spent
on transferring data is calculated as follows:

t
Toff = Tup + Tdown + 7-queue + Tprocess- (9)

The completion of an application is obtained when the final
task n = |V is executed. We use T to refer to the processing
duration of all application tasks, plus transmission time to/from
the MEC server.

T(t) = Z (1= 2") Thopar + 2" 7054)

t=1

(10)

where 2! denotes the offloading decision at time ¢. x¢ = 1 refers
to the offloading of the task at time ¢ to a MEC server, and z* = 0
indicates local task execution at the level of the XR device.

In order to meet the strict deadline 71,5, We have the condition:
T(t) < Tmax-

The utility function that takes into account the energy con-
sumption and completion time is derived as follows:

U:—(aE(t)+(1 —a)f’(t)), 11
where E(t) and T'(t) are energy consumption and completion
time values, after normalization.

C. DRL-Based Offloading Algorithm Design

This section presents the algorithm of the DRL-based of-
floading scheme for XR devices. First, the problem formulation
is described. It employs the Markov Decision Process (MDP)
framework, as follows.

1) STATE SPACE: The state space of the agent (located
at XR devices) includes all possible observations. Each
observation is specified by a tuple (P, £, C), where:

e P =0,1,...N denotes the set of Application sub-tasks
that are specified as single-chain applications with [V being
the number of tasks.

e & denotes the remaining energy of the XR device (ex-
pressed as percentage %)

e ( refers to the Channel State Information (CSI), monitored
in the current state.

2) ACTION SPACE: The Action space incorporates |A]
available actions that the agent can performin a given state.
We define the action space with two values: A =0,1,2
where: 0 and 1 denote local computing and offloading to
MEC server, respectively, and 2 indicates that the device
is in idle or waiting states.

3) REWARD FUNCTION: The reward signal is calculated
by using eq. (11) to calculate the feedback of the chosen
action for a specific state.

Fig. 8 illustrates the Long Short Term Memory (LSTM) Actor

Critic (AC) based architecture for solving the MDP. LSTM is
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a powerful artificial neural network architecture that is widely
used in prediction and classification, such as in time series
data [42]. In this paper, LSTM is used to learn the temporal
regularity of states in terms of RSSI, energy consumption and
application sub-task status due to device mobility. Details of the
LSTM AC-based architecture are described next.

® Representation network incorporates a fully connected
(FC) layer and an LSTM layer. This network is respon-
sible for detecting the temporal correlation of states. The
FC layer takes the buffer B as input and then feeds the
extracted feature tensor to the LSTM layer. The output of
the LSTM layer is the variation regularity of of states from
the last 7" observation vectors in the buffer. After 7" updates,
last LSTM cell outputs a completed representation of the
environment h; that is then used as input for both Actor
and Critic networks.

® Actor network comprises one FC layer that takes the output
from the representation network and generates actions for
the current states that is specified by a Softmax function.
The output of Softmax function is a probability of differ-
ent available actions m(a¢|st). Then, the taken action is
sampled following 7 (a|s¢).

e (ritic network estimates value of current state and incor-
porates two FC layers. The first FC layer takes the h; from
representation network and extract value-related features.
Then, the second FC layer output the estimated state value
V(St)

Algorithm 1 presents the DRLXR scheme in details. # and
w are Actor and Critic network parameters. We use a buffer B
with length 7" to concatenate a series of states to feed into the
LSTM layer. We initialize the buffer via running a loop with T’
iterations to take a series of states into B. From the beginning of
each loop, all states in the buffer B are concatenated and fed into
the representation network. The output h; is then considered as
input of both Critic and Actor networks. The action a; is taken



TRINH AND MUNTEAN: DEEP REINFORCEMENT LEARNING-BASED OFFLOADING SCHEME FOR MULTI-ACCESS EDGE

Algorithm 1:
Offloading.
1: Procedure DRLXR
Initialize Actor network parameters ¢, Critic
network parameters w
Initialize an empty replay buffer B of length T’
Output Offload decision 0, 1,2
2: fori=1toT dodo
Randomly choose an action a; € A and perform a;
The agent takes the next state O;
Append O; to buffer B
3:  whileTRUEdo
Concatenate states in the buffer B to form

Deep Reinforcement Learning Based

st ={0¢-7,...,04-1}
Feed O to the representation network and take the
output /y

Feed h, to Critic network and calculate V (s;)
Feed h; to Actor network and take 7(a;|s;) and
perform ay

The agent receives the reward r; and gets the new
observation Oy

Append O, to the buffer B

Concatenate observations in the buffer B to form
St41 ={Ot—141,--.,0}

Feed Oy, to the representation network and take
the output hyy |

Feed hy; to Critic network and calculate V' (s;41)
Calculate Temporal Difference (TD) error

d=rt +yV(st41) — V(st)

Update 6 of the Actor network following eq. (12)
Update w of the Critic network following eq. (13)

via sampling from the output of the Actor network and the next
state s; is then appended into the buffer B. The output of the
Critic network is the estimated value of V' (s;). Next, the agent
continues to concatenate the data from buffer B to form another
input s;41. The value V' (s;1) is then estimated from the output
of Critic network. We calculate the Temporal Difference (TD)
error § by using equation § = r; + YV (sp1) — V(se). If aa
and a¢ are the learning rates of Actor and Critic networks,
respectively, the values of # and w are updated according to
(12) and (13).

The parameters 6 for the Actor network and w for the Critic
network are updated based on the following equations:

(12)
(13)

0+ 0+ aadVinm(as|st, 0).

W W+ acdVi(st, w).

V. PERFORMANCE EVALUATION

This section discusses the validation of our proposed scheme
in a simulation environment under different test scenarios.
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A. Experimental Setup

We build our testing environment in Network Simulator NS-
3 [43]. Then, we implement the Actor-Critic model on Tensor-
Flow 2.4° and train the agent on OpenGym Al [44] framework.
The computer for testing is installed with Ubuntu Linux 18.0
LTS and has 32 GB memory and an Intel Core i7 6! gen
processor. In this testing, there is no need for using a GPU for
training. Fig. 9 illustrates the network topology employed for
testing. We assume that a number of mobile XR devices are
moving around in an area at walking speed under the coverage
of some MEC servers.

Fig. 10 [45] illustrates the computation components of an XR
application. The functionality of the major components is briefly
introduced next.

® Video Source fetches video frames from the camera hard-
ware.

® Renderer renders an overlay on the screen.

e Tracker component processes the camera frames and esti-
mates the camera position with respect to the world based
on a number of visual feature points. The more feature
points we use, the more stable the tracking. Increased
feature points also makes tracking the camera more robust
during sudden movements.

3https://blog.tensorflow.org/2020/ 12/whats-new-in-tensorflow-24.html


https://blog.tensorflow.org/2020/12/whats-new-in-tensorflow-24.html
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Fig. 11.  General dependency of a XR application.

TABLE II
SIMULATION SETUP DETAILS

Value
100000 seconds
5, 10, 15, 20, 30, 40, 50
0,2,4,6,8, 10, 15
Single cell; Radius - 50 meters
IEEE 802.11ac 2.4/5.0 GHz
Isotropic Antenna Model
2.0 Mbps
Skm/h

Parameter
Simulation Length
No. of nodes
No. of MEC servers
Cell layout
WiFi Mode
Antenna Model
WiFi 802.11ac
Walking speed

® Mapper creates a model of the world by identifying new
feature points and estimating their position, which can then
be used for tracking.

® ObjectRecognizer tries to recognize known objects in the

world and notifies the Renderer of their 3D position when
found.

Depending on the latency requirement and current energy
consumption situation, XR device can decide one component
is either executed locally or offloaded to MEC server. For
example, Tracker, Mapper, ObjectRecognizer components can
be offloaded to MEC server whereas Video Source and Renderer
computation are executed locally as illustrated in Fig. 10. Based
on the relation between components, we built the dependency
model based on DAG, as illustrated in Fig. 11. We assume that
multiple applications are running in parallel in an XR device.
The simulation setup details are summarized as in Table II.

In order to evaluate and compare our proposed schemes to
other algorithms, we use the following metrics:

® Average energy consumption (in Joules) across all devices

® Average total completion time of tasks

We compare our proposed solution DRLXR with the follow-
ing baseline algorithms:

® No-Offloading scheme (NO) [46]: All tasks are handled

locally at devices and all data is received from the network.

e Greedy policy (Greedy): Each task is greedily assigned to

the XR device or a MEC server based on its estimated
completion time.

® (Q-Learning method (Q-Learning) [47]: That s a traditional

temporal difference algorithm, which always pursues the
largest reward in the next time step. In addition, Q-Learning
always records rewards in each iteration. When system
state or action spaces are large, this solution tends to use
large memory.

e Dynamic RL Scheduling (DRLS) [48]: A reinforcement

learning-based offloading scheme that combines both D2D
and MEC systems.
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B. Results Discussion

In all cases, the energy consumption and total completion time
of the Non-Offloading (NO) scheme are unchanged due to the
local execution. We consider this case as the baseline for the
other schemes to compare against.

Fig. 12 illustrates the average energy consumption with dif-
ferent offloading data sizes. We observe that the energy con-
sumption of XR devices is proportional to the increase in the
offloaded data size due to the energy usage for transmitting and
receiving data over the radio link. When the offloading data size
is small (less than 40 MB), the average energy consumption
of all cases is similar (experiences slight differences only). At
the breaking point of 80 MB, the Greedy method results are
increasing sharply. Although the other schemes perform more
stable, DRLXR has better results with lower energy consump-
tion of about 150 x 10° Joules in comparison to 160 x 10°
Joules and 177 x 10° Joules of DRLS and Q-Learning methods,
respectively.

Fig. 13 and Fig. 14 illustrate the average energy consumption
and average total completion time with different numbers of
MEC servers, respectively. It can be observed that the energy
consumption decreases with the increase in the number of MEC
servers used. Initially when there is no MEC server, all schemes
consume about 150 (x10° Joules) energy and require 129 s
completion time, respectively. The breaking point appears when
number of MEC servers is equal to 8 and all schemes except
NO show stability. Greedy, Q-Learning, and DRLS methods’
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Fig. 15.  Average total completion time with various number of XR devices.

average energy consumption are around 77 x 10° Joules, 75
x 10° Joules and 63 x 10° Joules, respectively, whereas the
result of DRLXR is around 60 x 10° Joules. A similar situation
also occurs at about 8 MEC servers and above related to the
results of the average total completion time. Starting from 130's,
the average total completion time of all schemes decreases and
is kept stable at 70 s, 68 s, 62 s and 60 s for Greedy, Q-learning,
DRLS and DRLXR, respectively. The following are the reasons
that explain the benefits of using DRLXR in comparison with
the alternative solutions. In DRLS, XR devices can offload
the computation to other peers via D2D communications, that
lead to higher total energy consumption. On the other hand,
Q-learning does not specify an exploration mechanism, but a
greedy manner and requires all actions be tried infinitely in
all states. Such a mechanism has lower accuracy when making
offloading decisions. Unlike them, DRLXR employs the Actor-
Critic method that specify a full exploration mechanism by the
action probabilities of the Actor. In addition, DRLXR is trained
from historical data that lead to higher accuracy of offloading
decisions.

Finally, the total completion time with different numbers
of XR devices is shown in Fig. 15. The number of mobile
devices at each MEC server is randomly generated by a uniform
distribution, and the average total completion time is calculated
as a performance indicator. Greedy and Q-learning methods’
results are similar to those of the NO scheme for 50 XR devices,
with a time completion of around 127 s. DRLS completion
time increases at lower speed due to the probability of data
exchange with other D2D peers. However, due to the limitation
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in computation, other XR devices that receive the offloaded
computation from their peers cannot process the large amounts
of data (due to the characteristics of XR applications) in a timely
manner. On the contrary, XR devices in DRLXR make offloading
decisions with higher accuracy than Q-learning and all high
intensive computation tasks are guaranteed to be processed at
MEC servers and the stringent latency requirements are met. As
a consequence, DRLXR time completion increases at a lower
pace and outperforms other counterparts.

VI. CONCLUSION

This paper proposed and designed the Deep Reinforcement
Learning-based Offloading scheme for XR devices (DRLXR)
in the context of a MEC-enabled network environment. A hi-
erarchical network architecture with three levels is considered.
The task offloading problem at the XR device is formulated
using DRL. Based on the data monitored at the XR devices,
including radio signal quality, energy consumption and status of
running application, the devices employ an Actor-Critic method
for training and decision making on task offloading. The pro-
posed DRLXR scheme is evaluated in a simulation environment
and compared against other offloading methods. The simulation
results show how DRLXR outperforms the other solutions in
terms of average energy consumption and total completion time.

Future works will focus on a joint solution that combines the
proposed offloading scheme and resource management at MEC
server under heterogeneous QoS requirements.
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