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Abstract—Various machine learning (ML) based localization
schemes using channel state information (CSI) in wireless local
area networks (WLANs) have been investigated recently. Adopting
a proper feature selection technique is important to achieve further
improvement in detection accuracy. As described herein, we pro-
pose a device-free indoor localization scheme using a lightweight
ML model with compressed spatially concatenated CSI in WLAN
systems with distributed antennas. In this scheme, feedback beam-
forming weights (BFWs) are collected at a CSI capture terminal.
Then, current and past BFWs are concatenated as accurate fea-
ture data to characterize the object behavior. Additionally, we
propose the use of a frequency-domain sampling scheme for a
low-complexity real-time target position detection with a small
number of datasets. Using ray-trace based simulation analysis and
experimentally obtained results from an indoor environment, we
demonstrate that the proposed scheme using the concatenated CSI
is effective not only for achieving more accurate real-time detection,
but also for reducing the necessary complexity for both off-line
training and on-line classification compared with other reference
schemes.

Index Terms—Beam-forming weight, localization, spatially con-
catenated channel state information, wireless local area network.

I. INTRODUCTION

W IRELESS sensing technologies integrated with wireless
communications are key technologies for development

of 6 G and beyond [1], [2], [3]. To be more specific, future
wireless networks are expected to provide not only data trans-
mission but also additional functions to support new application
services such as sensing by radio signals. Recently, indoor
object detection and localization using radio signals of exist-
ing communication infrastructure such as wireless local area
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networks (WLANs) have received much attention [4], [5], [6].
The basic principle of object detection using radio signals is to
characterize target object behaviors as fluctuations of wireless
channels caused by target objects. To achieve that characteri-
zation, various wireless sensing schemes having different bases
have been elucidated in the literature, such as radio-frequency
identification (RFID) based [8], Bluetooth based [9], ZigBee
based [10], and WLAN based [6], [7], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26]
schemes. Among them, WLAN-based sensing is a cost-effective
approach because existing access points (APs) can be exploited
for sensing purposes.

Actually, WLAN-based sensing techniques using measured
received signal strength (RSS) or channel state information
(CSI) have been investigated widely [6], [7]. Particularly an
effective way for characterizing target object behaviors more ac-
curately is to utilize subcarrier-wise CSI in orthogonal frequency
division multiplexing (OFDM), i.e., amplitude and phase fluc-
tuations in a frequency-selective fading channel. Furthermore,
combined with multi-input multi-output (MIMO) technologies,
CSI is expected to enhance wireless sensing accuracy further by
exploiting rich channel information obtained through multiple
antennas [18].

To this end, an effective device-free CSI acquisition scheme
for WLAN-based sensing is proposed wherein feedback frames
conveying beam-forming weights (BFWs) are collected at an
off-the-shelf WLAN device, after which they are used to train a
machine learning (ML) model and to detect object positions and
their behaviors [21], [22]. Although this method is effective for
collecting CSI without explicit measurements, the available CSI
and its achieved accuracy are limited when WLAN is equipped
with only a single antenna. Although the localization accuracy
can be improved by increasing the number of antennas in WLAN
systems [24], [26], the achieved performance might deteriorate
when a lightweight algorithm with a small dataset is used. In
addition, because radio propagation characteristics are sensitive
to antenna locations and their surrounding environments, inves-
tigating an effective feature selection technique for ML-based
object detection is important. However, as described above, the
effects of surrounding radio propagation environments on the
achievable performance have not been analyzed sufficiently. To
enable real-time sensing at a mobile WLAN device with limited
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hardware and energy resources, the required complexity and
dataset must be minimized. Therefore, further investigation and
analyses are necessary to develop a lightweight algorithm with a
small dataset. The original contributions of this paper are three,
as presented below.
� As described in this paper, we aim to design a real-time

device-free indoor ML-based localization scheme with
compressed spatially concatenated CSI in WLANs with
distributed antennas. In this scheme, CSI feedback frames
are collected continuously at an off-the-shelf WLAN
device similarly to a process described by Murakami
et al. [21]. Then current and past BFWs are concatenated
as more accurate feature information. Subsequently, they
are used as training data for an ML model. Unlike the con-
ventional scheme [21], more accurate and low-complexity
detection is possible by learning concatenated CSI that
includes channel information in a spatial domain.

� Second, we propose the application of frequency-domain
sampling-based simple compression to concatenated
BFWs to reduce the inherent complexity. In this method,
the collected BFWs are sampled at every several subcar-
riers in the frequency domain so that the inherent com-
putational complexity can be reduced while improving
the object detection accuracy to a considerable degree.
Additionally, we theoretically discuss an optimum com-
pression ratio that minimizes the data size (i.e., required
complexity) under a given object detection performance,
based on the fact that frequency-domain sampling of BFWs
is equivalent to delay-time domain windowing of its inverse
Fourier transform.

� After implementing the proposed design to an
IEEE802.11ac-based WLAN, we conduct experimental
evaluations and ray-trace based simulation to demonstrate
the effectiveness of the proposed approach in an indoor
environment under a multi-user (MU-)MIMO scenario.
By collecting feedback frames and by building a database
of the concatenated CSI, we clarify that the proposed
approach achieves much faster execution while achieving
object position detection more precisely than when using
the conventional scheme.

Notation: Vectors and matrices are expressed respectively as
lower case and upper case letters in bold typeface. Superscript
H denotes the Hermitian transpose of a matrix. Ra×b and C

a×b

respectively denote the real and complex matrix fields of di-
mension a× b. Z represents the set of integers. ∗ stands for the
convolution integral. The notation and variables used for this
study are listed in Table I.

II. RELATED WORK

Various WLAN-based sensing techniques have been proposed
in the literature [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [24], [25], [26]. One typical approach is to use measured
RSS data to characterize target objects. In one earlier study [13],
an improved RSS fingerprinting algorithm for indoor positioning
is presented, for which a clustering algorithm is adopted to delete
noisy samples. The authors in [14] earlier proposed a data-rate

TABLE I
NOTATION OF PARAMETERS AND VARIABLES

based fingerprint method that achieves comparable localization
performance without measuring RSS, where the transmission
power and resultant data rate are used in the fingerprint database.
In one earlier reported method [15], RSS data of large amounts
measured using the distributed massive MIMO systems are
exploited for estimating the location of a user, where RSS data
clustering is applied to reduce complexity. As investigated in
the existing works described above, RSS data and other related
information are available in most WLAN devices. They are
readily applicable for sensing purposes. However, exploiting
RSS data alone is insufficient for accurate sensing because
those results indicate only the received power averaged over
the signal bandwidth. An alternative approach to achieving
additional performance improvement is to exploit CSI, which
exhibits radio propagation characteristics. The authors of
one earlier study [16] presented an overall system design for
location-oriented activity identification, where CSI in OFDM
systems obtained through existing WLAN devices is exploited
for a walking user’s recognition of various activities. One earlier
report [17] presents a design of a smoking detection system in
which a specific motion such as smoking activity is detected by
extracting meaningful CSI variation information from WLAN
signals. Articles in [27], [28], [29] proposed hybrid schemes
that solve the localization problem through hybrid RSSI and
time of arrival (TOA) measurements (or time difference of
arrival). Unlike these approaches assuming that the target has
wireless devices, the proposed method in this paper relies on a
device-free concept that can detect an object with no wireless
device. Another report [18] presents a through-the-wall human
detection system design using commodity WLAN devices by
which principal component analysis based filtering is applied
to extract meaningful features from CSI, where correlated
subcarriers are selected to extract features for robust human
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detection. Nevertheless, the main emphasis of subcarrier
selection is detection of the existence of human beings.
Therefore, an effective subcarrier selection scheme is still
necessary for achieving lightweight device-free localization.
In [30], a subcarrier power allocation scheme for OFDM-based
localization is developed in which subcarrier power allocation
at the anchor nodes is optimized to reduce positioning errors.
In [31], orthogonal multicarrier-based proving signal designs
for base station (BS)-based or mobile station (MS)-based
localization are presented where non-overlapping subcarrier
allocation is necessary for MS based localization to differentiate
signals from different BSs. In [32], a RSSI based positioning
scheme is proposed in which RSSI of a selected reference
subcarrier is exploited for trilateration-based positioning. Unlike
the works described above, this paper presents consideration
of simple but effective frequency-domain sampling (i.e.,
subcarrier selection) that is applicable to compressed
CSI specified in IEEE802.11, i.e., beam-forming weights.
Reportedly, more reliable results can be achieved by adopting a
majority-vote-based detection scheme using MIMO technique.
In another report [19], a fingerprint quality classification method
is presented for improving CSI-based positioning accuracy,
whereas a convolutional neural network based approach has
been applied for CSI-based positioning in another earlier
report [20]. One remaining challenge of CSI-based approaches
is acquisition of a sufficient number of CSI samples. In some
earlier reports [21], [22], [23], [24], [25], [26], effective
IEEE802.11ac-based CSI acquisition schemes are presented in
which feedback CSI frames from all nearby devices are collected
and analyzed for sensing purposes. The experimentally obtained
results are also discussed in an earlier report [26]. Consequently,
the sensing area can be expanded easily without installing
additional measuring stations (STAs). In one earlier study [23],
a key feature extraction scheme using PCA is adopted for
acquired CSI samples for WLAN-based human detection with
a deep neural network and numerous CSI samples. Although
this method is used to reduce the dimensions of huge CSI
samples, it remains unclear whether this method is effective
for extracting key features from a few CSI samples. Unlike
deep-learning-based methods trained using massive datasets,
the method described in this paper is a lightweight approach with
a small data set. Spectrogram-based detection and estimation
techniques have been investigated in the literature [33], [34],
where multidimensional analysis of time-frequency signals is
considered. In [34], spectrogram-based analysis is reported as
effective for R–R Interval estimation in vital sign monitoring
in the health care field. According to these existing works, the
detection performance is expected to be enhanced by analyzing
channel characteristics multidimensionally.

Unlike the works described above, the main emphasis on
this paper is the design of an effective spatially concatenated
CSI-based localization scheme that works with a small dataset 1.
To this end, we propose a device-free WLAN based localization

1Although this paper mainly presents consideration of random forest as an
ML model, we confirmed the effectiveness of the proposed approach with other
machine learning models, as discussed in Fig. 22.

Fig. 1. IEEE802.11ac-based system block diagram, where M antenna el-
ements are equipped with AP serving N user devices. Feedback BFWs are
extracted at a CSI capturing terminal.

scheme with spatially concatenated CSI and frequency-domain
sampling. We also discuss the achieved detection performance
through simulation and results obtained through real-time ex-
perimentation in an indoor MU-MIMO scenario.

III. SYSTEM DESCRIPTIONS

Fig. 1 depicts a WLAN-based block diagram with AP, a
single antenna user device (STA: station), and a CSI capturing
terminal to extract feedback BWFs from the captured feedback
frames and analyze them, where IEEE802.11ac-based OFDM
transceivers [36] are used. Here, M , N , and S respectively
denote the number of transmit antennas at AP, the number of
users, and the total number of streams. Here, S ≤ min(M,N).
Also, min(a, b) is a function that selects a smaller value (either
a or b). This section defines signal representations at AP and
user devices. Details of the CSI capturing terminal are presented
along with the proposed design in the next section.

The OFDM signal with K subcarriers is transmitted through
M antennas at AP. Let Hk = [hk,1, . . . ,hk,N ] ∈ C

N×M de-
note the MU-MIMO channel matrix at the k-th subcarrier,
where hk,n = [hk,n,1, . . . , hk,n,M ]T ∈ C

M×1, k = 1, . . . ,K,
and where K represents the number of subcarriers per OFDM
symbol. Here, hk,n,m is the channel coefficient between the
m-th transmit antenna and n-th user device at the k-th sub-
carrier. Consequently, the concatenated channel matrix over
subcarriers in the frequency domain can be expressed as H =
[H1, . . . ,Hk, . . . ,HK ].

On the STA side, after passing through the MIMO channel,
the received OFDM signal is demodulated with FFT for channel
estimation and data detection. The estimated channel matrix
at the k-th subcarrier Ĥk ∈ C

N×M is decomposed by singular
value decomposition (SVD) intoHk = UkΣkV

H
k , whereUk ∈

C
N×N , Vk ∈ C

M×M , and Σk ∈ C
N×M respectively represent

the left-singular matrix, right-singular matrix, and diagonal ma-
trix for which the diagonal element is a singular value of the
channel. If M > N , then the right-singular matrix is reduced
to Vk = [vk,1, . . . ,vk,N ,0

T
M , . . . ,0

T
M ] ∈ C

M×M . The first N
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Fig. 2. Concept of the proposed approach for device-free WLAN-based object
detection and localization, where subscriptsk andm respectively denote the sub-
carrier index and transmit antenna index. (a) Illustrative example of concatenated
CSI construction and frequency-domain compression. (b) Frequency-domain
sampling scheme.

column vectors vk,n are used as beam-forming weights for N
user devices. Here, vk,n = [vk,n,1, . . . , vk,n,M ]T ∈ C

M×1 and
0T
M = [0, . . . , 0]T ∈ C

M×1 denotes the zero vector with length
of M . In IEEE802.11ac standards, a compressed version of
right-singular matrix Vk is fed back to AP side as BFWs. To
this end, the right-singular matrix Vk is converted to an angle
information sequence (φkj,i and ψk

j,i defined in Appendix A) by
application of Givens rotation to Vk as a linear transformation
to create a zero-entry in a matrix [36] as

Vk =

⎡
⎣min(S,M−1)∏

i=1

Dk
i

⎡
⎣ M∏
j=i+1

(Gk
ij)

T

⎤
⎦
⎤
⎦ ĨM×S , (1)

where i and j respectively represent the transmitting and receiv-
ing antenna indices. Furthermore, Dk

i and Gk
ij respectively

denote the M ×M diagonal matrix and the Givens rotation
matrix [36]. The quantized and compressed CSI φ̂kj,i and ψ̂k

j,i are
fed back from STA to AP to perform downlink beam-forming.
The analyses presented herein assume that φ̂kj,i and ψ̂k

j,i are
quantized respectively by 6 and 4 bits. This paper examines
a device-free localization problem, i.e., the target person has no

Fig. 3. Equivalence relation of sampling-based compression in the frequency-
domain and windowing-based compression in a delayed-time domain.

wireless devices. We consider a multi-user MIMO-based system
serving multiple STAs.

IV. PROPOSED APPROACH FOR EFFECTIVE LOCALIZATION

This section explains concepts of the proposed localization
approach using the concatenated CSI. The CSI capturing termi-
nal in Fig. 1 captures feedback frames from user devices and
detects the BFW matrix V̂

(p)
k at the p-th time instance at the

k-th subcarrier. Let V̂(p) =
[
V̂

(p)
1 , . . . , V̂

(p)
K

]
signify the p-th

concatenated BFW matrix.
Fig. 2(a) presents the concept of the proposed approach

using spatially concatenated CSI, where current and past BFW
matrices are concatenated to obtain more accurate feature data.
Here, “spatially concatenated CSI” denotes a group of multiple
CSI samples obtained when the target person is located at
different positions. As this figure shows, when the target object is
moved from point (A) to point (B), the channel state between the
transmitter and receiver will change in time. Because this paper
presents consideration of a device-free scheme that requires no
additional functions of user devices for sensing purposes, the
CSI capturing terminal analyzes channel fluctuation in a spatial
domain by capturing these BFWs sequentially. The concatenated
CSI over space and frequency domains is expressed as

�̂�(p) =
[
V̂(p−(U−1)), . . . , V̂(p)

]
, (2)

whereU is defined as the concatenated CSI length, which shows
the number of BFWs in each concatenated CSI, and where
p > U is assumed.

To reduce the required complexity, we propose application
of a simple frequency-domain sampling scheme to the concate-
nated BFWs by compressing the total data size. The concept of
the frequency domain sampling based compression is presented
in Fig. 2(b), where BFWs over frequency-domain Vk are se-
lected (sampled) at every Ds subcarrier before application to
an ML block. Thereby, the data can be compressed to 1/Ds.
For purposes of explanation in this paper, we define the com-
pression ratio by frequency-domain sampling as Rc = 1/Ds.
Application of the frequency-domain sampling can reduce the
total data size of the concatenated CSI while avoiding loss of the
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essential channel information. After concatenating current and
past U − 1 BFWs as single feature data, they are used for both
off-line training and on-line detection.

Fig. 3 presents basic principle of frequency-domain sam-
pling and its equivalence relation to delay-time domain win-
dowing. As shown in this figure, we assume that frequency
response H(ω) is sampled at every ΔΩ duration. There-
fore, the discrete-frequency-domain response is given as
H(ω)δD(ω), where δD(ω) =

∑
n ΔΩδ(ω − nΔΩ) Assuming

that the Fourier transform pairH(ω) ↔ h(t) is given, the inverse
Fourier transform of H(ω)δD(ω) is given as the following.

hs(t) = ℱ−1

[
H(ω)

∑
n

ΔΩδ(ω − nΔΩ)

]

= ℱ−1 [H(ω)] ∗ℱ−1

[∑
n

ΔΩδ(ω − nΔΩ)

]

=
∑
n

h(ω − nΔT ), (3)

Therein, ΔT = 2π
ΔΩ = 1

DsΔf . Also, DsΔf and ℱ−1[·] respec-
tively denote the sampling interval in the frequency-domain
and inverse Fourier transform operation. As presented in (3)
and Fig. 3, the inverse Fourier transform of H(ω)δD(ω) is a
periodic function with period ΔT . Therefore, it is clear that the
CSI size can be reduced to Rc = 1/Ds without loss of feature
information if the length of impulse response h(t) is less than
ΔT , i.e., the frequency domain sampling rate should meet the
following condition:

frequency-domain sampling rate =
1

DsΔf
≥ τ. (4)

As discussed later in Sect. V, the required execution time is
increased with the increase of the sampling rate. Therefore, the
sampling rate can be optimized by selecting τ as a proper value
to minimize the required complexity while avoiding the loss of
key feature information in frequency-selective fading channel
environments. In addition, because the CSI compression by
frequency-domain sampling is equivalent to delay-time domain
windowing of impulse response h(t), the achievable minimum
compression ratio in the frequency-domain is the same as 1/Ds.
It is readily apparent that the same compression effect is obtain-
able in either a time domain or a delay-time domain.2

As an example of space-frequency channel matrix and its
right-singular matrix (i.e., BFW), three-dimensional plots of
|hk,n,m| and |vk,n,m| with respect to the subcarrier index k
and the antenna index m in terms of different user index u
are shown respectively in Fig. 4. These plots show that right-
singular matrices (i.e., BFWs) fluctuate depending on the current
channel condition (H). Therefore, they are useful as feature
information to characterize object behaviors. The l2-norm of
BFWs over users is normalized (i.e., ‖V‖k,m = 1), unlike
the l2-norm of the channel matrix over users ‖H‖k,m, where

2The delay-time domain windowing has also been confirmed as effective for
reducing the data size, similarly to the confirmation presented in this paper for
frequency-domain sampling.

Fig. 4. Example of the space-frequency domain channel matrix H and its
right-singular matrix (beam-forming weights) V, where subscripts k and m
respectively denote the subcarrier index and transmit antenna index. (a) n = 1
(user 1). (b) n = 2 (user 2). (c) n = 3 (user 3). (d) n = 4 (user 4). (e) ‖H‖k,m =√∑N

n=1 |hk,n,m|2, ‖V‖k,m =

√∑N

n=1 |vk,n,m|2.

‖V‖k,m =
√∑N

n=1 |vk,n,m|2. In other words, although antenna
and subcarrier-wise channel strength information in H is lost in
V, it is noteworthy that each beam-forming vector is a channel-
dependent weighting factor as indirect space/frequency-domain
channel state information.

V. PERFORMANCE EVALUATION

A. Simulation Setup and Scenario

We conducted a computer simulation to clarify the effective-
ness of the proposed schemes. The simulation block diagram
is the same as that presented in Fig. 1. Simulation parameters
are presented in Table II. To calculate various channel impulse
responses (CIRs) in indoor radio propagation environments, a
three-dimensional ray launching algorithm is used [37]. The
maximum numbers of reflections and the maximum number
of diffraction are set respectively to three and one. The other
environment setting and physical property values of objects are
described in Fig. 5. For this simulation, we assume a device-free
type localization, i.e., the target object has no wireless device
for sensing. In this context, CSI between AP and the user device
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TABLE II
SIMULATION PARAMETERS

Fig. 5. Ray-trace simulation setting in an indoor environment (room) with
AP and STA, where α and β respectively denote the relative permittivity and
electrical conductivity (S/m) of the materials.

is measured when a target object is placed at one of the grids
in Fig. 5, where the grid size is set as Δ = 0.05 m, so that
400 different CIR measurements (OFDM symbols) per area are
obtained. Stated more specifically, an indoor field is divided into
R areas labeled as r = 0 · · ·R. A target object is located in one
of the areas. Label numbers r = 1 · · ·R correspond to the area
number in Fig. 5. The label number r = 0 is defined to represent
a case in which no target object exists in any area. It is noteworthy
that r = 0 corresponds to a case in which no target object exists
in any area. We consider a multi-class classification problem to
detect the label of the area in which a single target exists. Random
forest with four-split cross-validation is used as a supervised
machine learning model and its evaluation scheme. We consider
an IEEE802.11ac-based WLAN system [36] in which feedback
frames containing CSI (φkj,i andψk

j,i defined in Appendix A) are
sent from the user device to the AP 3.

As a performance metric, we define the probability of position
detection as a conditional probability that the detected label

3Feedback CSI includes 6 angle values per subcarrier when (M,N) = (4, 1)
(φk1,1, φk2,1, φk3,1, ψk

2,1, ψk
3,1, and ψk

4,1), and includes 12 angle values when

(M,N) = (4, 4) (φk1,1, φk2,1, φk3,1, ψk
2,1, ψk

3,1, ψk
4,1, φk2,2, φk3,2, ψk

3,2, ψk
4,2,

φk3,3, and ψk
4,3).

Fig. 6. Sampling in a localized manner (localized sampling).

Fig. 7. Heat map of the object detection probability for area classification
problems in terms of different U and Rc, where (M,N) is set to (4,1).

number so is matched to the actual one sa, which is

Prob(so = r|sa = r), (5)

where r ∈ {0, 1, · · ·R}.
For comparison, we consider another subcarrier selection

scheme, designated as “localized sampling (LS)”. The sampling
in a localized manner is presented in Fig. 6, where the signal
after sampling includes only a portion of the overall frequency
response (i.e., L adjacent subcarriers), unlike the proposed ap-
proach. Here, L = � K

Ds
	, where �×	 is a floor function that

outputs a maximum integer value that is less than or equal to x.

B. Simulation Results

Fig. 7 presents heatmaps of the average object detection
probability in Eq. (5) for different conditions (U = 1, 2 and
Rc = 1, 1/13), where (M,N) = (4, 1) is assumed. Here,
U = 1 corresponds to the conventional scheme in [21]. These
results indicate that the proposed scheme (U = 2) achieves
higher average detection performance at most areas than the
conventional scheme (U = 1), even when frequency-domain
sampling (Rc = 1/13) is applied. This finding implies that
frequency-domain sampling is effective at reducing the required
data size (i.e., computational complexity) while achieving
detection performance comparable to that of the case ofRc = 1.

Fig. 8 shows the average detection probability of the proposed
scheme as a function of compression ratio Rc in terms of the
concatenated CSI lengthU , where the number of antennas at AP
is M = 4. For comparison, the average detection probability of
a case with localized sampling is also shown. The label “Inter-
leaved” denotes a case with frequency-domain sampling used in
the proposed scheme. It is apparent from this figure that higher
detection performance is obtained as U increases. Additionally,
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Fig. 8. Average detection probability of the proposed scheme as a function of
compression ratio Rc in case with (M,N) = (4, 1), where U denotes the spa-
tially concatenated CSI length and where U = 1 corresponds to a conventional
scheme [21].

Fig. 9. Average detection probability of the proposed scheme in terms of Rc

andN in MU-MIMO scenario, where (M,N) is set to (4,1) and (4,4).U = 1, 2
is assumed.

we can confirm that “interleaved” sampling achieves higher de-
tection performance in a lower compression ratio region because
the overall spectrum information is not contained in CSI after
localized sampling, unlike the interleaved one in the proposed
scheme.

Fig. 9 shows the average detection probability of the proposed
scheme in terms of the number of usersN and the concatenated
CSI lengthU in the MU-MIMO scenario, where the compression
ratio is set as Rc = 1, 1/13, and 1/26, respectively, where
N = 1, 4 and U = 1, 2 are assumed. It is apparent from this
figure that the proposed scheme with U = 2 achieves better
detection performance than the conventional scheme (U = 1),
even when the compression ratio is Rc = 1/26. Similar results
are also obtained in cases for whichU = 4. Particularly, one can
find that the proposed scheme achieves good detection perfor-
mance comparable to that obtained in the case without sampling
(R = 1), even when the compression ratio of R = 1/26 is
adopted.

C. Experiment Setup and Scenario

For an experimentation-based demonstration of the perfor-
mance achieved using the proposed scheme, we implemented

Fig. 10. Experiment setting of an indoor environment (a room) with an AP,
a CSI capturing terminal, and two stations (STA). (a) Experimental setup.
(b) Acquisition of concatenated CSI in experiment.

TABLE III
EXPERIMENT SETUP

our designed algorithm to an IEEE802.11ac-based system as
shown in Fig. 1 and conducted experiments in an indoor en-
vironment. Fig. 10 shows the experiment setup and an indoor
environment with an AP, a CSI capturing terminal, and user
devices (STA), where IEEE802.11ac-based AP and STA are
placed on both sides of the room. As the figure shows, four
antennas and a single antenna are equipped respectively with AP
and STA. Some system parameters used for experimentation are
presented in Table III. The AP equips a linearly placed antenna
array, where the distance between adjacent antenna elements
can be extended using coaxial extension cables. The user device
(Galaxy S7 edge; Samsung Electronics) is fixed with the tripods
as shown in Fig. 10. It regularly sends feedback frames to the
AP. At the CSI capturing terminal, the required functions are im-
plemented on a stick-type PC (Compute Stick STK2M364CC;
Intel Corp.) to capture the feedback frames and to build the
measured CSI database. Random forest is used as a supervised
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Fig. 11. Example of measured beam forming weights included in a concate-
nated CSI.

machine learning algorithm. For experiments, off-line training is
conducted to construct the model beforehand, whereas on-line
object detection is conducted in real time. In offline training
processing, the person is moving within area-i while the object
detection terminal captures (overhears) feedback frames from
STAs to BS and extracts the CSI. After applying preprocessing
and frequency-domain sampling to the extracted CSI, they are
labeled as “i”. The person moves from area 1 to 32 so that CSI
dataset for labels 1–32 are constructed. The machine learning
model is then trained by the constructed dataset. This device-free
detection scheme obviates the need for user devices to have any
dedicated function for sensing purposes. In addition, no need
exists for a target object to have any wireless device.

Similarly to the simulation scenario, we consider a multi-
classification problem for detecting a single object position4

(i.e., the corresponding label number), where the indoor area is
divided into R = 32 regions labeled as r = 0, . . . , R. A human
is placed at one of the areas as a target object.5 It is noteworthy
that R = 0 corresponds to a case in which the object does not
exist. To evaluate the detection accuracy that we achieved, we
define the average position detection probability of the target
object as in (5). For comparison, we also evaluate the detection
performance in a case with the localized sampling scheme. As
illustrated in Sect.IV, frequency-domain sampling rate is set to

1
DsΔf , where Δf = 3.8 × 105 Hz.

D. Experiment Results

Fig. 11 presents an example of measured space-frequency
transmitting antenna weights for concatenated BFWs, where the
number of transmitting antennasM = 4, the number of streams
per user S = 1, and the number of subcarriersK = 52 are used.
The weight coefficients (BFWs) in this figure are calculated from
measured CSI samples. The results imply that the concatenated
BFWs exploit spatial channel fluctuation information for more
accurate characterization of object behaviors.

Fig. 12 presents the average object detection probabilities of
the proposed scheme for different compression ratiosRc in terms
of the number of concatenated BFWsU and the number of users

4This paper presents consideration of a multi-area classification problem for
single target detection. Based on that principle, it can be extended to a multi-
area classification problem for multiple target detection at the cost of required
complexity if the corresponding dataset for multiple targets is available. As for
this problem, a theoretical framework for a multiple target detection has been
presented recently in [38]. Extension to multiple target detection is left as a
subject for our future study.

5We confirmed that similar experimentally obtained results are obtained even
when a different person is the target.

Fig. 12. Object detection probability of MU-MIMO system using the proposed
scheme ((M,N) = (4, 1) and (4,2)) in terms ofU andRc, whereU = 1, 4 and
Rc = 1, 1/13, 1/26.

N , whereU = 1, 4 and (M,N) = (4, 1) and (4,2). One can find
that the detection performance is improved by analyzing the
CSI samples from multiple user devices. Similarly to simulation
results presented in Fig. 9, one can observe that the proposed
scheme with the concatenated CSI and frequency-domain sam-
pling achieves better detection performance than in the case
without concatenating CSI (U = 1), even whenRc takes a small
value.

Fig. 13 shows the area-wise detection probability of the
proposed scheme in the cases of U = 1 and 4 for three exper-
iments (experiment 1, experiment 2, and experiment 3), where
R = 32 and (M,N) = (4, 1) and (4,2). The two experimentally
obtained data from experiment 1 and experiment 2 are measured
in the same room on different days. Consequently, experiment
setups in both experiments are the same, but the CSI dataset
differs. All experiments were conducted for the same scenario.
Although the overall performance of experiment 1 was found to
be better than that of experiment 2, the results clarify that the
proposed scheme withU = 4 achieves much better performance
than the conventional one (U = 1) [21]. The results also indicate
that the overall detection performance can be improved by
increasing the number of user devicesN in MU-MIMO systems
because the object behavior is characterized more accurately
by collecting various CSI samples from different user devices.
Hereinafter, results in experiment 2 are used for additional
discussions.

Fig. 14 presents confusion matrices for classification results
in cases with the proposed scheme (U = 4) and the conventional
scheme (U = 1). In Figs, 14(b) and 14(c), a compression ratio
of Rc = 1/13 is adopted for the proposed (U = 4) and the
conventional case (U = 1). For these figures, the probability
of detection is drawn as a heatmap, where the horizontal and
vertical axes show so and sa in (5), The results indicate that
more accurate detection is possible using the concatenated CSI
(U = 4), even when the CSI data are compressed asRc = 1/13.

Fig. 15 shows the average detection probabilities of the pro-
posed scheme as a function of compression ratio Rc =

1
Ds

in
terms of U , where U = 1, 2, 3, and 4 are used. For simplicity
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Fig. 13. Area-wise detection probability for the case of U = 1 and 4 for
two experiment trials (experiment 1 and experiment 2), where the number of
antennas at AP is M = 4. (a) N = 1 (Experiment 1). (b) N = 1 (Experiment
2). (c) N = 2 (Experiment 2). (d) N = 2 (Experiment 3).

of discussions, Ds is selected among the divisors of 52 carriers
(i.e., 1, 2, 4, 13, 26, and 52). Solid and dotted lines respectively
represent cases of interleaved sampling and localized sampling.
The results indicate that the proposed scheme with the con-
catenated CSI and frequency-domain sampling achieves better
detection performance than in the case with localized sampling.
They also indicate that the data size can be compressed by
choosing a proper compression ratio for a given U and N . The

Fig. 14. Confusion matrix of the classification problem in the proposed scheme
(U = 4) and the conventional scheme (U = 1), where the number of antennas
at AP is M = 4 and the number of stations is N = 1.

Fig. 15. Average detection probabilities as a function of compression ratio
Rc for N = 1 and 2 in an indoor experiment scenario, where the number of
antennas at AP is M = 4. (a) N = 1. (b) N = 2.

results also clarify that almost the same detection probability
is achieved when RC is higher than 0.25 (i.e., Ds ≤ 4). This
result indicates that Rc = 0.25 (Ds = 4) is the near optimum
value that approximately meets the condition in (4)6.

Fig. 16 shows the average detection probabilities of the pro-
posed schemes in terms of different antenna spacing at AP,
where N = 1 and 2. The orange and blue bars respectively
correspond to the cases of U = 1 and 4. Results indicate that
the achieved detection performance tends to be improved as the
antenna spacing at the AP side increases. It is also apparent that
the achieved performance is improved by collecting CSI from

6We confirmed that frequency domain sampling rate approximately satisfies
the condition in (4), i.e., 1

DsΔf ≥ τ when Rc is higher than 0.25.
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Fig. 16. Average detection probabilities for different antenna spacing d in an
indoor experiment scenario, where the number of antennas at AP is M = 4.
(a) N = 1 (b) N = 2.

Fig. 17. Correlation between the CSI samples for offline training and those
for online detection in terms of antenna spacing d, where U = 4 and N = 1.

multiple user devices irrespective of the antenna spacing d. To
analyze the results further, we define the correlation between
CSI samples for off-line training and those for online detection
as

ρ
(i,k)
j,l =

x
(i)
j (y

(k)
l )T

‖x(i)
j ‖‖y(k)

l ‖
(6)

where x
(i)
j = [x

(i)
j1 , . . . , x

(i)
jQ] ∈ R

1×Q denotes the j-th training
CSI labeled to the i-th area. Here, Q denotes the number of
features per CSI sample. y

(k)
l = [y

(k)
l1 , . . . , y

(k)
lQ ] ∈ R

1×Q de-
notes the l-th CSI for online detection when the target exists
in the k-th area. Here, ρ(i,i)j,l represents the correlation between
CSI samples collected when the target is located in the i-th
area for offline training and online detection. Fig. 17 shows
correlation between the CSI samples for offline training and
those for online detection in antenna spacing d where U = 4 is
used. Here, “i = k” (red box) and “i 
= k” (blue box) denote the
correlation between the same label numbers (i.e., correct label)
and that between different label numbers (i.e., incorrect label).
Results presented in Figs. 16 and 17 indicate that, as the antenna
spacing becomes wider, ρ(i,i)j,l (i = k) takes higher values than

Fig. 18. Average detection probabilities for different targets (either person A
or person B) in the cases of U = 1 and 4, where machine learning model is
trained for person A. (a) N = 1, Detection target: Person A. (b) N = 1, Detection
target: Person B. (c) N = 4, Detection target: Person A. (d) N = 4, Detection
target: Person B.

ρ
(i,k)
j,l , i 
= k. Consequently, the detection performance improves

as the antenna spacing widens.7

In the evaluations described above, CSI samples for both
off-line training and online detection are collected from the
same person. To clarify the detection performance when the
trained model is applied for different persons, i.e., when CSI for
online detection is collected from different persons, the average

7We evaluated the average detection performance for different antenna heights
and confirmed that the detection performance is not always improved when
all antenna heights are uniformly changed because the relative relation among
antennas is not changed.
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Fig. 19. Average detection probability as a function of the number of CSI
samplers per label (N = 1) in terms of compression ratio Rc, where U = 4.

TABLE IV
EXECUTION TIME FOR OFF-LINE TRAINING [S] (M,N) = (4, 1)

TABLE V
EXECUTION TIMES FOR OFF-LINE TRAINING [S] (M,N) = (4, 2)

detection probabilities of the proposed schemes for different
targets (persons A and B) are shown in Fig. 18. Here, the model
is trained using CSI collected for person A (170 cm height,
50 kg weight) and applied to on-line detection of person B
(174 cm height, 58 kg weight). From these results, it is readily
apparent that the proposed method achieves similar detection
performance for both persons A and B. This result implies that
online detection performs well if CSI is collected for similar
targets, even when the model is trained using CSI for different
persons.

Fig. 19 presents the average detection performance as a
function of the number of training CSI samples in cases of
U = 4. Here, each CSI sample includes feature information
corresponding to beam-forming matrices for all subcarriers.
Results show that the proposed method achieves similar average
detection performance, even when the number of CSI samples
per label is reduced to around 20. The results reveal that the
proposed method works well with a small dataset.

To clarify the implications of channel aging, we evaluate the
average detection performance as a function of elapsed time after

Fig. 20. Effects of channel aging on average detection performance in terms
of concatenation size U and compression ratio Rc where N = 1.

Fig. 21. Average detection probability of the frequency-domain sampling-
based method and the PCA-based method as a function of the compression ratio
in cases with various machine learning models where N = 1.

CSI acquisition and training, as depicted in Fig. 20. Results show
that the detection performance is degraded gradually because
of channel aging. The environmental conditions might change
over time even if the state inside the room remains unchanged.
However, it is also apparent that the proposed method using
the concatenated CSI (U = 4) achieves higher detection perfor-
mance than for the case of U = 1.

In a report of an earlier study [23], a CSI-based device-free
human detection method using principal component analysis
(PCA) was examined. For that method, the CSI samples are
compressed with PCA and are used for training a deep-learning
model. To clarify its effectiveness further, we applied this
method to the same machine learning models with a small dataset
and compared them with the proposed method. Fig. 21 shows
the average detection performance of the frequency-domain
sampling-based method and the PCA-based method as a func-
tion of the compression ratio in cases with various machine
learning models. Here, we consider six typical ML models:
Random Forest (RF), decision tree (DT) [39], logistic regression
(LR) [40], support vector machine (SVM), K-nearest neighbors
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Fig. 22. Experimentally obtained results for a time-complexity and detection
probability tradeoff, where the number of antennas at AP is M = 4. (a) N =
1, Rc = 1. (b)N = 1, Rc = 1/4. (c)N = 2, Rc = 1. (d)N = 2, Rc = 1/13.

(KN) [42], and Gaussian naive Bayes (GNB) [43]). Results show
that the proposed method with frequency-domain sampling
achieves higher detection performance than the PCA base. This
is true because the frequency-domain sampling method reduces
the CSI size better without losing key feature information in the
case of a small dataset.

To assess the relation between the detection accuracy and
the necessary complexity, we evaluate the respective execution

Fig. 23. Illustration of pre-processing of φk1,1. (a) An example of angle

information φk1,1. (b) Trigonometric function expressions of φk1,1.

times found for off-line training and on-line detection. Tables IV
and V respectively present the required execution times for
off-line training of various ML models when N = 1 and 2.
Here, similar to Fig. 21, we consider seven typical ML models:
RF, DT, LR, SVM, linear SVM (LSVM) [41], KN, and GNB.
Execution times were measured using the same workstation
(64 GB memory, Core i7-10750H CPU; Intel Corp.). The results
presented in these tables clarify that a shorter execution time can
be achieved by adopting frequency-domain sampling (R < 1).
It is also noteworthy that the proposed scheme (U = 2) achieves
a shorter execution time with higher detection performance than
the conventional scheme with U = 1. This finding implies that
concatenating multiple CSI is effective not only for precise
detection, but also for accelerating the ML model training when
the total amount of BFWs is the same.

The relation between the detection performance and execution
time for on-line target detection is presented in Fig. 22, where
(M,N) is set to (4,1) and (4,2). Here, the execution time is
defined as the total calculation time to obtain 7128 ML results.
The yellow separated area in the figure represents an enlarged
view of the yellow part of the figure. Similarly to the off-line
training case, the results show that shorter required execution
time can be achieved by adopting frequency-domain sampling
with a compression ratio ofRc. It is noteworthy that the proposed
scheme using concatenated BFWs (U = 4) achieves not only
better detection performance, but also lower execution time
than the conventional scheme (U = 1) in all cases. This is true
because the available number of features (i.e., concatenated
BFWs) in U = 4 is one-fourth of the case with U = 1, which
leads to a shorter execution time. However, as the number of
user devices (STAs) N increases, the execution time increases
because the total amount of CSI samples is increased by a factor
of N .

VI. CONCLUSION

As described herein, after developing a lightweight localiza-
tion scheme with a small dataset, we used an indoor experiment
and ray-tracing based simulation to demonstrate that it works in
real time. The proposed approach uses concatenated BFWs as
spatial feature information and for both training an ML model
and for detecting the existence of a target object and its positions.
Through both simulation and experimentally obtained results,
we have obtained findings indicating the proposed approach as
effective at enhancing the object position detection probability
while reducing its inherent complexity where a supervised ML
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model is adopted. Practical experiments also indicate that local-
ization performance can be improved by applying the proposed
schemes to an MU-MIMO system with a distributed antenna
array and number of users. The concept is applicable to any
wireless communication system, including single carrier sys-
tems, if the acquisition of CSI between transceivers is possible.
Application of the developed algorithms with a more powerful
ML model under more various scenarios such as outdoor envi-
ronments is left as a subject for our future work.

APPENDIX A
PRE-PROCESSING OF ANGLE INFORMATION φkj,i

Dk
i and Gk

ij in (1) are given respectively as

Dk
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ii−1 0 · · · · · · 0
0 ejφ

k
i,i 0 · · · 0

... 0
. . . 0 0

...
... 0 ejφ

k
M−1,i 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Gk
ij =

⎡
⎢⎢⎢⎢⎣

Ii−1 0 0 0 0
0 cos(ψk

j,i) 0 sin(ψk
j,i) 0

0 0 Ij−i−1 0 0
0 − sin(ψk

j,i) 0 cos(ψk
j,i) 0

0 0 0 0 IM−1

⎤
⎥⎥⎥⎥⎦ ,
(7)

where Ix represents an x× x identity matrix. ĨM×S =
[IS0N,M−S ]

T is an expanded identity matrix in which extra
elements take a value of zero if M 
= S. Here, 0a,b is an
a× b zero matrix. The angle information φkj,i and ψk

j,i
8 are

fed back to AP, where −π ≤ φkj,i ≤ π and 0 ≤ ψk
j,i ≤ π/2.

Fig. 23(a) presents an example of angle information φkj,i. It takes
discontinuous values (significant change) at the boundary of π
irrespective of the object status, which might degrade its object
detection accuracy. To mitigate this negative effect, this paper
adopts pre-processing that transforms the angle information to
trigonometric functions sin(φkj,i) and cos(φkj,i), as shown in
Fig. 23(b). This difficulty can also be resolved by decompressing
φkj,i and ψk

j,i to Vk. Because transformation to trigonometric
functions is simpler than decompression toVk, this paper adopts
the pre-processing explained above9.
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