
IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020 1293

METTLE: A METamorphic Testing Approach to
Assessing and Validating Unsupervised

Machine Learning Systems
Xiaoyuan Xie , Member, IEEE, Zhiyi Zhang , Tsong Yueh Chen , Senior Member, IEEE,

Yang Liu , Member, IEEE, Pak-Lok Poon , Member, IEEE, and Baowen Xu , Senior Member, IEEE

Abstract—Unsupervised machine learning is the training of
an artificial intelligence system using information that is neither
classified nor labeled, with a view to modeling the underlying
structure or distribution in a dataset. Since unsupervised machine
learning systems are widely used in many real-world applications,
assessing the appropriateness of these systems and validating their
implementations with respect to individual users’ requirements
and specific application scenarios/contexts are indisputably two
important tasks. Such assessments and validation tasks, however,
are fairly challenging due to the absence of a priori knowledge of
the data. In view of this challenge, in this article, we develop a
METamorphic Testing approach to assessing and validating un-
supervised machine LEarning systems, abbreviated as METTLE.
Our approach provides a new way to unveil the (possibly latent)
characteristics of various machine learning systems, by explicitly
considering the specific expectations and requirements of these sys-
tems from individual users’ perspectives. To support METTLE, we
have further formulated 11 generic metamorphic relations (MRs),
covering users’ generally expected characteristics that should be
possessed by machine learning systems. We have performed an
experiment and a user evaluation study to evaluate the viability
and effectiveness of METTLE. Our experiment and user evaluation
study have shown that, guided by user-defined MR-based adequacy
criteria, end users are able to assess, validate, and select appropriate
clustering systems in accordance with their own specific needs.
Our investigation has also yielded insightful understanding and
interpretation of the behavior of the machine learning systems
from an end-user software engineering’s perspective, rather than

Manuscript received January 10, 2019; revised June 10, 2019 and October 23,
2019; accepted February 4, 2020. Date of publication March 13, 2020; date of
current version November 30, 2020. This work was supported by the National
Key R&D Program of China under Grant 2018YFB1003901, and in part by the
National Natural Science Foundation of China under Grant 61572375, Grant
61972289, Grant 61832009, and Grant 61772263. Associate Editor: F. Belli.
(Corresponding author: Xiaoyuan Xie.)

Xiaoyuan Xie and Zhiyi Zhang are with the School of Computer Sci-
ence, Wuhan University, Wuhan 430072, China (e-mail: xxie@whu.edu.cn;
zhiyi_whu@126.com).

Tsong Yueh Chen is with the Department of Computer Science and Soft-
ware Engineering, Swinburne University of Technology, Hawthorn, VIC 3122,
Australia (e-mail: tychen@swin.edu.au).

Yang Liu is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore (e-mail: yangliu@
ntu.edu.sg).

Pak-Lok Poon is with the School of Engineering and Technology, Central
Queensland University, Melbourne, VIC 3000, Australia (e-mail: p.poon@
cqu.edu.au).

Baowen Xu is with the State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China (e-mail: bwxu@nju.edu.cn).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2020.2972266

a designer’s or implementor’s perspective, who normally adopts a
theoretical approach.

Index Terms—Clustering assessment, clustering validation,
end-user software engineering, metamorphic testing (MT),
metamorphic relation (MR), unsupervised machine learning.

I. INTRODUCTION

UNSUPERVISED machine learning requires no prior
knowledge and can be widely used in a large variety of

applications such as market segmentation for targeting cus-
tomers [1], anomaly or fraud detection in banking [2], grouping
genes or proteins in biological process [3], deriving climate
indices from earth science data [4], and document clustering
based on content [5]. More recently, unsupervised machine
learning has also been used by software testers in predicting
software faults [6].

This article specifically focuses on clustering systems (which
refer to software systems that implement clustering algorithms
and are intended to be used in different domains) Such a clus-
tering system helps users partition a given unlabeled dataset
into groups (or clusters) based on some similarity measures, so
that data in the same cluster are more “similar” to each other
than to data from different clusters. In artificial intelligence
(AI) and data mining, numerous clustering systems [7]–[9] have
been developed and are available for public use. Thus, selecting
the most appropriate clustering system for use is an important
concern from end users. (In this article, end users, or simply
users, refer to those people who are “causal” users of clustering
systems. Although they have some hands-on experience on using
such systems, they often do not possess a solid theoretical foun-
dation on machine learning. These users come from different
fields such as bioinformatics [10] and nuclear engineering [11].
Also, their main concern is the applicability of a clustering
system in the users’ specific contexts, rather than the detailed
logic of this system.) From a user’s perspective, this selection
is not trivial [12], not only because end users generally do not
have very solid theoretical background on machine learning, but
also because the selection task involves two complex issues as
follows.

(Issue 1) The correctness of the clustering results is a major
concern for users. However, when evaluating a clustering sys-
tem, there is not necessarily a correct solution or “ground truth”

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2828-7165
https://orcid.org/0000-0002-0029-0912
https://orcid.org/0000-0003-3578-0994
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0003-2840-2418
https://orcid.org/0000-0001-7743-1296
mailto:xxie@whu.edu.cn
mailto:zhiyi_whu@126.com
mailto:tychen@swin.edu.au
mailto:yangliu@ntu.edu.sg
mailto:p.poon@cqu.edu.au
mailto:bwxu@nju.edu.cn
http://ieeexplore.ieee.org

1294 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

that users can refer to for verifying the clustering result [13].
Furthermore, not only is the correct result difficult or infeasible
to find, the interpretation of correctness varies from one user to
another. This is because, although data points are partitioned into
clusters based on some similarity measures, the comprehension
of “similarity” may vary among individual users. Given a cluster,
one user may consider that the data in it are similar, yet another
user may consider not.

(Issue 2) Despite the importance of the correctness of the
clustering result, in many cases, users would probably be more
concerned if a clustering system produces an output that is appro-
priate or meaningful to their particular scenarios of applications.
This view is supported by the following argument in [14].

... the major obstacle is the difficulty in evaluating a clustering
algorithm without taking into account the context: why does the user
cluster his data in the first place, and what does he want to do with
the clustering afterwards? We argue that clustering should not be
treated as an application-independent mathematical problem, but
should always be studied in the context of its end-use.

Regarding issue 1, it is well known as the oracle problem
in software testing. This problem occurs when a test oracle (or
simply an oracle) does not exist. Here, an oracle refers to a mech-
anism that can verify the correctness of the system output [15].
In view of the oracle problem, users of unsupervised machine
learning rely on two types of validation techniques (external
and internal) to evaluate clustering systems. Basically, external
validation techniques evaluate the output clusters based on some
existing benchmarks; while internal validation techniques adopt
features inherent to the data alone to validate the clustering
result.

Both external and internal validation techniques suffer from
some problems, which affect their effectiveness and applicabil-
ity. For external techniques, it is usually difficult to obtain suffi-
cient relevant benchmark data for comparison [16], [17]. In most
situations, the benchmarks selected for use are essentially those
special cases in software verification and validation, thereby
providing insufficient test adequacy, coverage, and diversity.
This issue does not exist in internal validation techniques.
However, since internal techniques mainly rely on the features
associated with the dataset, their performance is easily affected
by various data characteristics [18]. In addition, both external
and internal techniques evaluate clustering systems mainly from
the “static” perspective of a dataset, without considering the
changeability of input datasets or the interrelationships among
different clustering results (i.e., the “dynamic” aspect). We
argue that, in reality, users require this dynamic perspective
of a clustering system to be evaluated, because datasets may
change due to various reasons. For instance, before the clustering
process starts, a dataset may be preprocessed to filter out noises
and outliers for improving the reliability of the clustering result,
or the data may be normalized so that different measures use the
same scale for fair and reliable comparison.

Our above argument is based on a common phenomenon that
users often have some general expectations about the change in
the clustering result when the dataset is changed in a particular
way, for example, a better clustering result should be obtained

after the noises have been filtered out from a dataset. To many
users, evaluating this dynamic aspect (called the ripple effect of
dataset change or transformation) will give them more confi-
dence on the performance of a clustering system than a code
coverage test [15]. Despite its importance, it is unfortunate that
both external and internal techniques generally do not consider
the dynamic aspect of dataset transformation when testing clus-
tering systems.

We now turn to issue 2: There has not yet been a generally
accepted and systematic methodology that allows end users to
effectively assess the quality and appropriateness of a clustering
system for their particular applications. In traditional software
testing, test adequacy is commonly measured by code coverage
criteria to unveil necessary conditions of detecting faults in
the code (e.g., incorrect logic). In this regard, clustering systems
are harder to assess because the logic of a machine learning
model is primarily learnt from massive data. In view of this
problem, a practically applicable adequacy criterion is in need to
help a user assess and validate the characteristics that a clustering
system should possess in a specific application scenario, so that
the most appropriate system can be selected for use from this
user’s perspective. As a reminder, the characteristics that a clus-
tering system is “expected” to possess may vary across different
users. Needless to say, there is also no systematic methodology
for users to validate the appropriateness of a clustering result in
their own contexts.

In view of the above two challenging issues, we propose
a METamorphic Testing approach to assessing and validat-
ing unsupervised machine LEarning systems (abbreviated as
METTLE). To alleviate Issue 1, METTLE applies the framework
of metamorphic testing (MT) [15], so that users are still able
to validate a clustering system even when the oracle problem
occurs. In addition, MT is naturally considered to be a candidate
solution for addressing the ripple effect of data transformation,
since MT involves multiple inputs (or datasets), which follow
a specific transformation relation. By defining a set of meta-
morphic relations (MRs) (which capture the relations between
multiple inputs (or datasets) and their corresponding outputs (or
clustering results)) to be used in MT, the dynamic perspective
of a clustering system can be properly assessed. Furthermore,
the defined MRs can address Issue 2 by serving as an effective
vehicle for users to specify their expected characteristics of a
clustering system in their specific application scenarios. The
compliance of the clustering results across multiple system
executions with these MRs can be treated as a practical adequacy
criterion to help a user select the appropriate clustering system
for use. More details about the rationale and the procedure of
METTLE will be provided in later sections.

The main contributions of this article are summarized as
follows.

1) We proposed an MT-based approach (METTLE) to assess-
ing and validating unsupervised machine learning systems
that generally suffer from the absence of a priori knowl-
edge of the data and a test oracle. Different from tradi-
tional validation methods, our approach provides a new
and lightweight mechanism to unveil the (possibly latent)
characteristics of various learning systems, by explicitly

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1295

considering the specific expectations and requirements of
these systems from the perspective of individual users,
who do not possess a solid theoretical foundation of ma-
chine learning. In addition, METTLE can validate learning
systems by explicitly considering the dynamic aspect of a
dataset.

2) We developed 11 generic MRs to support METTLE, from
users’ generally expected characteristics of clustering sys-
tems. We conducted an experiment involving six com-
monly used clustering systems, which were assessed and
compared against these 11 MRs through both quantitative
and qualitative analysis.

3) We demonstrated a framework to help users assess clus-
tering systems based on their own specific requirements.
Guided by an adequacy criterion (with respect to those
chosen generic MRs or those MRs specifically defined by
users), users are able to select the appropriate unsupervised
learning systems to serve their own purposes.

4) Our investigation has yielded insightful understanding
and interpretation of the behaviors of some commonly
used machine learning systems from a user‘s perspective,
rather than a designer’s or implementor’s perspective (who
normally adopts a more theoretical approach).

The rest of this article is organized as follows. Section II out-
lines the main concepts of clustering systems and MT. Section III
discusses the challenges in clustering validation and the potential
problems associated with dataset transformation in clustering.
Section IV describes our METTLE methodology and a list of
11 generic MRs to support METTLE. Section V discusses our
experimental setup to determine the effectiveness of METTLE in
validating a set of subject clustering systems. Section VI presents
a quantitative analysis of the performance of the subject cluster-
ing systems in terms of their compliance with (or violation to)
the 11 generic MRs, followed by an in-depth qualitative analysis
on the underlying behavior patterns and plausible reasons for
the violations revealed by these MRs. Section VII illustrates
how METTLE can be used as a systematic and yet easy-to-use
framework (without the requirement of having sophisticated
knowledge on machine learning theories) for assessing the ap-
propriateness of clustering systems in accordance with a user’s
own specific requirements and expectations. Section VIII further
evaluates the viability and effectiveness of METTLE from a user’s
perspective. Section IX discusses some internal and external
threats to this article. Section X briefly discusses the recent
related work on MT. Finally, Section XI concludes this article.

II. BACKGROUND CONCEPTS

In this section, we discuss the background concepts of clus-
tering systems and MT. We also give some examples to illustrate
how MT can be used as a software validation approach.

A. Clustering Systems

In AI, clustering [19], [20] is the task of partitioning a given
unlabeled dataset into clusters based on some similarity mea-
sures, where data in the same cluster are more “similar” to each
other than to data from different clusters. Thus, cluster analysis

Fig. 1. Clustering system.

involves the discovery of the latent structure or distribution of
data in a dataset. The clustering problem can be formally defined
as follows.

Definition 1 (Clustering): Assuming that dataset D = {x1,
x2, . . . ,xn} contains n instances; each instance xi = (xi

1,
xi
2, . . . , x

i
d) has d-dimensional attributes. A clustering system

divides D into k clusters C = {C1, C2, . . . , Ck} with label Lk

be the label for cluster Ck, where
⋃k

i=1 Ci = D,Ci �= ∅, Ci ∩
Cj = ∅ (i �= j, 1 ≤ i, j ≤ k).

Fig. 1 describes the input and output of a clustering system. It
is well known that validating clustering systems will encounter
the oracle problem (i.e., the absence of an oracle). For instance,
it is argued in [13] that

The problem is that there isn‘t necessarily a ‘correct’ or ground truth
solution that we can refer to it if we want to check our answers ...you
will come to the inescapable conclusion is that there is no ‘true’
number of clusters (though some numbers feel better than others)
[therefore a definite correct clustering result, or an oracle, does not
exist], and that the same dataset is appropriately viewed at various
levels of granularity depending on analysis goals.

In view of the oracle problem, users of machine learning
generally rely on two types (internal and external) of techniques
to validate clustering systems. Both types, however, are not
satisfactory because of their own limitations. These limitations
have been briefly outlined in Section I, and will be further
elaborated in Section III-A.

B. Metamorphic Testing

To alleviate the oracle problem, MT [15], [21] has been
proposed to verify and validate the “expected” relationships
between inputs and outputs across multiple software executions.
These “expected” relationships are expressed as MRs [22], [23].
If the output results across multiple software executions violate
an MR, then a fault is revealed. Below, we give an example to
illustrate the main concepts of MT and MR.

Consider a program S that calculates the value of the sin(x)
function. It is extremely difficult to verify the correctness of
the output from S because an oracle is extremely difficult to
compute, except that x is a special value (such as π where
sin(π) = 1). MT can help alleviate this oracle problem. Con-
sider, for example, the mathematical property sin(x) = sin(π −
x). Based on this property, we can define an MR in MT: “If
y = π − x, then sin(x) = sin(y).” With reference to this MR,
S is executed twice: first, with any angle x as a source test
case; and, then, with the angle y, such that y = π − x, as a
follow-up test case. In this case, even the correct and precise
value of sin(x) is unknown, if the two execution results (one

1296 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

with input x and the other with input y) are different so that
the above MR is violated, we can conclude that S is faulty.
The above example illustrates an important feature of MT—it
involves multiple software executions.

MT was initially proposed as a verification technique. For ex-
ample, Murphy et al. [24] applied MT to several machine learn-
ing applications (e.g., MartiRank) and successfully revealed
several defects. Different types of metamorphic properties were
also categorized to provide a foundation for determining the re-
lationships and transformations that can be used for conducting
MT in machine learning applications [24]. Another study has
successfully demonstrated that MT can be extended to support
validation of supervised machine learning software [25]. In their
study, Xie et al. [25] presented a series of MRs (which may
not be the necessary properties of the relevant algorithm) gen-
erated from the anticipated behaviors of supervised classifiers.
Violations to the MRs may indicate that the relevant classifier
is unsuitable to the current application scenario, even if the
algorithm is correctly implemented.

Later, Zhou et al. [26] applied MT to validate online search
services. They adopted logical consistency relations as a mea-
sure of users’ perceived quality of search services, and used
this measure to validate the performance of four popular search
engines such as Google and Bing. In this work [26], Zhou
et al. compared four search engines with respect to different
scenarios and factors, thereby providing users and developers
with a more comprehensive understanding of how to choose a
proper search engine for better searching services with clear
and definite objectives. Olsen and Raunak [27] applied MT
for simulation validation, involving two prevalent simulation
approaches: agent-based simulation and discrete-event simu-
lation. Guidelines were also provided for identifying MRs for
both simulation approaches. Case studies [27] showed how MT
can help increase users’ confidence in the correctness of the
simulation models.

MT has also been recently applied to validate a deep learning
framework for automatically classifying biology cell images that
involves a convolutional neural network and a massive image
dataset [28]. This work has demonstrated the effectiveness of
MT for ensuring the quality of deep learning (especially involv-
ing massive training data). Moreover, this MT-based validation
approach can be further extended for checking the quality of
other deep learning applications. Other recent works [29], [30],
[31] have also been conducted to validate autonomous driving
systems where MRs were leveraged to automatically generate
test cases to reflect real-world scenes.

III. MOTIVATION

Recall that users of the machine learning community often
rely on certain validation techniques (which mainly focus on
the “static” aspect of a dataset) to evaluate clustering systems.
Moreover, these validation techniques suffer from several prob-
lems, which affect their effectiveness and applicability (e.g.,
unable to validate the “dynamic” aspect of a dataset, that is, the
effect of changing the input datasets on the clustering results).
Section III-A below discusses in detail the limitations of most ex-
isting cluster validation techniques. Section III-B, then, presents

some potential problems associated with data transformation
that should be addressed when validating clustering systems.

A. Challenges in Clustering Validation

In unsupervised machine learning, clustering is a technique
to divide a group of data samples into clusters such that data
samples within the same cluster are “similar” to each other;
while data samples of different clusters show “distinct” features
from each other. Because clustering attempts to discover hidden
patterns in data with no prior knowledge, it is difficult to evaluate
the correctness or quality of the clustering results (see Issues 1
and 2 in Section I).

Generally speaking, there are two major types of techniques
(external and internal) for validating the clustering result. Both
of them, however, have their own limitations.

1) External Validation Techniques: The basic idea is to com-
pare the clustering result with an external benchmark or measure,
which corresponds to a prespecified data structure. For external
validity measures, there are several essential criteria to follow
such as cluster homogeneity and completeness [32]. Consider,
for instance, the widely adopted F-measure [33]. It considers two
important aspects: recall (how many samples within a category
are assigned to the same cluster) and precision (how many
samples within a cluster are in one category). It is well known
that good and relevant external benchmarks are hard to obtain.
This is because, in most situations, the data structure specified
by the predefined class labels or other users is unknown. As a
result, without prior knowledge, it is generally very expensive
and difficult to obtain an appropriate external benchmark for
comparing with the clustering structure generated by a clustering
system.

2) Internal Validation Techniques: This type of techniques
validate the clustering result by adopting features inherent to
the dataset alone. Many internal validity indices were proposed
based on two aspects: intercluster compactness and intracluster
separation. For example, one of the widely adopted indices—the
silhouette coefficient—was proposed based on the concept of
distance/similarity [34]. If this coefficient (which ranges from
−1 to +1) of a data sample is close to +1, it means that this data
sample is well matched to its own cluster and poorly matched to
neighboring clusters. When compared with external techniques,
on one hand, internal techniques are more practical because they
can be applied without an oracle. On the other hand, internal
techniques are less robust because they mainly rely on the
features associated with the dataset, that is, data compactness and
data separation. Hence, the performance of internal techniques
could be easily affected by various data characteristics such as
noise, density, and skewed distribution [18].

In addition to the specific limitations of external and internal
validation techniques mentioned above, both types of techniques
validate clustering systems mainly from a “static” perspective,
without considering the changeability of input datasets or the
interrelationships among different clustering results.

To address the limitations of external and internal validation
techniques with respect to the “dynamic” perspective of clus-
tering, based on the notion of cluster stability [35], various

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1297

resampling techniques have been developed to complement
the external and internal techniques. A core concept of these
resampling techniques (and cluster stability) is that indepen-
dent sample sets drawn from the same underlying statistical
distribution should produce similar clustering results. Various
resampling techniques [36]–[38] have been proposed to generate
independent sample sets. An example of these resampling tech-
niques is Bootstrap (a representative nonparametric resampling
technique) [39], which obtains samples by drawing a certain
number of data points randomly with replacement from the
original samples, and calculates a sample variance to estimate
the population variance. Another example is Jittering [37], which
generates copies of the original sample by randomly adding
noises to the dataset in order to simulate the influence of mea-
surement errors. As a reminder, although Jittering considers
noises and outliers, it does not explicitly investigate the changing
trend of clusters.

To some extent, resampling techniques complement the ex-
ternal and internal validation techniques by comparing multiple
clustering results. However, it is not difficult to see from Boob-
strap [39] and Jittering [37] discussed above that resampling
techniques do not provide a comprehensive validation on the
dynamic perspective of clustering systems, because they mainly
deal with independent sample sets. In reality, datasets may
change constantly in various manners, involving interrelated
datasets [40]. Thus, estimating cluster stability without consid-
ering these interrelated datasets may result in incomprehensive
clustering validation.

We argue that, in most cases, users of machine learning are
particularly concerned whether a clustering system produces
an output that is appropriate or meaningful to their specific
scenarios of applications: Our argument is supported by AI
researchers [13], [14]. For example, it is argued in [14] that
“clustering should not be treated as an application-independent
mathematical problem, but should always be studied in the
context of its end-use.” Therefore, given a particular clustering
system, one user may consider it useful, while another user may
not, because of their different “expectations” or “preferences” on
the clustering result. In spite of the need for catering for differ-
ent users’ preferences, existing clustering validation techniques
(external, internal, and resampling) generally do not allow users
to specify and validate their unique preferences when evaluating
clustering systems (see Issue 2 in Section I). Furthermore, even
if we consider a particular user, it is possible that none of the
existing available clustering systems fulfills all their preferences
on a clustering system. If this happens, users can only choose a
particular clustering system that can fulfill their preferences the
best.

It has been reported that a general, systematic, and objective
assessment and validation approach for all clustering problems
does not exist [14]. Although many cluster validation methods
with a range of desired characteristics have been developed, most
of them are based on statistical testing and analysis. There are
still other desired characteristics that existing cluster validation
methods have not been addressed. In view of this problem, rather
than proposing a cluster validation method, which is “generic”
enough to evaluate every desired characteristic from all possible

users on a clustering system (which is intuitively infeasible), our
strategy is to propose a “flexible, systematic, and easy-to-use”
evaluation framework (i.e., METTLE) so that users are able to
define their own sets of desired characteristics and, then, use
these sets to validate the appropriateness of a clustering system
in their specific application scenarios.

B. Potential Problems Associated With
Dataset Transformation

In reality, datasets may be changed now and then. For exam-
ple, before clustering commences, we may need to preprocess
a dataset to filter out noises and outliers, in order to make the
clustering result more reliable. We may also need to normalize
the data so that different measures use the same scale for the
sake of comparison. In this regard, whether data transformation
may result in some unknown and undesirable ripple effect on
the clustering result is a definite concern for most users.

Often, users have some general expectations about the impact
on the clustering result when the dataset is changed in a particular
manner (i.e., the “dynamic” perspective of a dataset). Consider,
for example, the filtering of noises and outliers from the dataset
before clustering starts. Not only users expect the absence of
the ripple effect, they also expect a better clustering result after
the filtering process. Another example is that users generally
expect that a clustering system is not susceptible to the input
order of data. However, we observe that some clustering systems,
such as k-means (KM) [41], do not meet this expectation. This
is because KM and some other clustering systems are, in fact,
sensitive to the input order of data due to the choice of the original
cluster centroid, thus even a slight offset in distance will have a
noticeable effect on the clustering result.

One may argue that KM is a popular clustering system, so
users are likely to be aware of its above characteristic with
respect to the input order of data. As a result, users will consider
this issue when evaluating whether KM should be used for
clustering in their own contexts. We argue, however, as more
and more new clustering systems are developed, it is practically
infeasible for users to be knowledgeable about the potential rip-
ple effect of data transformation for every method (particularly
the newly developed ones), so that the most appropriate one
could be selected for use.

IV. OUR METHODOLOGY: METTLE

This section introduces our approach for cluster assessment
and validation. Section IV-A outlines some key features and
core concepts associated with METTLE from the perspective of
end-user software engineering [42], [43]. Section IV-B gives the
relevant definitions used in METTLE. Section IV-C, then, presents
a list of 11 generic MRs (which are based on some common end
users’ expectations on a clustering system) developed to support
METTLE.

A. Key Features and Core Concepts

To alleviate the challenges and potential problems men-
tioned in Sections III-A and III-B, we propose an MT-based

1298 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

methodology (METTLE) for “users” to assess and validate unsu-
pervised machine learning systems. In this article, as explained
in Section I, users refer to those “causal” users with some
hands-on experience on using clustering systems in their specific
application scenarios (e.g., biomedicine, market segmentation,
and document clustering), but do not possess a solid theoretical
foundation on machine learning. Thus, these users often have
little interest on the internal logic of clustering systems. Rather,
they are more concerned with the applicability of these systems
in their own usage contexts. Consider, for example, users in
bioinformatics consider using a clustering system to perform
predictive analysis. These bioinfomaticians often have good
domain knowledge about complex biological applications, but
they are not experts in machine learning, or do not care much
about the detailed theories in machine learning. For these users,
there is a vital demand for an effective and yet easy-to-use
validation method (but without the need for having sophisticated
knowledge about machine learning) to help them select an
appropriate clustering system for their own use.

Some key features of METTLE are listed below.
1) It alleviates the oracle problem in validating clustering

systems (see Issue 1 in Section I).
2) It allows users to comprehensively assess and validate the

“dynamic” perspectives of clustering systems related to
dataset transformation. In other words, it enables users
to test the impact on the clustering result when the input
dataset is changed in a particular way for a given clus-
tering system. Thus, METTLE works well with interrelated
datasets.

3) It allows users to assess and validate their expected char-
acteristics (expressed in the form of MRs) of a clustering
system. In addition, during assessing and validating, users
are able to assign weighted scores to defined MRs in
accordance with their relative importance from the users’
perspectives. As such, an MR-based adequacy criterion,
by means of a set of user’s defined MRs, can be derived
to help users select an appropriate clustering system for
their own use (see Issue 2 in Section I).

4) METTLE is supported with an initial suite of 11 MRs, which
are fairly generic and are expected to be applicable across
many different application scenarios and contexts. As a
reminder, in reality, users may ignore some of these MRs
that are irrelevant or inapplicable in a specific application
scenario.

Features 1) to 3) of METTLE are made available by allowing
users to define a set of MRs, with each MR capturing a relation
between multiple inputs (datasets) and outputs (clusters) across
different clustering tasks. These user-defined MRs, together
with the generic MRs in the initial suite (feature 4) above), are
assigned with weighted scores to reflect their relative importance
from the user’s perspective (feature 3) above). Such “ranked”
MRs, thus, allow users to specify their expected characteristics
of a clustering system. If a clustering system generates results
from multiple executions which violate an MR, it indicates that
this system does not fulfill the expected characteristic corre-
sponding to this MR. Thus, the set of user-defined specific
MRs and user-chosen generic MRs essentially serves as a test

adequacy criterion for users to evaluate candidate clustering
systems, with a view to selecting the most appropriate one for
use.

B. Definitions

1) MR for Cluster Validation: Given a clustering system A
and a dataset D. Let Rs = A(D) denote the clustering result.
Assume that a transformation T is applied to D and generates
DT . Let Rf = A(DT) denote the new clustering result. An MR
defines the expectation from users about the changing trend of
A’s behaviors after transforming D by T , that is, the expected
relation RT between Rs and Rf after T .

We call the original dataset D and the result Rs as the
source input (source sample set) and the source output (source
clustering result), respectively; call the transformed DT and the
result Rf as the follow-up input (follow-up sample set) and
the follow-up output (follow-up clustering result), respectively;
and call the clustering processes with D and DT as the source
execution and the follow-up execution, respectively.

2) Output Relations: An MR for validation may not be a
necessary property of the system under test, especially for
machine learning systems. Also, clustering results may vary
due to randomness. Thus, we will not simply check whether or
not an MR holds across multiple clustering results, as normally
done in MT. If the clustering results violate an MR, we will
investigate the reason(s) for such violations. To facilitate this, we
will analyze and investigate an output relation across different
clustering results in the following aspects.

1) Changes on the returned cluster label for each sample
object in the source data input D: For each MR, map
each sample objectxs

i ∈ D to a new objectxf
i ∈ DT (with

changed or unchanged attribute values). To understand
how the clustering result changes after applying the data
transformation T , it is necessary to compare the returned
label for each object xs

i ∈ D and its corresponding object
xf
i ∈ DT .

2) Consistency between the expected label and the actual
label for each newly added sample in DT : Apart from
mapping source data objects into their corresponding
follow-up data objects, some MRs may also involve creat-
ing new objects such that users may have different expec-
tations for the behaviors of these newly inserted objects.
The newly added objects may share the same label with
their neighbors, or may be assigned a new label. We will
illustrate different expectations in corresponding MRs in
Section IV-C.

In view of the above two aspects, we propose the notion of
reclustering percentage (RP), which measures the inconsistency
between a source output and its corresponding follow-up output.
This notion is formally defined as follows.

3) Reclustering Percentage: Given a clustering system A,
an MR, and a source input dataset D = {xs

1,x
s
2, . . . ,x

s
n}, by

applying the data transformation T to D with respect to this
MR, we obtain the corresponding follow-up input dataset DT =
{xf

1 ,x
f
2 , . . . ,x

f
m} (where n = m if no new objects are added;

n<m if there are new objects inserted intoDT). Let dold denote

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1299

the number of cases where xf
i has a cluster label different from

that of xs
i (where 1 � i � n); dnew denote the number of cases

where a newly added object xf
j has a different cluster label than

expected (where n < j � m); |D| denote the size of the source
input dataset; and |DT | denote the size of the follow-up input
dataset. RP is defined as

RP =
dold + dnew

|DT | .

Obviously, RP = 0 if no violation to MR is observed between
this pair of source and follow-up executions.

It should be reminded that, in the above definition:
1) We do not adopt some general similarity coefficients,

such as Jaccard that calculates the intersection over union,
because the RP measure we defined above serves our
purpose more precisely.

2) The above definition may extend beyond the necessary
properties of a clustering system, because our purpose is to
validate the characteristics of a clustering system instead
of detecting the source code faults in its corresponding
implementation. In particular, if the clustering results
generated from two related datasets do not follow the
specified relation in an MR definition, a violation is said
to be revealed and the characteristics of the corresponding
system should be evaluated in detail to identify how and
why these characteristics affect the clustering results.

Also, it is not difficult to see from the above that, by config-
uring the transformation T with various operations, the various
behaviors of a clustering system can be validated.

C. Generic MRs

METTLE aims to provide an effective vehicle for end users
without the need for a theoretical background of clustering to
assess their expected characteristics for a clustering system, and
validate the appropriateness of a clustering result in their own
context.

To support METTLE, we developed an initial suite of 11 generic
MRs. Each of these generic MRs is defined based on users’
general expectations on the clustering result when a dataset
changes in a particular way. These expectations are not gained
from the theoretical background of any particular machine learn-
ing system, but from intrinsic and intuitive requirements of a
clustering task. In other words, METTLE is primarily developed
for users, without the need for a solid theoretical foundation of
machine learning.

These 11 generic MRs fall into six different aspects of prop-
erties of a clustering system, and are expected to be applicable
across various users’ perspectives. Note that these generic MRs
do not cover every possible property of a clustering system that
is expected by all users, because different users may have dif-
ferent sets of expectations of a clustering system. This problem,
however, is not an issue in METTLE because users can, at their
own will, simply adopt any of these 11 generic MRs, and also
define additional, more specific MRs for their specific scenarios
of applications.

In contrast to a purely theoretical analysis on the proper-
ties of a clustering system, METTLE takes a lightweight and
more practical approach to its application. METTLE helps users
determine the relative “usefulness” among a set of clustering
systems in different specific scenarios. This, in turn, facilitates
the comparison and selection of the most appropriate clustering
system from the user’s perspective. Below, we discuss these 11
generic MRs we developed.

1) Manipulating the sample object order in the dataset:
Reordering sample objects is a frequently performed op-
eration, and users often assume that this operation is trivial
and, hence, does not affect the clustering result. However,
this assumption is not held for some clustering systems,
such as KM [41] as discussed in Section III-B. To validate
whether or not this assumption is held for a clustering
system, MR1.1 and MR1.2 are defined as follows.

MR1.1—Changing the object order: If we permute the order
of the sample objects in the dataset, the new clustering result
(Rf) will remain the same as the original result (Rs).

MR1.2—Changing the object order but keeping the same set
of starting centroids: If we permute the order of the sample
objects in the dataset but keeping the same set of starting
centroids, we will have Rf = Rs.

In MR1.2, starting centroids are those objects that are
randomly selected by a clustering system when it starts
execution. Thus, by fixing the starting centroids, we can
alleviate the randomness problem (i.e., the same dataset
gives rise to different clustering results) associated with
system execution. Consider, for example, KM. It randomly
selects k objects from D as the initial cluster centroids,
then assigns each object to the cluster with the closest
centroid. Clusters are, then, formed by recomputing clus-
ter centroids and reassigning data objects. With respect to
this property of the system, if we fix k initial objects when
it starts execution, followed by shuffling the other objects
in D, it is generally expected that Rf = Rs, leading to
MR1.2 above.
It should be noted that MR1.1 differs from MR1.2 in
that the former may or may not involve changing the
starting centroids, but the latter keeps the starting centroids
unchanged.

2) Manipulating the distinctness among clusters in the
dataset: Users often expect that the distinctness among
clusters will affect the clustering result. First, we consider
the impact on the clustering result by shrinking some or all
of the clusters towards their centroids in the dataset [see
Fig. 2(a)]. MR2.1 is defined accordingly as follows.

MR2.1—Shrinking one or more clusters towards their cen-
troids: If some or all of the clusters in the dataset are shrunk
toward their centroids, we will have Rf = Rs.

The rationale behind MR2.1 is obvious and needs no
explanation. With respect to MR2.1, for each clusterCk in
Rs to be shrunk, we first identify its centroid mk returned
by the clustering system. Then, for each xi in Ck, we

1300 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

Fig. 2. Illustration on MR2.1 and MR2.2. (a) MR2.1. (b) MR2.2.

compute the middle point (denoted as xk
i) from mk to xi.

DT is constructed by replacing all xi in D with xk
i .

Another aspect related to changing the distinctness among
clusters is data mirroring, which is related to the following
MR.

MR2.2—Data mirroring: Given an initial dataset D such as
its correspondingRs contains k clusters in the same quadrant
of the space. If we mirror all these k clusters in Rs to other
N quadrants of the space so that clusters have approximately
equal distance to each other, then ((N + 1) ∗ k) clusters will
be formed in Rf . Furthermore, the newly formed clusters in
Rf will include the original k clusters in Rs.

To illustrate MR2.2, let us consider a two-dimensional
(2-D) space in Fig. 2(b). Suppose, after the first execution
of a clustering system A, Rs contains two clusters L1 and
L2. We, then, segment the space into four quadrants, where
L1 and L2 are in the same quadrant. With the mirroring
operation M1, we mirror L1 and L2 (and the sample
objects contained in them) in D to an adjacent quadrant to
create new “mirroring” clusters L3 and L4. A new dataset
DT is created, containing the original clusters (L1 and
L2 before mirroring) and the newly formed “mirroring”
clusters (L3 and L4 after mirroring). We, then, perform
two more mirroring operations (M2 and M3) in Fig. 2(b)
similar to M1 to create additional “mirroring” clusters.
Finally, we perform another execution of A, and compare
the clusters in Rs and Rf to see whether or not MR2.2 is
violated.

3) Manipulating the object density of one or more clusters in
the dataset: Suppose additional sample objects are added
into some clusters in the dataset D to increase the object
densities of these clusters (see Fig. 3). With respect to this
action, users will expect that every newly object added to

Fig. 3. Illustration on MR3.1.

a cluster L (before executing the clustering system) will
indeed be assigned to L by the clustering system after its
execution. In reality, however, not every clustering system
meets such user’s expectation. To validate the behavior of
a clustering system with respect to the change in the object
densities of clusters, we define the following MR.

MR3.1—Adding sample objects around cluster centers: If
we add new sample objects to a cluster L in Rs so that they
are closer to the centroid of L than some existing objects in
L, followed by executing the clustering system again, then:
1) all the clusters appearing in Rs will also appear in Rf ,
and 2) these newly added sample objects will also appear in
Rf and with L as their cluster.

MR3.1 can be validated in a similar way as to validating
MR2.1 but with some changes. First, similar to validating
MR2.1, we create a new objectxk

i for an existing objectxi

in a given clusterCk ofRs, such thatxk
i is the middle point

between xi and the centroid mk. However, for validating
MR3.1, we do not create xk

i for each xi. Rather, we
randomly select xi. Second, the newly created xk

i is added
as a new element, instead of replacing the original xi as
for validating MR2.1.

MR3.1 can be slightly revised to create another MR
(MR3.2); the latter involves adding sample objects near
the boundary of a cluster.

MR3.2—Adding sample objects near a cluster’s boundary:
If we randomly add new sample objects on the edge of the
convex hull1 of the objects whose cluster is L, followed by
executing the clustering system again, then 1) all the clusters
appearing in Rs will also appear in Rf , and 2) these newly
added objects will also appear in Rf and with L as their
cluster.

4) Manipulating attributes: Attributes in a dataset may be
occasionally changed. We consider two possible types of
transformation on attributes. First, new attributes may be
added to a dataset, if they are considered representative
for distinguishing sample objects. In view of this addition,
MR4.1 is defined as follows.

MR4.1—Adding informative attributes: We define an infor-
mative attribute as the one whose value for each object
xi = {xi

1, x
i
2, . . . , x

i
d} is the corresponding returned cluster

name li in Rs (li could be any Ck ∈ Rs). DT is constructed
by adding this new informative attribute toD, that is, each ob-
ject xT

i in DT becomes xT
i = {xi

1, x
i
2, . . . , x

i
d, li}. Then,

we will have Rf = Rs.

1In mathematics, the convex hull of a set X of points in the Euclidean plane
is the smallest convex set that contains X .

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1301

Fig. 4. Illustration on MR5.1.

Next, we consider the second type of data transformation.
An attribute is generally considered as redundant if it can
be derived from another attribute [32]. Redundancy is a
critical issue in data integration, and its occurrence can be
detected by correlation analysis. Han et al. argued that a
high correlation generally indicates that an attribute can be
considered redundant and, hence, to be removed. To define
an MR related to redundant attributes, we adopt a widely
used Pearson’s product moment coefficient to measure
the degree of correlation between attributes, and construct
DT by removing redundant attributes (if any). Intuitively
speaking, we expect removing redundant attributes will
not affect the clustering result. This expectation leads to
the following MR.

MR4.2—Removing redundant attributes: If we remove one
or more redundant attributes from the dataset D and, then,
execute the clustering system again, we will have Rf = Rs.

5) Manipulating the coordinate system: Several ways exist
for manipulating the coordinate system such as rotation,
scaling, and translation. These ways of changing the co-
ordinate system shall not affect the spatial distribution of
sample objects, thereby leading to the next two MRs.

MR5.1—Rotating the coordinate system: Suppose the orig-
inal coordinates are (A,B). We perform a transformation
T by rotating the coordinate system by a random degree θ
(where θ ∈ [0◦, 90◦]) anticlockwise. After performingT , we
get the new coordinates (AT , BT). The same set of clusters
will appear in both Rs and Rf .

Fig. 4 depicts the transformation T . The formula below
can be used to transform the existing coordinates in D
into the corresponding new coordinates in DT

(
AT BT

)
=
(
A B

)(cosθ − sin θ

sin θ cosθ

)
.

A scaling transformation changes the sizes of clusters.
Scaling is performed by multiplying the original coordi-
nates of objects with a scaling factor.

MR5.2—Scaling the coordinate system: Suppose the original
coordinates are (A,B); the scaling factors for the two axes
are Sa and Sb, respectively; and the new coordinates after
scaling are (AT , BT) (the mathematical representation of
this scaling transformation is shown in the formula below).

When Sa = Sb, we will have Rf = Rs

(
AT BT

)
=
(
A B

)(Sa 0

0 Sb

)
.

6) Manipulating outliers: An outlier is a data object that
acts quite different from the rest of the objects, as if
it were generated by a different mechanism [32]. It is
generally expected that a clustering system will handle
outliers by either filtering them or assigning new cluster
labels to them. In this article, we mainly focus on global
outliers, which do not follow the same distribution as other
sample objects and significantly deviate from the rest of
the dataset [32].

MR6—Inserting outliers: To generate DT , we add a sample
objectXo to the datasetD so that the distance fromXo to any
cluster is much larger than the average distance between clus-
ters (in order to make Xo not associated with any predefined
clusters in D). After this operation, the following properties
must be met: 1) every object (exceptXo) has the same cluster
label in both D and DT , and 2) Xo does not occur in Rf , or
if Xo occurs in Rf , then Xo has a new cluster label, which
is not associated with all the other objects.

V. EXPERIMENTAL SETUP

This section outlines the setup of our experiment, which
follows the guidelines by Wohlin et al. [44] as far as possible.
In what follows, we first define the main objective and research
questions of our experiment. This is followed by discussing the
subject clustering systems used in the experiment. Thereafter, we
discuss the detailed experimental design, including environment
configuration, experimental procedures, dataset preparation, and
parameter setting.

A few properties corresponding to some of the generic MRs
discussed in Section IV-C were individually investigated in some
previous studies. For example, it has been reported in [45] that
the performance of KM depends on the initial dataset conditions.
More specifically, some initial dataset conditions may cause KM
to produce suboptimal clustering results. As another example,
density-based clustering systems are found to be generally effi-
cient at separating noises and outliers [46]. However, few studies
have been conducted to provide a systematic, practical, and
lightweight approach for validating a set of clustering systems
with reference to various properties (defined from the user’s
perspective) in a comprehensive and holistic manner.

A. Research Objective and Questions

The main objective of our experiment is to demonstrate, by
means of quantitative and qualitative analyses, the feasibility
and practicality of METTLE for assessing and validating clus-
tering systems with respect to a set of system characteristics
as defined by users. In this article, we do not intend to con-
duct a comparative experiment with other “traditional” cluster
validation techniques. This is because most of these techniques
take a statistical perspective while METTLE focuses on the users’
perspective; this difference in perspective renders a comparison
meaningless.

1302 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

In view of the above research objective, the following two
research questions have been set.

1) RQ1: What are the levels of compliance of the subject
clustering systems with the 11 generic MRs?

2) RQ2: What are the underlying behaviors of the subject
clustering systems that cause violations to the relevant
MRs (if any)?

B. Subject Clustering Systems

Our experiment involved six popular clustering systems ob-
tained from the open source software Weka (version 3.6.6) [47].
These six subject systems fall into three categories: prototype-
based, hierarchy-based, and density-based.

1) Prototype-Based Systems: Given a dataset D = {x1,
x2, . . . , xn} that contains n instances; each instance has d at-
tributes. The main task of prototype-based systems is to find a
number of representative data objects (known as prototypes) in
the data space. More specifically, an initial partition of data is
built first, then a prototype-based system will minimize a given
criterion by iteratively relocating data points among clusters.
In this category, we specifically considered the following three
methods:

a) k-means (KM): Letm(t) denote the cluster centroid of each
cluster, where t is the number of iterations. In essence, KM [41]
involves the following major steps.

1) Randomly choose k data points as the initial cluster
centroids.

2) Assign each data point to the nearest centroid, using the
following formula (in which ‖‖ means the L2 norm)

Ci
(t) = {xp : ‖xp − mi

(t)‖ ≤ ‖xp − mj
(t)‖}.

The above formula follows the notation in Definition 1 in
Section II-A, where Ci

(t) denotes the ith cluster in the tth
iteration, and Ci denotes a set of points whose label is the
current cluster.

3) Recalculate the centroid of each cluster, the new centroid
is as follows:

mi
(t+1) =

1

|Ci
(t)|

∑
xj∈Ci

(t)

xj

where mi is the centroid of cluster Ci, and m(t+1)
i is the

new centroid.
4) Repeat steps 2) and 3) above until there is no further

change in clusters or the predefined maximum number
of iterations is reached.

b) x-means (XM): This system addresses two weaknesses of
KM: 1) poor calculation ability, and 2) the need for foreknowing
the value of k and the local minima [48]. Unlike KM, XM only
needs users to specify a range of k values so that XM can arrive
at an optimal cluster number. The major steps of XM are as
follows.

1) Run conventional KM, where k equals to the lower bound
kmin of the specified range.

2) Split some centroids into two by calculating the value of
the Bayesian Information Criterion [49].

3) Repeat 1) and 2) until k > kmax, where kmax is the upper
bound of the specified range.

Fig. 5. Examples of clustering results generated by hierarchy-based clustering
systems. (a) AN. (b) FF.

c) Expectation-Maximization (EM): This system aims at
finding the maximum likelihood of parameters in a statistical
model [50]. EM consists of the following major steps.

1) Initialize the distribution parameter θ.
2) E-step: Calculate the expected value of the unobserved

variable z(i) with respect to the current estimate of the
parameter θ; thereby, indicating the class to which the
data object i belongs

Qi(z
(i)) = p(z(i)|x(i); θ).

3) M-step: Find the parameter that maximizes the log
likelihood function using the following formula:

θ = argmaxθ
∑
i

∑
z(i)

Qi(z
(i))log

p(x(i), z(i); θ)

Qi(z(i))
.

2) Hierarchy-Based Systems: This category of systems aims
at building a hierarchy of clusters by merging or splitting data
partitions, and the results are usually presented as a dendrogram.
Fig. 5 shows the resulting clusters generated by two popu-
lar hierarchy-based methods: agglomerative nesting (AN) and
farthest-first traversal (FF).

a) Agglomerative Nesting: This system adopts a bottom-up
approach, where each data object is initially considered as
a cluster in its own and, then, pairs of clusters are succes-
sively merged where appropriate. The clustering process has the
following steps.

1) Assign each data point to a single cluster.
2) Evaluate the pairwise distance between clusters by a dis-

tance metric (e.g., the Euclidean distance) and a linkage
criterion.

3) Merge the closest two clusters into one cluster according
to the calculated distance.

4) Repeat steps 2) and 3) above until all relevant clusters have
been merged into a single cluster that contains all data

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1303

points. The clustering result of AN is typically visualized
as a dendrogram as shown in Fig. 5(a).

The linkage criterion (denoted as linkType) used in step
2) determines the distance between sets of observations as a
function of the pairwise distances between these observations.
Some commonly used criteria for linkType are single-linkage,
complete-linkage, and average-linkage. Single-linkage could
lead to a bad behavior known as “chaining,” while complete-
linkage, being an opposite extreme of single-linkage, suffers
from the problem of “crowding” [51]. Take average-linkage as
an example, the distance between two clusters is calculated as
follows:

d(Ci, Cj) =
1

|Ci||Cj |
∑

xp∈Ci

∑
xq∈Cj

d(xp,xq).

AN does not require a prespecified number of clusters
(i.e., k). However, the dendrogram should be cut at some point
if we want a partition of disjoint clusters. Some criteria can be
used to determine the cut point such as similarity level, or just a
specific k, which is preferred in our approach.

b) Farthest-First Traversal: It consists of the following three
main steps [51].

1) Randomly pick a point from n data points as a starting
point and label it as 1.

2) Number the remaining points using FF: For i =
2, 3, . . . , n, find the unlabeled point furthest from the
set {1, 2, . . . , i− 1} and label it as i (using the stan-
dard notion of distance from a point to a set: d(x, S) =
miny∈Sd(x, y)). For point i, let: π(i) = argminj<id(i, j)
be its parent, and Ri = d(i, π(i)) be its distance to π(i).
A tree Tπ is, then, constructed on nodes {1, 2, . . . , n},
rooted at 1 and with an edge between each point i and its
parent π(i). An example is shown in Fig. 5(b).

3) Obtaining the ordering of points (i.e., Tπ) from step 2).
The first k points are regarded as k cluster centers, where
the remaining points in Tπ are assigned to their closest
centers.

3) Density-Based Systems: Many clustering systems are
distance-based, thereby exhibiting the limitation on discovering
nonconvex clusters. On the other hand, density-based clustering
systems (implemented under a data connectivity criterion) can
efficiently identify clusters of arbitrary shape. We found two
density-based clustering systems in Weka 3.6.6: DS and Order-
ing Points To Identify the Clustering Structure (OPTICS). Since
OPTICS does not deliver the clustering result explicitly, we only
chose DS in our experiment.

a) Density-Based Spatial Clustering of Applications With
Noise (DS): Given a dataset with n points in a space, DS groups
data points in high density areas. Data points are labeled one of
the following three types.

1) Core points: A point m is labeled as core if there exist at
least a minimum number of points (minPts) that are within
the specific distance eps of m. Also, these points are said
to be directly reachable from m. The number of points
whose distances from m are smaller than eps is called
density.

2) Density-reachable points: A point n is said to be density-
reachable from m if there exists a path of points p =
{t1, t2, . . . , tk}, where t1 = m, tk = n, and for any ti
in p, ti+1 is directly reachable from ti.

3) Noisy points: A point is marked as noise if it is unreachable
from any other points.

DS involves the following three main steps.
1) Randomly select an unvisited point from the dataset.
2) If the selected point is a core point, then label all its density-

reachable points as one cluster. Otherwise, exit.
3) Repeat steps 1) and 2) above until all points have been

visited.

C. Experimental Design

1) Environment Configuration: The experimental environ-
ment was configured as follows. Hardware environment: Intel
Core i7 CPU with 8 GB memory. Operating system: Windows
10 X64. Software development platform: Java.

2) Experimental Procedures: Our experiment involved two
main steps as follows.

Step 1: We evaluated the performance of each subject cluster-
ing system with respect to the 11 generic MRs as discussed in
Section IV-C (RQ1). In particular, for each system, we measured
the extent of violations to these generic MRs. In general, the
fewer the violations an MR reveals, the better a clustering system
fits the requirement (which is expressed in that MR) of a user. To
measure the extent of violation, we used two metrics: 1) violation
rate (VR)—it is the ratio of the number of violated trials to the
total number of trials; 2) RP—it is the ratio of the number of
objects being reassigned to the total number of objects within
the follow-up dataset (previously defined in Section IV-B). We
used the mean value of RP across all trials (with different dataset
per trial) to measure the extent of a clustering system that
violates an MR. To reduce the effect of irrelevant factors on the
measurement, we followed the “blocking” design principle [44]
in our experiment.

Step 2: For any violation to an MR, we investigated and
analyzed the underlying behaviors of subject clustering systems
that cause such violation, and analyzed the plausible reasons
(RQ2). Here, we carefully examined the clustering results of both
source and follow-up executions, with a view to identifying their
corresponding clustering patterns. This facilitated us (and users)
to better understand the relevant anomalous execution behaviors
of a clustering system. The investigation result was, then, used
to develop a list of strengths and weaknesses (with respect to the
11 generic MRs) for the six subject clustering systems.

3) Dataset Preparation and Parameter Setting: For the rest
of the article, we call the dataset used for the first execution of
a clustering system the source dataset, and the dataset (that has
been changed according to a particular MR) used for the second
system execution the follow-up dataset.

After selecting the subject clustering systems, we pre-
pared a source dataset with clustered samples using the func-
tion make_blobs in Scikit-learn [52]. This function generates
isotropic Gaussian blobs for clustering; that is, each cluster is
a Gaussian distribution around a center point to ensure that the
whole dataset is well clustered.

1304 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

Let cluster_std denote the standard deviation of the clusters,
centers denote the number of centers to generate (default = 3),
n_ features denote the number of features for each sample, and
n_sample denote the total number of points equally divided
among clusters. We set cluster_std, centers, and n_ features to
0.5, 3, and 2, respectively. We also set n_sample to a valid range
of [50, 200] because the larger the dataset was, the more likely
violations to MRs were revealed.

Note that there were some special cases with specific ar-
rangements. For MR2.2, only two well-separated clusters were
generated with cluster_std = 0.5, and were mapped to the ad-
jacent quadrant. As a result, altogether four distinctive clusters
were generated in the follow-up dataset. For MR4.2, we gener-
ated an extra correlated attribute (A′) with a particular Pearson
correlation coefficient: each sample object is three-dimensional
and is denoted as (A, B, A′), and Pearson(A, A′) = 0.8. Let
xs
i = (A, B, A′) be a source sample, and xf

i = (A, B) be its
follow-up sample. Note that, given a follow-up sample, the corre-
lated attribute A′ was removed from it to form its corresponding
source sample. In MR5.2, Sa was randomly selected from the
range [0.2, 5.0] and Sb was set to the same value as Sa.

Based on each identified MR, follow-up datasets were derived
from the corresponding source datasets. We ensured the object
orders in the source datasets and follow-up datasets were prop-
erly aligned (except for MR1.1 and MR1.2 since both MRs in-
volved changing the object orders). Because our experiment did
not focus on the effect of the input parameters of the clustering
systems, we fixed the parameters in each batch of experiments:
1) Euclidean distance was taken as the distance function for
systems that require a distance metric; 2) linkType was set to
“AVERAGE” (i.e., average-linkage criteria); 3) eps and minPts
were set to 0.1 and 8, respectively, for DS; and 4) random seed,
which is used for random number generation in Weka implemen-
tation, was also fixed across multiple executions of each subject
system involving the source datasets and their corresponding
follow-up datasets, in order to ensure the clustering results were
reproducible and the initial conditions were properly aligned.

As explained in Section V-B, EM and DS do not need a
prespecified cluster number. For the other four subject clustering
systems, we set the parameter k as follows.

1) KM: Since centers was set to 3 (i.e., three source clusters),
k was also set to 3 for all MRs except MR2.2.

2) XM: The permissible range was set to [k − 1, k]. k was
the actual number of clusters in a dataset and was set to 3
except MR2.2.

3) AN and FF: k was set to 3 for all MRs except MR2.2 and
MR6.

VI. EXPERIMENTAL RESULTS

This section presents our experimental results for the two
research questions RQ1 and RQ2. Section VI-A addresses RQ1
by providing and discussing the relevant quantitative statistics.
Section VI-B addresses RQ2 by providing an in-depth qualita-
tive analysis, framed by a set of clustering patterns that we ob-
served in the experiment. In addition, Section VI-C summarizes
our observations and provides further analysis and interpretation
of the results.

Fig. 6. Total number of violated MRs of each clustering system.

TABLE I
VR VALUES FOR SUBJECT CLUSTERING SYSTEMS

WITH RESPECT TO GENERIC MRS

A. Compliance of Clustering Systems With 11
Generic MRs (RQ1)

With respect to each of the six subject clustering systems,
we conducted 100 trials (with different datasets in each trial)
for each of the 11 generic MRs defined in Section IV-C. When
validating a clustering system against an MR, an experimental
trial was said to cause a “violation,” if its corresponding RP
was greater than zero (see Section IV-B for the details). This
result indicated that there was at least one sample reclustered
“unexpectedly” in the current trial. Also, a method was said to
violate an MR if there was one or more violations in all the 100
experimental trials.

Fig. 6 summarizes the total number of violated MRs of each
system. The figure shows that KM had the worst performance in
that it violated nine MRs. It was followed by FF and DS—each
of them violated seven MRs. XM and EM violated five and four
MRs, respectively. AN performed the best because it had the
smallest number of violations (= 3). Recall that every generic
MR defined in Section IV-C involves data transformation in a
certain way. Thus, in general, Fig. 6 indicates that KM is the most
sensitive to data transformation, whereas AN is least sensitive.

Furthermore, we noted that even if two systems both violated
the same MR, the chance of revealing a violation could be quite
diverse. Therefore, we define the concept “VR” to facilitate
a deeper analysis. Basically, VR is defined as the number of
violation trials to all the 100 trials. Table I shows the values of
VR for all methods with respect to each generic MR.

Consider, for example, in this table, VR = 26% for KM with
respect to MR2.1. It indicates that, among the 100 experimental

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1305

trials, 26 of them had their RP values greater than zero. Consider
another example. VR = 0 for XM with respect to MR2.1, indi-
cating that none of the 100 experimental trials violated MR2.1.
As a reminder, if “N/A” is indicated for a particular MR in Table I,
it means that this MR is not applicable for the relevant system(s).
For instance, MR2.1 requires cluster centroids to be returned by
a system. Since AN and DS do not return any cluster centroid,
so their corresponding VR values are labeled as “N/A.”

1) Zero violation: Several systems had zero V R values for
some MRs in Table I. These zero-violation cases not only
indicate a high adaptability and robustness of the corresponding
systems with respect to particular types of data transformation,
but they also imply that the relevant MRs may be necessary
properties of these systems and, hence, can be used for verifi-
cation [25]. Consider, for example, the zero VR value of AN
with respect to MR1.1. We can indeed prove that MR1.1 is
a necessary property of AN. In this system, each data point
is first considered a single cluster. Then, AN calculates the
distances between clusters and incrementally merges two closest
clusters. It is obvious that the distance calculation and the way
of merging clusters are unrelated to the order of the data in the
dataset. In addition, Table I shows that no violation to MR5.2
occurred across all the six subject systems. Thus, it can be argued
that MR5.2 can be considered a necessary property of the six
systems. Since this article mainly focuses on validation rather
than verification, therefore, the formal proofs and analyses for
zero-violation cases are excluded from this article. Note that this
article mainly focuses on the nonzero violation cases.

2) Nonzero Violation: Table I shows that the nonzero VR
values spread across a wide range from 5% to 100%. Intuitively
speaking, with respect to an MR: 1) a high VR value indicates
that a system is very sensitive to the type of data transformation
corresponding to this MR, and the clustering result is likely to
vary unexpectedly; and 2) a low VR value indicates that a system
is relatively robust to the corresponding data transformation,
and violations to this MR occur sporadically among all the
experimental trials. Consider, for example, the values of VR
of KM (5%) and FF (90%) with respect to MR1.1. The result
indicates that KM violated MR1.1 in only five trials out of
100, while FF violated as many as 90 trials out of 100. Thus,
the result shows that FF is far more sensitive to the type of
data transformation corresponding to MR1.1 (i.e., changing the
object order) than KM.

By examining how a system reclusters transformed data sam-
ples in each violated case, we observed that different cases had
different levels of inconsistency as measured by RP. In other
words, the nonzero RP values exhibited a diverse range. As an
example for illustration, among the five violations to MR1.1
for KM (VR = 5% in Table I), we observed five diverse RP
values (in ascending order): 0.55%, 0.67%, 0.93%, 46.67%, and
48.19% (mean = 19.40%). Table II shows the mean values of
RP for the nonzero violation cases for each system with respect
to each generic MR. Due to page limitation, the table shows the
mean values of RP rather than their individual values.

Note that Tables I and II show the results in different per-
spectives. Table I counts the numbers of violated cases; while
Table II focuses on the mean numbers of inconsistencies among

TABLE II
MEAN VALUES OF RP FOR SUBJECT CLUSTERING SYSTEMS

WITH RESPECT TO GENERIC MRS

† Each figure in the table denotes the mean value of RP over the violated trials with
respect to the relevant MR.

those violated cases. Also note that a high VR value does not
necessarily imply a high RP value. Take FF under MR3.1 as an
example. Here, reclustering occurred for 95 times among all the
100 trials (VR = 95%). However, the mean percentage of reclus-
tering was less than 8% (mean number of RP=7.94%). Thus, the
results indicate that, although MR3.1 was often violated by FF,
the extent of reclustering in these violations was quite marginal
on average. In contrast to FF, although XM violated MR3.1 only
nine times (VR = 9%), this method had a mean value of RP of
35.75%.

We now turn to Fig. 7, which combines the results in Tables I
and II in one figure. In this figure, each horizontal bar corre-
sponds to a violation to a particular MR by a system. In each
subfigure, the largest value of RP shown in the y-axis is 70%,
because this was the largest RP value we observed across all
the 11 MRs and all the six subject clustering systems in our
experiment. In Fig. 7, we can easily observe the “density” of the
occurrences of reclustering over a certain range. Consider, for
example, the set of horizontal bars related to MR2.2 and DS in
Fig. 7(f). By looking at the distribution pattern of the horizontal
bars, we know that the values of RP had a larger deviation in
the higher-value ranges (closer to 70%) than in the lower-value
ranges (closer to zero percentage).

Below, we summarize the above findings.
1) The 11 generic MRs have different capabilities to help a

user detect “unexpected” behavior in clustering systems
(from the user’s perspective). More specifically
a) MR5.1 (related to the rotation of the coordinate sys-

tem) is the most effective MR in identifying the cor-
responding “unexpected” behavior across all the six
subject methods.

b) Some generic MRs, particularly MR5.2, could be nec-
essary properties of clustering systems and, as such,
no violation has been observed.

2) The robustness of handling each type of data transforma-
tion (as represented by the relevant generic MR) varied
across the clustering systems, in terms of the VR and RP
measures. More specifically
a) KM and FF had the worst performance across the 11

generic MRs.
b) On the other hand, EM and AN stayed relatively robust,

yielding more desired results.

1306 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

Fig. 7. RP distributions across the 11 generic MRs for each method. (a) KM. (b) XM. (c) EM. (d) AN. (e) FF. (f) DS.

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1307

TABLE III
DIFFERENT TYPES OF CLUSTERING PATTERNS AND THEIR RELATED CLUSTERING SYSTEMS

B. Underlying Behaviors that Cause Violations (RQ2)

This section complements Section VI-A by drilling down to
the underlying behaviors and plausible reasons for the violations
to each generic MR.

For each violation, we carefully inspected the results of both
source and follow-up executions, by visualizing their clustering
patterns. Such patterns are fairly evident and immediate to
users; these patterns could easily and intuitively comprehend
the anomalous behaviors of the subject clustering systems.
Five types of clustering patterns were identified and shown in
Table III. (Note that Table III only shows the pattern types that
we observed in our experiment, rather than all the different
possible pattern types.) In this table, each pattern type may be
associated with more than one “similar” pattern with nonidenti-
cal data distributions and numbers of clusters. In what follows,
we will illustrate the observed clustering pattern types and the
underlying causes for their occurrence.

1) Violations Related to KM and XM: Fig. 7(a) and (b)
shows the distributions of the RP values for KM and XM,
respectively, with respect to all the 11 generic MRs. For both
systems, their RP values generally varied across a wide range
(between 0% and 70%). For all the violations related to both
systems, we took a close examination of the clustering results,
and revealed two types of clustering patterns. In other words,
these two pattern types occurred for both KM and XM. For the
rest of Section VI-B1, to avoid lengthy discussion, we mainly
discuss the results related to KM, followed by a short discussion
on the results related to XM.

a) BORDER: For those violations related to KM with rela-
tively low RP values (e.g., RP < 10%), some data points near
the boundaries of clusters were reassigned to different clusters
in the follow-up dataset, as shown in Fig. 8. For simple illus-
tration, this figure only shows one data point (enclosed in a
small box) reassigned from one cluster (near its boundary) to
an adjacent cluster. [Note that the data point “�” in the box in
Fig. 8(a) has become the data point “•” in the box in Fig. 8(b)].
However, in our experiment, more than one data points were
observed to be reassigned to different clusters.

This pattern type was observed in the violations to MR1.1,
MR3.1, MR3.2, MR5.1, and MR6. Some statistics on the vi-
olations related to BORDER and their RP values are pro-
vided as follows: (MR1.1) 60% violations (three out of five,
where RP < 1%). (MR3.1) 86% violations (six out of seven,

Fig. 8. Pattern type BORDER for KM. (a) Source dataset. (b) Follow-up
dataset.

where RP < 1%). (MR3.2) 67% violations (four out of six,
where RP < 1%). (MR5.1) 96% violations (55 out of 57, where
RP < 10%). (MR6) 73% (eight out of 11, where RP < 5%).

Apparently, some users may think that KM is sensitive to the
initialization condition (i.e., the selection of starting centroids).
Thus, even a slight change on the starting centroids caused by
data transformation (such as reordering or adding data samples)
could lead to fairly different clustering results. Below, we use
MR1.1 (changing the object order) and MR5.1 (rotating the co-
ordinate system) as examples to explain how data transformation
affects the clustering results generated by KM.

Consider MR1.1 first. Reordering data samples has no ef-
fect on data distribution, but is likely to change the randomly
initialized (starting) cluster centroids. We argue that, with the
gradual relocation of cluster centroids following each iteration
of reclustering, KM may finally generate a different set of
data clusters. Our argument was validated by MR1.2 that no
violation occurred if we changed the object order but keeping
the same set of starting centroids. With respect to MR1.1, we
carefully checked the clustering process and confirmed that the
starting centroids in the violated trials were actually changed
after changing the object order. But, at the same time, we also
observed that many nonviolated trials involved changing their
starting centroids. Therefore, the results have suggested that KM
may not be as sensitive to the starting centroids as some users
initially conceive.

Next, we turn to MR5.1. Many users of KM generally expect
that rotating the coordinate system will not affect the clus-
tering result, because such rotation does not change the data

1308 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

Fig. 9. Pattern type MERGE & SPLIT for KM. (a) Source dataset. (b) Follow-
up dataset.

distribution pattern. However, this was not the case observed
in our experiment; we found some “unexpected” violations to
MR5.1. By inspecting the source code of KM collected from
Weka, we found a function distance for calculating the Euclidean
distance between an arbitrary objectxi and each cluster centroid.
Before executing the core part of the distance computation, KM
normalizes each attribute value with min-max normalization via
the function norm. As such, the centroid mk nearest to xi will
be chosen and xi will be assigned with label k. By checking the
output after each iteration of KM, we found that the normalized
Euclidean distance between xi and mk was different between
the source and the follow-up executions, although the theoret-
ical distance remains unchanged after rotating the coordinates.
Hence, a small change on the distance could result in a different
decision by KM when choosing the nearest centroid. Further-
more, the impact of min-max normalization will be brought
forward into subsequent iterations, thereby explaining the major
reason for violating MR5.1.

b) MERGE & SPLIT: Most KM-related violations with their
RP values larger than 10% were associated with this pattern type
(see Fig. 9 for an example). For the MERGE & SPLIT pattern
type, two source clusters are merged into one follow-up cluster,
and one other source cluster is split into two smaller follow-up
clusters.

This pattern type was associated with all the violations, which
were related to all the 11 generic MRs except MR1.2 and MR5.2.
Some statistics on the violations related to MERGE & SPLIT and
their RP values are provided as follows: (MR1.1) 40% violations
(two out of five, where RP > 40%); (MR2.1) 100% violations
(26 out of 26, where RP > 38%); (MR2.2) 100% violations
(35 out of 35, where RP > 10%); (MR3.1) 14% violations (1
out of 7, where RP > 40%); (MR3.2) 33% violations (2 out
of 6, where RP > 40%); (MR4.1) 100% violations (36 out of
36, where RP > 30%); (MR4.2) 6% violations (one out of 17,
where RP > 40%); (MR5.1) 4% violations (two out of 57, where
RP > 40%); (MR6) 27% violations (three out of 11, where
RP > 30%).

It is commonly known that KM may quickly converge to a
local optimum, resulting in unsatisfactory results. We conjecture
that the MERGE & SPLIT pattern type occurred due to this rea-
son. To test this conjecture, we compared the iteration numbers
between the source and follow-up executions. Our rationale is

Fig. 10. Distributions of SFR and RP values related to MR2.1 (100 trials).
(a) Histogram of SFR values related to MR2.1 (100 trials). (b) Distributions of
RP and SFR values related to MR2.1 (100 trials).

based on the intuition that a low iteration number (i.e., an early
iteration) is normally associated with high convergence speed,
and high convergence speed is often a signal of prematurity,
resulting in a local optimum.

Here, we use MR2.1 as an example for illustration: If a set of
data samples can be well-clustered, then shrinking each cluster
toward its centroid should make the clusters more compact,
thereby producing an even more clearcut clustering result. Let Is
and If denote the iteration numbers in the source and follow-up
clustering processes, respectively. Let SFR = Is

If
. Obviously,

SFR > 1 indicates less iterations and a higher convergence
speed in the follow-up clustering process; while SFR < 1 indi-
cates the opposite situation. Fig. 10(a) illustrates the distribution
of SFR values related to MR2.1 for 100 trials in a histogram.
From this figure, we observed that among the 100 trials, 10%
of them had their SFR values less 1.0, and 19% of them had
their SFR values equal to 1.0. Among the remaining 71% of
the trials whose SFR > 1, 79% have 1 < SFR ≤ 2, 18% have
2 < SFR ≤ 3, and 3% have SFR > 3.

The main upper portion of Fig. 10(b) shows the distribution of
RP values related to MR2.1 over 100 trials. Each dot at position
(i, j) in the figure indicates that the ith trial had its corresponding
RP = j. Note that the size and the darkness of the round dots are
proportional to their SFR values: the larger and darker a dot is,
the higher is its corresponding SFR value (and, hence, the higher
is the convergence speed in the follow-up clustering process).

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1309

The horizontal bar at the bottom of Fig. 10(b) indicates
the value ranges of SFR. According to the definition of RP ,
RP = 0% indicates no violation to the relevant MR, while
RP > 0% indicates the existence of a violation. In all the violated
cases related to MR2.1, data were clustered in patterns similar
to Fig. 9, resulting in fairly high RP values. It can be seen
from Fig. 10(b) that almost all trials with RP = 0% had their
SFR values close to 1 (see the small and light dots on the
horizontal line (i.e., those that are parallel and just above the
x-axis) corresponding to RP = 0%), indicating that the source
and the follow-up processes had similar convergence speeds. On
the other hand, those trials with very high RP values were most
likely associated with high SFR values [see the large and dark
dots on the horizontal line (i.e., those that are parallel and just
above the x-axis in Fig. 10(b)], indicating that their follow-up
processes were faster than the source processes. In particular, the
large and dark dot for the trial ID 60 corresponds to a violated
trial with RP > 60%, and its follow-up process was about four
times faster than its corresponding source process. Fig. 10(b)
also shows a positive correlation between RP and SFR values
with respect to MR2.1. All the above analyses have demonstrated
that, with respect to KM, violations with high RPs were very
likely due to an accelerated convergence to local optima. For
other MRs with MERGE & SPLIT violation pattern in KM, we
observed similar phenomena.

We now turn to XM. In terms of the violations to MR1.1,
MR3.1, MR3.2, MR5.1, and MR6, XM was not better than KM.
For these five MRs, the clustering pattern types observed for KM
also occurred for XM. Thus, we do not repeat the discussion on
the violations related to XM. However, we would like to point out
that, when comparing with KM, XM was relatively more robust
to the type of data transformation related to MR2.1, MR2.2,
MR4.1, and MR4.2. A close examination on those violations
related to these four MRs revealed that a common property
existed, and that the resulting clusters were relatively more
clear-cut (for MR2.1) or separated from each other (for MR4.1).

As an extension to KM, XM proposes a partial remedy for
the local optimum problem [48]. Many people argue that XM is
less sensitive to local optima by searching for the true number
of clusters in a predefined range. This argument was validated
to be valid by METTLE—XM outperformed KM in the situations
where data groups were largely separated. On the other hand, in
those situations where data groups were well clustered but with
a lower degree of separation, XM and KM generated similar
clustering results.

c) Summary: The sensitivity of KM and XM to initial con-
ditions and noisy data was validated by our experiment. Data
transformation, such as reordering data and adding noises, will
result in reassigning data objects near the boundary of one
cluster to another cluster, which is normally expected by users.
Our experiment also revealed an important property of KM:
this system tends to converge to local optima even when the
clusters are sufficiently well separated, which leads to high RPs.
Although XM is theoretically less sensitive to local optima than
KM, our experiment results show that XM only outperforms KM
when the original dataset is highly separated.

Fig. 11. Pattern type BORDER for EM. (a) Source dataset. (b) Follow-up
dataset.

2) Violations Related to EM: Fig. 7(c) shows that, for EM,
violations only occurred in those cases related to MR3.1, MR3.2,
MR5.1, and MR6. Among the 100 trials, the numbers of violated
cases were 5, 11, 9, and 39, respectively, for these four MRs.
Each of these violations had a low RP value, indicating that
very few data samples were reassigned from one cluster to
another. Based on these results, we argue that EM is fairly robust
to different types of data transformation. We also found two
clustering pattern types: BORDER and SPLIT.

a) Border: We observed from Fig. 7(c) that most of the
violations related to EM had fairly low RP values. As shown in
Fig. 11, only several data samples near the boundaries of clusters
were reassigned to other clusters by EM, and this clustering
result was consistent with many users’ expectation.

This pattern type was observed in those violations to MR3.1,
MR3.2, MR5.1, and MR6. Some statistics on the violations
related to this pattern type and their RP values are provided as
follows: (MR3.1) 100% violations (5 out of 5, where RP < 2%);
(MR3.2) 100% violations (11 out of 11, where RP < 1%);
(MR5.1) 78% violations (7 out of 9, where RP < 3%); (MR6)
100% violations (39 out of 39, where RP < 3%).

The above statistics indicate that, although the clustering
results generated by EM was affected by the types of data
transformation corresponding to MR3.1, MR3.2, MR5.1, and
MR6, the impact on the clustering results was fairly small (as
shown by the very small RP values). Also, Fig. 7 shows that EM
has the second smallest number of violated MRs (= 4) among all
the six subject clustering systems. In this regard, EM has the best
performance among the subject clustering systems according to
the user’s expectations (which are expressed in terms of the 11
generic MRs).

One issue is worth mentioning here. Similar to KM and XM,
violations to MR5.1 (rotating the coordinate system) were also
observed for EM. As we have pointed out in Section VI-B1,
violations to MR5.1 (and also other generic MRs) have revealed
a gap between the actual performance and the user’s expectation
about a method (in this case, EM). In the Weka implementation,
EM initializes estimators by running KM ten times and then
choosing the “best” solution with the smallest squared error
for all the clusters. This chosen solution, then, serves as the
basis for executing the E-step and the M-Step in EM (see

1310 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

Fig. 12. Pattern type SPLIT for EM. (a) Source dataset. (b) Follow-up dataset.

Section V-B1). Due to this reason, the clustering result generated
by EM partially depends on KM, therefore it is not surprising to
see that both EM and KM showed violations to MR5.1.

b) SPLIT: Fig. 12 shows an example of this pattern type: in
the source dataset, each of the two clusters (the cluster with the
“•” data points and the cluster with the “�” data points) clusters
was split into two smaller clusters in the follow-up dataset; at
the same time, merging of clusters in the source dataset did not
occur.

This pattern type was only discovered in two out of the
nine violations (=22%) to MR5.1, with their RP values over
10%. As explained above, EM partially depends on the KM
solution. Thus, violations to MR5.1 by EM could occur after
rotating the coordinates. After a close examination, we found
that the theoretically “best” KM solution was not always what
users normally expected. With respect to SPLIT, the chosen
KM solution at the initialization stage was found to involve
unexpected data partitions, which was similar to the pattern
type shown in Fig. 12(b). This explains why EM generated poor
clustering results after iterations based on the ill-initialization
by KM.

c) Summary: According to the 11 generic MRs, EM is the
most robust one among the six subject clustering systems. Re-
assigning data samples from one cluster to another cluster still
occurred, which contradicted the user’s expectation. However,
since the RP values were very small (<3%), the impact of data
transformation on the clustering result was much less than the
other five subject clustering systems. Although both EM and
KM execute in an iterative manner, our experiment shows that
EM is less sensitive to local optima than KM. Furthermore, in
Weka implementation, the theoretically “best” solution chosen
by EM during initialization may not be in line with the user’s
expectation, resulting in the poor clustering result generated by
EM.

3) Violations Related to AN: It can be seen from Fig. 7(d)
that AN only caused violations to three generic MRs: MR3.1,
MR3.2, and MR5.1. The RP values associated with MR3.1 and
MR3.2 were very low (<5% for both MRs). On the other hand,
among all the RP values associated with MR5.1, some were
under 10% but the others were fairly high (>30%). We found
two clustering pattern types from those violations related to AN.

a) Border: For those violations with low RP values (<10%),
the same clustering pattern type as shown in Fig. 13 was

Fig. 13. Pattern type BORDER for AN. (a) Source dataset. (b) Follow-up
dataset.

Fig. 14. Pattern type SPLIT for AN. (a) Source dataset. (b) Follow-up dataset.

observed. For these violations, only several data samples near
the cluster boundaries were affected. BORDER was observed in
all violations to MR3.1 and MR3.2, and in 43% (39 out of 91)
violations to MR5.1.

b) SPLIT: For those violations with relatively high RP values
(>30%), we observed this pattern type (similar to the one shown
in Fig. 14), where each of the two clusters (the cluster with the
“�” data points and the cluster with the “�” data points) in the
source dataset was split into a small cluster (with the “�” data
points) and a much larger cluster (with the “�” data points) in
the follow-up dataset. After checking the Weka implementation,
we found that min-max normalization is also adopted in the
preprocessing phase of AN, causing the violations to MR5.1.

c) Summary: As a hierarchy-based clustering system, AN is
more robust to data transformation when compared with FF—
only boundary points are occasionally affected. Our experiment
also revealed that, similar to other systems, there exists a gap
between the performance of AN and the user’s expectation on
this system.

4) Violations Related to FF: Fig. 7(e) shows that FF caused
relatively more violations to the generic MRs when compared
with other clustering systems, with the RP values ranged from
0% to 50%. We observed two clustering pattern types for FF.

a) BORDER: For the violations where RP <30%, data sam-
ples near the cluster boundaries were reassigned to different
clusters, as shown in Fig. 15. This pattern type appeared for
MR1.1, MR2.2, MR3.1, MR3.2, MR4.1, MR5.1, and MR6.
When compared with other methods, the reclustering of data

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1311

Fig. 15. Pattern type BORDER for FF. (a) Source dataset. (b) Follow-up
dataset.

samples with this pattern type was not very precise. Consider,
for example, in Fig. 15, a few data samples near the boundary of
the cluster with the “�” data points in the source dataset were
incorrectly reassigned to the cluster with the “�” data points in
the follow-up dataset.

It can be seen from Table I that FF caused many violations to
MR1.1, with RP = 90%. This result supports our analysis on FF,
that the clustering process and result are largely affected by the
starting centroids chosen by FF [51]. If the starting centroids se-
lected by FF are changed by reordering the object order (MR1.1),
the farthest-first traversal sequence may be affected. In addition,
the fact that no violation to MR1.2 (this MR involves keeping
the same set of starting centroids unchanged) was detected for
FF further supports our analysis.

Similar to MR1.1, adding sample objects (MR3.1 and MR3.2)
or inserting outliers (MR6) may change the farthest-first traver-
sal sequence, thereby affecting the clustering results. For MR4.1,
follow-up clusters should have better separation after adding
informative attributes. However, unexpected results were still
observed for FF.

For MR2.2, reclustering also occurred for the “marginal”
points. Moreover, we found that the source execution generated
inaccurate results where the points on the margin of one cluster
were assigned to another cluster, while the follow-up execution
generated four well-clustered results. This observation revealed
a reclustering problem of FF with respect to MR2.2. As for
MR5.1, we found that the violations were mainly due to the
data normalization task during the preprocessing stage, and the
effects of normalization varied across different violations.

For BORDER, only data samples near the boundaries were
affected. For MERGE & SPLIT, data normalization had a greater
impact on the clustering result, which will be discussed in detail
below.

b) MERGE & SPLIT: This pattern type was observed in 15%
violations to MR5.1 (rotating the coordinate system), with the
RP values varied from 30% to 50%. We noted from the Weka
implementation that min-max normalization will be applied
before computing the Euclidean distance of a pair of data objects.
FF will randomly select a starting centroid m0 as the first cluster
centroid, and will then select a farthest point m1 from m0 as the
second centroid (the remaining centroids will be selected in the

Fig. 16. Pattern type MERGE & SPLIT for FF. The points enclosed in red
boxes are the cluster centroids. m0, m1, and m2 denote the first, second, and
third selected centroids, respectively. (a) Source dataset. (b) Follow-up dataset.

same way). Eventually, every data point will be assigned to its
nearest centroid. By rotating the coordinates, data assignment
could be different due to the slight change on the normalized
distance.

Fig. 16 illustrates how the traversal sequence is affected in re-
lation to MR5.1. We obtained the “same” (i.e., the instances with
the same index) starting centroidm0 in the source and follow-up
executions by fixing the random seed during the experiment.
After FF had finished the first traversal, different points were
chosen as the second centroids m1 in the source and follow-up
executions. Similarly, after completing the second traversal, the
third centroids m2 in the source and follow-up executions were
different. In the end, the resulting clusters turned out to be totally
different between the source and follow-up datasets.

c) Summary: The traversal sequence of FF largely depends on
the starting centroid. After a data object has been assigned to a
cluster, it can no longer be moved around. Therefore, FF is much
more sensitive to data transformation such as reordering the data
sequence and inserting outliers (or noises). We found that FF is
effective in recognizing an outlier and assigning it to a single
cluster, without being much affected by data transformation.
However, data transformation may cause data objects other than
outliers to be reassigned to different clusters. Furthermore, FF
occasionally does not generate clearcut and accurate clusters as
expected, even when the data samples are well separated.

5) Violations Related to DS: Fig. 7(f) shows that violations
to MR1.1, MR2.2, MR3.1, MR3.2, MR5.1, and MR6 occurred,
with a wide range of RP values (between 0% and 70%). With
further analysis, we noted that some points were “noises,” rep-
resenting a major difference on the clustering results between
DS and other methods.

a) BORDER: This pattern type was observed in the violations
to MR1.1, with RP < 3%. In this pattern type, violations oc-
curred near the cluster boundaries (see the points in the two boxes
in Fig. 17), especially in those cases where clusters were close to
each other. It has been reported by others (e.g., in [46]) that DS
is almost independent of the order of the input data objects. In
our experiment, however, we observed that, among the 100 trials
with MR1.1, eight violations related to BORDER occurred. In
each of these violations, a very small portion of data objects
was found to be assigned to different clusters from the source

1312 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

Fig. 17. Pattern type BORDER for DS. (a) Source dataset noise. (b) Follow-up
dataset.

Fig. 18. Pattern type NOISE for DS. Blue dots in (a) denote the “noisy” data
detected by DS, but there was no “noisy” data detected in (b). (a) Source dataset.
(b) Follow-up dataset.

dataset to the follow-up dataset. These violations occurred due to
a property of DS: if a data object was density-reachable from two
neighbor clusters, the cluster to which this data object would be
assigned was decided by the chronological sequence of detecting
the clusters near that object. Nevertheless, DS was fairly robust
to the type of data transformation corresponding to MR1.1 if
data samples to be clustered were well separated.

b) NOISE: For DS, we observed another violation pattern
type related to noisy data. This pattern type occurred in all the
violations to MR2.2, MR3.1, MR4.2, and MR6.1; in 86% (18 out
of 21) violations to MR3.2; and in 90% (55 out of 61) violations
to MR5.1.

Consider MR2.2 (data mirroring) as an example. We noted
from Fig. 18 that some points marked as “noisy” data in the
source clusters turned out to be density-reachable points in the
follow-up clusters. We also noted that the number of noisy data
sharply dropped to zero or a tiny value after performing data
mirroring as prescribed by MR2.2. We also observed that DS
only generated good clustering results when the parameters eps
and minPts were properly set. More specifically, when these two
parameters were properly set so that noisy data did not occur
in the source dataset, then no violation to MR2.2 would have
occurred in the follow-up dataset. Similarly, for those violations
to MR3.1, MR3.2, MR4.2, and MR6.1, the number of “noises”
also decreased after performing the types of data transformation
corresponding to these MRs.

Fig. 19. Pattern type NUM of DS. (a) Source dataset. (b) Follow-up dataset.

By analyzing the implementation of DS, the above vio-
lations can be explained as follows. Suppose q denotes a
density-connected point from a core point p in cluster c; o
denotes a point in the eps-neighborhood of q, which is marked
as “noise.” After inserting new data points to c, there may be
as many points as minPts within q’s eps-neighborhood. Thus, q
becomes a new core point, and o is density-connected to p so
that o becomes a new member of cluster c. Hence, the number of
noises is expected to decrease or remain unchanged after insert-
ing new data points to a cluster. Our analysis result can be seen
as a convenient quantification of the execution behavior of DS.

c) NUM: This pattern type was observed in three violations
to MR3.2, and in six violations to MR5.1, where DS recognized
an incorrect number of clusters. Take MR5.1 as an example. We
found that DS unexpectedly divided the data samples into four
or more clusters, and at the same time the number of samples
labeled as “noises” [see the data points “×” in Fig. 19(a) and (b)]
increased from the source dataset to the follow-up dataset. Since
DS in the Weka implementation includes an embedded data
normalization routine, the generated clustering result could be
affected by even a slight change on the normalized distance
among data objects.

d) Summary: Although the clustering result of DS is generally
considered as not being affected by the input order of data
samples, our experiment revealed that this was not the case due to
the randomness of the system itself. When compared with other
clustering systems, DS is effective in recognizing outliers. We
also found that “noisy” data points are sensitive to data transfor-
mation. The configuration of parameters, which may have some
impacts on the clustering result, is also important. As a whole,
DS is robust to different types of data transformation—this is
what users expect on a clustering system.

C. Summary and Further Analysis

We learnt from the analyses and discussions in Sections VI-
B1–VI-B5 that, for all subject clustering systems, data samples
located near the cluster boundaries were sensitive to even a small
change in data input. This can be explained by the randomness
of the system during its initialization. Moreover, those systems
(KM, XM, and FF), which largely depend on the initialization
conditions, showed a larger impact of data transformation on
the clustering result, while EM, AN, and DS showed higher

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1313

TABLE IV
SUMMARY OF COMPLIANCE AND VIOLATION PATTERNS (WITH PLAUSIBLE REASONS) WITH RESPECT TO EACH GENERIC MR

† “�” means that no violation has been revealed by the relevant MR, and “N/A” means that the relevant MR is inapplicable to the clustering system.

robustness to such change. Undoubtedly, users normally expect
that the chosen clustering system will have high robustness to
relocating data samples from near the boundary of one cluster
to another cluster as a result of data transformation. Thus, in
this aspect, EM, AN, and DS are more preferable than the other
systems.

Table IV summarizes, for each subject clustering system, its
compliance with or violations to the relevant generic MRs. Fur-
thermore, for each violation case, we give the plausible reason(s)
for its occurrence. Consider, for example, the cell related to KM
and MR1.1. This cell indicates that KM exhibited two types
of violation patterns (BORDER and MERGE & SPLIT) with
respect to MR1.1. The cause of BORDER was due to the random
initialization of the cluster centroid. For MERGE & SPLIT,
it occurred because KM was trapped into a local optimum.
Table IV not only summarizes our assessment results of the
subject clustering systems, but also serves as a useful and
handy checklist for users to make informed decisions on which
clustering systems to choose with respect to their expectations.
Also, users are allowed to assign different weights to different
violation patterns. For example, if users consider that violations
with the BORDER pattern are less important than violations
with the MERGE & SPLIT pattern, then MERGE & SPLIT

can be assigned a higher weight than BORDER. In this way,
the compliance with each generic MR (in Table IV), together
with its corresponding weighted score, can be used as a test
adequacy criterion to be further leveraged by users for selecting
an appropriate clustering system in accordance with the users’
expectations. In addition, we also analyzed and summarized the
relative strengths and weaknesses of the six subject systems
with respect to the 11 generic MRs in Table V, with a view to
facilitating users to gain a deep understanding of these systems.

Surprisingly, our experimental results (see Tables I and II)
show that all the subject systems involved many violations to
MR5.1 (rotating the coordinate system). A close examination
of the corresponding source code found that min-max normal-
ization is the major cause of the observed violations. More
specifically, the normalized distance among data points could be
different after nonlinear data transformation such as rotating the
coordinates (even if the data distribution remains unchanged).
Note that data normalization is a very important step in most
machine learning systems—some of these systems (e.g., those
available in Weka) have embedded a data normalization routine
in them. Without using METTLE, users are unlikely to get an
opportunity to understand the impact of the embedded normal-
ization routine in machine learning systems.

1314 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

TABLE V
SUMMARY OF RELATIVE STRENGTHS AND WEAKNESSES OF SIX SUBJECT CLUSTERING SYSTEMS

The above discussion shows that, apart from assessing clus-
tering systems and facilitating their selection, METTLE also
supports program comprehension and end-user software en-
gineering [42], [43], through which users can gain a deeper
understanding of the program under test without the need for
using relevant complex theories.

VII. METTLE AS A FRAMEWORK FOR SELECTING

CLUSTERING SYSTEMS

Apart from assessing clustering systems, another potential
application of METTLE is to help users select the most appropriate
clustering systems. With more and more open-source software
libraries that provide ready-to-use machine learning systems,
users are facing a big challenge in choosing a proper one for
their application scenarios. Traditionally, users apply a data-
driven approach to tackle this challenge, where a set of candidate
systems are run against various datasets. After execution, cross-
validation and statistical analyses are used to help users select
the proper system to use [10], [53], [54]. However, we argue
that, besides the average performance of a clustering system
across various datasets, users’ expectations or requirements on
the system with respect to the application scenario should also
be taken into account.

Following this argument, METTLE does provide an intuitively
appealing and systematic framework to aid selecting proper
clustering systems, by enabling users to assess the appro-
priateness of these systems based on their own specific re-
quirements and expectations. Below, we give more detailed
explanation.

First, the framework of METTLE involves a concept of “ade-
quacy criterion.” For example, a list of generic MRs derived from
users’ expectations is used in METTLE as an adequacy criterion.
Subject clustering systems are, then, assessed by validating the

compliance with each generic MR. The results of assessment
are used for selecting an appropriate system in accordance with
users’ own specific needs.

Test adequacy plays a crucial role in traditional software
testing and validation. A lot of coverage criteria from different
perspectives have already been proposed to measure test ade-
quacy, such as statement coverage, branch coverage, and path
coverage [55]. The necessity for evaluating test adequacy has
been gradually accepted in machine learning testing [56]. Many
researchers from the software engineering community have been
working on proposing suitable criteria for evaluating the test
adequacy for machine learning systems with a view to gaining
confidence on the testing results [57], [58]. However, until now,
there have been very few generally acceptable and systematic
criteria for users to assess and validate machine learning (include
clustering) systems in their own contexts.

Traditional clustering assessment methods can be regarded
as a type of data-oriented adequacy measurement, by exploring
the “adequacy” in the input space. However, with such data-
oriented adequacy criterion, users cannot easily link the input
to the appropriateness of a system with respect to their own
expectations and requirements. In contrast, our METTLE provides
a property-oriented adequacy criterion based on MRs, which
can easily address the above problem in traditional methods. In
fact, this property-oriented adequacy criterion makes the first
step in the potential research direction pointed out by Chen
et al. [15], where they argue that MT can allow the development
of an MR-based metric to be used as a black-box test adequacy
criterion. Assessing the compliance with MRs provides useful
information about the quality and appropriateness of the relevant
properties and functionalities of a clustering system in a partic-
ular application domain. Thus, such an MR-based criterion in
METTLE can provide more confidence to users in making decision
about which clustering system to select.

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1315

Table IV summarizes the performance in terms of the com-
pliance with each generic MR of the six subject clustering
systems with respect to the 11 generic MRs. As discussed in
Section VI-C, this table can be used to help users make informed
decision about which clustering system to select for use in a
specific scenario. In addition to adopting some or all of the 11
generic MRs, more specific MRs can be defined by users to
complement the generic ones (if users have expectations that do
not correspond to any of these generic MRs). Note that users are
not required to have substantial and sophisticated knowledge
on the candidate clustering systems. This is because defining
specific MRs is primarily based on users’ domain knowledge of
their applications. The adopted generic MRs, together with the
additional, specific MRs defined by users, form a comprehensive
checklist where MR compliance and the associated weighted
scores can be used as a selection criterion.

In reality, a user may not consider all selected MRs (and
their corresponding types of data transformation) to be equally
important. In other words, some selected MRs are considered
more preferable while the others are less preferable. Consider,
for example, an e-commerce firm with a fast-growing number of
online customers. Each of these customers has a registered ac-
count with the e-commerce firm. Consider further the following
scenarios.

Scenario 1: The marketing department of the e-commerce
firm often clusters its customers into different groups to facilitate
new product recommendation to the targeted groups. In this case,
the marketing director may be highly concerned with the impact
of adding data samples (correspond to newly registered customer
accounts) near a cluster’s centroid or boundary on the clustering
result generated by a clustering system.

Scenario 2: The business fraud department of the e-
commerce firm may concern more on how a clustering system
handles outliers because they may correspond to malicious
hackers.

In view of the different levels of importance on the types of
data transformation (and their corresponding MRs), the overall
framework to support users to select clustering systems (in the
context of METTLE) is given as follows.

1) Select generic MRs or define new MRs in accordance with
the user’s intuitive expectations and specific requirements
related to their application domains.

2) Classify all the selected MRs into two categories: “must
have” and “nice to have.”

3) Use METTLE to validate all the candidate clustering sys-
tems against all the selected MRs by executing each
method twice (first with the source dataset, then with the
follow-up dataset).

4) Construct a summary table, which summarizes the viola-
tion patterns with respect to all the selected MRs.

5) For each “nice-to-have” selected MR, assign a weight
w1 (where 0.0 < w1 < 1.0), so that a higher value
of w1 means that the corresponding MR is relatively
more preferable or important. Then, assign a weight w2

(where 0.0 < w2 < 1.0) according to the type of violation
patterns related to this MR, so that a higher value of w2

indicates more severity for the corresponding violation
pattern.

6) Ignore those clustering systems which show violations to
any “must-have” MR.

7) For every remaining clustering systemmi (where 1 ≤ i ≤
k; k = total number of remaining systems), calculate its
score Smi

using the following formula:

Smi
= (w11 × w12 × x1) + (w12 × w22 × x2)

+ · · ·+ (w1n × w2n × xn)

where 1 ≤ j ≤ n; n = total number of selected MRs; wj

= the weight assigned to MRj ; xj = 1 if one or more
violations to MRj occur, and xj = 0 if no violation to
MRj occurs.

8) The most appropriate system to select is the mi with the
smallest Smi

.
By means of the above selection framework, users are able

to devise their own quality assessment schemes for evaluating a
set of candidate clustering systems in accordance with their own
preferences. An overview of METTLE is provided in Fig. 20. To
facilitate the application of METTLE, a tool has been developed
to support the following tasks: executing datasets, checking
violations to MRs, assigning weights to individual MRs, and
computing the final weighted scores for individual clustering
systems. This tool is made publicly accessible to those users
who are interested in METTLE.2

As a reminder, the individual lists of selected MRs developed
by different users in the same application domain can be shared,
with a view to developing a more comprehensive and effective
aggregated list of selection MRs. Furthermore, a repository
(e.g., in [59]) can be created to store all the selected MRs
and their corresponding validation results for some clustering
systems. Via this repository, even inexperienced users without
much knowledge about the execution behaviors of individual
clustering systems (with respect to data transformation) can
still effectively evaluate and, then, select their most preferred
systems.

VIII. USER EVALUATION

In addition to our experiment described in Sections V and VI,
we further evaluated the applicability of METTLE from the users’
perspectives.

A. Evaluation Settings

In essence, our user evaluation aimed to investigate the ap-
plicability of METTLE for (end) users in their own application
contexts. More specifically, we investigated whether or not
users were able to use METTLE to validate the appropriateness
of clustering systems with respect to the users’ own require-
ments on data transformation. In this article, we also obtained
users’ comments and feedback about the viability and usefulness
of METTLE in assessing and selecting appropriate clustering
systems.

2[Online]. Available: https://github.com/METTLE-dev/mettle

https://github.com/METTLE-dev/mettle

1316 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

Fig. 20. Overview of METTLE.

The detailed evaluation settings and procedures are as follows.
1) We recruited a group of participants who are end users of

clustering systems across a range of application domains.
We collected the personal particulars of these participants,
including, for example, their affiliated institutions, appli-
cation domains, and experiences in using, validating, or
selecting clustering systems.

2) We explained to the participants about the objectives of
the evaluation, and offered a tutorial on MT and METTLE

to help them familiar with the main concepts.
3) The participants were introduced (and illustrated with

examples) with the 11 generic MRs discussed in
Section IV-C. With reference to their application domains,
the participants were asked to determine which of these
11 generic MRs were applicable for selecting appropri-
ate clustering systems. Also, they were asked to assign
a weight to each applicable MR, so that higher values
indicating more preferable, relevant, or important MRs.

4) Besides selecting applicable, generic MRs, the partici-
pants were asked to define additional, more specific MRs
for those “expected” data transformations, which were
not covered by the generic MRs. The participants also
assigned weights to these newly defined, more specific
MRs in a similar way as for the applicable, generic MRs
in step 3).

5) Using datasets relevant to the application domains in
which the participants work, clustering results were gen-
erated for each clustering system in accordance with the
selected, generic MRs [in step 3)] and the newly defined,
user-specific MRs [in step 4)]. These results showed which
MRs were violated by each clustering system.

6) Using the user-assigned weights for generic and user-
specific MRs, for each clustering system, the final
weighted score by each participant was computed.
Thereafter, based on these final weighted scores by all
participants, ranked lists of clustering systems for each
application domain were generated (one ranked list per
each relevant participant in each application domain).

7) We discussed the ranked lists generated in step 6) above
with the participants, and asked the participants whether
or not the results were consistent with their preferences on
the clustering systems.

Note that each participant performed the MR selection [in
step 3)] and MR definition [in step 4)] tasks on an individual
basis, without discussion with other participants.

B. Evaluation Results

A total of 15 participants were recruited to participate in the
evaluation study. All of them are end users of clustering systems
in at least one of the following application domains: big data,
computational mechanics, built environment, signal processing,
remote sensing, Light Detection and Ranging (LIDAR) and
surveying, and bioscience.

1) Participants’ Experiences in Clustering Applications: All
the 15 participants are experienced in using clustering applica-
tions. Among them, 11 participants have experiences in vali-
dating clustering systems using internal validation techniques,
external validation techniques, or a cross-validation approach
(see Section I). Furthermore, seven participants have experi-
ences in comparing and selecting appropriate clustering systems
in their own application domains.

2) MR Definition and Weight Assignment: The 15 partici-
pants selected those generic MRs that were applicable to their
application domains, and also defined additional, user-specific
MRs, which covered their own requirements. More specifically,
each participant has selected 2–10 generic MRs. Furthermore,
five participants have defined their own specific requirements
on data transformation, which were not covered by any generic
MR. Each of these five participants has defined a specific re-
quirement; and three such requirements independently defined
by three participants were the same. Hence, there were three
distinct specific requirements, and each such requirement was
subsequently converted into its corresponding user-specific MR.
These three user-specific MRs can be classified into three types:
1) coordinate transformation (Geodetic coordinates to Cartesian
coordinates), 2) feature reduction with principal component
analysis (PCA), and 3) z-score normalization.

More details about these three user-specific MRs will be given
in Section VIII-C2 later. Each participant also assigned a weight
to every generic MR selected by and every user-specific MR
defined by him/her.

3) Rankings of Clustering Systems: For every subject clus-
tering system mentioned in Section V-B, the selected generic

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1317

TABLE VI
TOPk FREQUENCY FOR EACH APPLICATION DOMAIN

MRs and defined user-specific MRs were used to validate this
system in each of the seven application domains mentioned
earlier in this section. In this process, for every clustering system
in each application domain, the final weighted scores by the
relevant participants were computed, from which ranked lists of
clustering systems were generated.

In order to determine the overall performance of a clus-
tering system x in each application domain D, we measured
the frequency in which x was once evaluated by the relevant
participants as one of the top k clustering systems in terms of
its appropriateness with respect to D. For each D, let N be
the total number of relevant participants, and ri be the ranking
result of the ith participant. Given a clustering system x, we
use topk(x, ri) to denote whether or not x was one of the top k
clustering systems according to ri. If yes, topk(x, r) = 1, and
0 otherwise. Then, the value of the metric topk frequency was
computed as follows:

topk frequency =

∑N
i=1 topk(x, ri)

N
.

In this way, the above metric, thus, indicates the overall per-
formance of x (with respect to D) as computed by METTLE, in
accordance with the orders of preferences (expressed in terms of
the weights) on the relevant MRs from the users’ perspectives.

Table VI shows the values of topk frequency with k = 1,
2, or 3. In this table, those clustering systems with their
topk frequency = 0 are not shown. There are three important
observations from Table VI: 1) individual clustering systems
have different performances across the seven application do-
mains; 2) overall, EM, AN, XM, and DS were evaluated by the

participants as the first, second, third, and fourth most preferred
clustering systems, respectively, across the seven application
domains; and 3) neither FF nor KM was evaluated as one of the
top three most preferred clustering systems in any application
domain.

4) End Users’ Feedback: Participants were asked about
whether the recommended lists of ranked clustering systems
generated by METTLE were consistent with their own ranked lists
(called the user lists). If the answer was “no,” then participants
were asked to compare both lists and to judge which list was
more preferable.

With regard to the top-ranked clustering systems, most par-
ticipants agreed that the recommended lists were generally
consistent with the user lists. For instance, in remote sensing,
EM and DS were most preferred by the participants, and both
systems also appeared as two of the top-3 recommended so-
lutions by METTLE. Interestingly, AN was among one of the
top-3 solutions in the recommended lists, but this system was
originally not ranked favorably by the participants. However,
after the participants had checked the level of MR compliance
of AN, they all said that they would consider selecting AN in
their future clustering tasks. They also agreed that the informa-
tion about MR compliance helps them better understand these
clustering systems. This viewpoint has also been reported in a
recent study [60] that MRs could enhance system understanding.
Similar observations were also found in the other six application
domains.

It would also be worth mentioning that, in built environment,
KM did not appear in the recommended list by METTLE, but
this system was commonly selected for use by the participants
mainly due to its handy simulation feature. Although the par-
ticipants often selected KM, they admitted that KM performed
relatively poorer than other clustering systems in some applica-
tion scenarios.

All in all, the participants were very pleased and enthusiastic
about the applicability and effectiveness of METTLE.

C. Further Analysis and Discussion

Here, we provide further analysis and discussion on our user
evaluation study.

1) Preferences on and Characteristics of MRs: In this article,
the participants were asked to select generic MRs that were
deemed applicable and to define additional, user-specific MRs
for those requirements that were not covered by any generic
MR. The participants, then, assigned different weights to these
generic and user-specific MRs in accordance to the relevant
importance of these MRs. In general, we observed that the
weights assigned to user-specific MRs were larger than those
assigned to generic MRs. We further noted the following two
observations.

a) Participants From Different Application Domains Had Dif-
ferent Preferences on the Same MRs: Consider, for example, the
big-data domain. Participants in this domain are often confronted
with massive data and continuous information flows. A tough
problem, thus encountered by these participants is the curse
of dimensionality (which refers to unexpected or anomalous

1318 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

phenomena that arise when analyzing and organizing data in
high-dimensional spaces that do not exist in low-dimensional
settings). One solution to alleviate this problem is to reduce
the sample space via feature engineering. Participants from
the big-data domain would, therefore, place more emphasis on
those MRs related to manipulating data features (e.g., MR4.2—
removing redundant features).

Now we turn to the LIDAR and surveying domain. Partici-
pants in this domain often apply clustering systems to classify
the land-cover types of laser points. Since a laser point has
three fixed features (latitude, longitude, and elevation), there-
fore those MRs related to manipulating data features (e.g.,
MR4.1—adding informative attributes and MR4.2—removing
redundant attributes) are rarely applicable. Also, some par-
ticipants in this domain expressed their expectation on data
transformation: original data points in Geodetic coordinates
should always be transformed into Cartesian coordinates during
the clustering analysis. Thus, in this article, these participants
selected those generic MRs related to coordinate transformation
(e.g., MR5.1—rotating the coordinate system), and assigned
higher weights to these MRs. Additionally, some of these partici-
pants defined a more domain-specific coordinate transformation
property, corresponding to the user-specific MR1 (transforming
geodetic coordinates to Cartesian coordinates) to be discussed
in Section VIII-C2 below.

For the participants in the bioscience domain, they often
apply clustering systems to categorize deoxyribonucleic acid
sequences and cells, where selecting good features for their
clustering models is a common and necessary task. Further-
more, the order of the sample data may shuffle during data
preprocessing or transferring. Because of these reasons, in this
article, participants from bioscience particularly selected those
generic MRs related to feature (attribute) manipulation (e.g.,
MR4.2—removing redundant attributes) and data order manip-
ulation (e.g., MR1.2—changing the object order but keeping the
same set of starting centroids).

b) Common MRs Across Different Application Domains: For
instance, when clustering environmental data (e.g., air tem-
perature, humidity, and wind speed), participants from built
environment often first perform data normalization (a participant
in the study argued that: different thermal sensations must be
normalized into the same range). Similarly, several participants
from big data and computational mechanics mentioned that:
normalization is necessary to obtain nondimensionalized data.
Thus, MRs related to data normalization are more likely to be
applicable in built environment, big data, and computational
mechanics. These defined, user-specific MRs could be broadly
classified into the generic MR-type “manipulating the coordinate
system” as discussed in Section IV-C, but they were more
domain-specific. For example, in our evaluation study, a more
domain-specific MR (see user-specific MR3 “Z-score normal-
ization” to be discussed in Section VIII-C2) was defined by some
participants for the three application domains mentioned above.

2) Applicability of METTLE: We investigated and analyzed
the applicability of METTLE for users to validate and assess
clustering systems in their own contexts in the following two
aspects: 1) MR definition (i.e., whether the participants were

able to define their own requirements on data transformation,
eventually leading to the definition of user-specific MRs), and
2) MR implementation (i.e., whether participants were able to
implement programs or use some existing tools to perform the
necessary data transformations in accordance with the selected
or defined MRs).

a) MR Definition: In the article, all the participants were asked
to define their own data transformation requirements, which
were not covered by the 11 generic MRs by using the following
two-step approach.

1) Given a dataset for clustering, identify a data transforma-
tion that is not covered by any generic MR.

2) For every data transformation identified in 1), specify the
expected relation between the clustering results generated
by the original dataset and the follow-up dataset.

Obviously, the outcome of 2) is a user-specific MR. This
article showed that the above approach worked well even for
participants who were inexperienced on MT.

As mentioned in Section VIII-B, five participants have defined
their own specific requirements, resulting in three distinct user-
specific MRs. These three MRs are discussed below.

1) For spaceborne photon-counting LIDAR, a laser point is
represented in three dimensions: latitude, longitude, and
elevation in the Geodetic coordinate system. A participant
from LIDAR and surveying defined the following user-
specific MR.

User-Specific MR1—Transforming Geodetic Coordinates to
Cartesian Coordinates: When clustering the land-cover types
of laser points, if the Geodetic coordinates of these points are
transformed into their corresponding Cartesian coordinates,
the clustering result is expected to remain unchanged.

Although MR1 is domain-specific and was defined by a
participant, it can be broadly classified into the generic
MR-type “manipulating the coordinate system” (but MR1
is different from generic MR5.1 and MR5.2) as discussed
in Section IV-C.

2) In bioscience (more specifically, from neuroscience),
users often apply clustering systems on the white-matter
connection strength of a brain to learn different human’s
cognitive functions. Thus, a participant from this domain
defined the following user-specific MR.

User-Specific MR2—Feature Reduction With PCA: After fea-
ture reduction, the data dimensionality will be reduced and
the cluster boundary will become clearer.

Similar to MR1 above, although MR2 is domain-specific,
it falls into the generic MR-type “manipulating attributes”
(but MR2 is different from generic MR4.1 and MR4.2) as
discussed in Section IV-C.

3) In the big-data, built science, and computational mechan-
ics domains, data normalization is generally a common
practice, which allows users to generate nondimensional-
ized data. Accordingly, three participants (one from big
data, one from built environment, and one from compu-
tational mechanics) independently defined the following
user-specific MR.

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1319

Fig. 21. Coordinate transformation tool.

User-Specific MR3—Z-Score Normalization: After perform-
ing normalization to generate the follow-up dataset from the
original dataset, the clustering result based on the original
dataset is expected to be the same as the clustering result
based on the follow-up dataset.

MR3 falls into the generic MR-type “manipulating the
coordinate system” (but MR3 is different from generic
MR5.1 and MR5.2) as discussed in Section IV-C.

b) MR Implementation: In our user study, participants have
reported that various tools are available for transforming the
original dataset into the corresponding follow-up dataset in
accordance with a particular MR. For example, a participant
from the LIDAR and surveying domain mentioned that: we
have some ready-to-use code snippets, and even tools to support
complex transformations. Fig. 21 shows a tool that supports
coordinate transformation in the LIDAR and surveying domain.
Once the two datasets are ready, participants can execute a
clustering system twice: first with the original dataset, next with
the follow-up dataset. These two executions will, then, generate
two clustering results, from which participants can compare the
results to check whether the relevant MR is violated.

The above discussion has demonstrated the applicability of
METTLE from the user’s perspective. Before the user evaluation
study, none of the 15 participants had knowledge about MT
and METTLE. Although all the participants had just received a
short tutorial on MT and METTLE, this article showed that these
participants were able to: 1) understand and select those generic
MRs that covered their requirements on data transformation and
assigned weights to these generic MRs; 2) define user-specific
MRs for those requirements that were not covered by the generic
MRs, and assign weights to these user-specific MRs; 3) use
existing available tools to transform the original dataset into
its corresponding follow-up dataset so that both datasets could
be executed by the clustering systems to generate the clustering
results; 4) compare the two clustering results generated from
the source dataset and the follow-up dataset to see whether the
relevant MR has been violated, and compute the final weighted
scores for the candidate clustering systems with a view to
selecting the most appropriate one by using METTLE.

3) Usefulness of METTLE: In the user evaluation study, the
participants were asked about their experiences in validating and

selecting clustering systems. On one hand, most participants ac-
knowledged the importance and necessity of validating various
clustering systems; on the other hand, they reported that the
validation task is not trivial and, in fact, is fairly challenging.
Below are some of these participants’ comments.

Clustering as unsupervised learning has many ambiguities; it is not
easy to evaluate whether the clustering results are good or bad.
I could not acquire the expected outputs.
It needs a lot of experiments to evaluate the performances [of the
candidate clustering systems].

At the end of the evaluation study, we asked the participants
about their overall feelings of the usefulness of METTLE. All
the participants unanimously showed positive feedbacks on
METTLE. Some of these feedbacks are shown below.

I could gain a better understanding of the clustering systems from
METTLE.
It becomes easier for me to know which [clustering] algorithm fits
better to my applications.
I do not need substantial technical knowledge for using METTLE; it
is convenient and easy to use.
Using METTLE costs less effort than conducting preliminary exper-
iments for choosing an appropriate clustering system.

The above discussion has demonstrated the usefulness of
METTLE from the user’s perspective.

IX. THREATS TO VALIDITY

In this section, we discuss some potential factors that might
affect the validity of our experiment and user evaluation study.

A. Internal Validity

A main internal threat to our experiment is the randomness of
clustering systems. Some of these systems will randomly select
an object from the dataset in their initialization. This may lead to
result variations across multiple system executions. To alleviate
this threat, we fixed the random seed for the relevant systems in
our experiment, so that the clustering results are reproducible in
each execution run.

Another internal threat to our experiment is related to pa-
rameter configuration. Different input parameters would lead to
totally different clustering results. Thus, the impact of parame-
ters on clustering validity is definitely a further research topic
for clustering assessment and validation. For example, DS has
two critical parameters: the minimal number of points minPts
within a specific distance eps. The clustering result generated by
DS is largely affected by these two parameters. In this article, we
do not attempt to evaluate the impact of different parameters on
the clustering result. Thus, these parameters were not treated
as independent variables and, hence, were fixed during our
experiment.

B. Construct Validity

In our user evaluation study, the participants were individually
provided with a short, half-an-hour tutorial on MT and METTLE.
A threat might exist that the participants were unable to grasp
the core concepts such as MR. However, even with this potential

1320 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

threat, the experimental and evaluation results were very encour-
aging and promising, demonstrating the effectiveness, practical-
ity, and usefulness of METTLE from the user’s perspective.

C. External Validity

In METTLE, we leveraged the concept of MT and developed a
list of generic MRs for validation. Because these generic MRs
do not cover all possible properties of clustering systems, this
issue is, therefore, a potential threat to the external validity
of this article. However, as a novel assessment and validation
framework based on the user’s perspective, METTLE allows users
to specify their expected characteristics of a clustering system in
their own contexts. In METTLE, as confirmed by our evaluation
study, users could simply adopt some of all of the 11 generic
MRs we developed, and, then, supplemented by more specific,
user-defined MRs according to their own application scenarios.
Thus, this threat is considered low.

As an application of MT, METTLE also has limitations in
some areas of cluster analysis, for example, identifying the
optimal number of clusters. MT was proposed to alleviate (not
to completely solve) the oracle problem in software testing.
Also, by its very nature, an MR can only reveal the absence
of an expected characterization from the system, rather than
computing the correctness of individual outputs.

Another external threat is the generality of our approach. In
this regard, it is well known that in the field of cluster validation,
there does not exist a single validation approach, which can
effectively handle all dataset types [61]. METTLE is no exception.
Our experiment only involved those datasets with well-formed
clusters so that all the six subject clustering systems could
properly handle these clusters. A similar approach to generating
synthetic datasets for experiments has also been adopted in
some other studies (e.g., [62]). Although the datasets used for
assessment may vary case by case, the high-level properties
of clustering systems to be assessed and evaluated by METTLE

are rather general. Thus, we argue that the effect of different
datasets on the effectiveness of METTLE should not be large. Our
argument was supported by the results of the user evaluation
study that participants from different application domains were
able to use METTLE to validate and assess candidate clustering
systems with domain-specific datasets.

Our user evaluation involved only 15 participants. It would
certainly be better if more participants were involved in the study.
However, it was not easy to find a large group of participants
who were willing to participate in our study. Although the
number of participants was not large, they are experienced and
knowledgeable users of clustering systems from seven different
application domains. Thus, to some extent, these participants
could be considered as a group of “representative” users of
clustering systems.

X. RELATED WORK

MT has been successfully applied in many applications since
its introduction by Chen et al. [21]. We refer the readers to
recent surveys on MT [15], [63] to gain further insight into this

technique. In this section, we highlight some recent work on MT
by both academia and industry researchers.

Zhou et al. [26] proposed a user-oriented testing approach for
the quality assessment of major online search engines (includ-
ing, for example, Google and Bing) using the concept of MT.
Their empirical results not only guide developers to identify
the weaknesses of these search engines, but also help users
choose a proper online search engine in a specific scenario.
Segura et al. [64] applied MT to web application programming
interfaces (APIs) for automatic fault detection. They first con-
structed MRs with an output-driven approach, and, then, applied
their method to APIs of Spotify and YouTube. This application
successfully detected 11 real-life problems, indicating the ef-
fectiveness of MT. A recent work [65] has been reported, which
is related to using MT for software verification of machine-
learning-based image classifiers. The effectiveness of MRs was
tested by mutation testing, where 71% implementation faults
were successfully caught.

Adding to the successful applications of MT to quality assess-
ment as well as software verification and validation, MT has
also been applied to detecting performance bugs [66]. In this
work, a set of performance MRs was defined for the automatic
analysis of feature models. A proof-of-concept experiment was
conducted to confirm the feasibility of using a metamorphic
approach to detecting performance faults.

In recent years, we have witnessed the advances in deep
learning. Applying MT to AI-driven systems has grown rapidly.
In [28], MT was used to validate the classification accuracy of
deep learning frameworks. Also, DeepTest, a testing tool for
Deep-Neural-Network-driven autonomous vehicles, was devel-
oped to leverage MRs to create a test oracle [30]. DeepTest auto-
matically generates synthetic test cases for different real-world
conditions, and is able to detect thousands of erroneous behav-
iors in autonomous driving systems. Furthermore, a framework
called DeepRoad [31] was proposed for testing autonomous
driving system, with a view to detecting inconsistent behaviors
across various synthesized driving scenes based on MRs.

More recently, an internationally renowned IT consultancy
and service firm, Accenture, has applied MT to test machine
learning systems, providing a new vision for quality engineer-
ing [67]. In addition, GraphicsFuzz, a commercial spin-off firm
from the Department of Computing, Imperial College London,
has pioneered the combination of fuzzing and MT for testing
graphics drivers [68]. GraphicsFuzz toolset has been successful
at exploring defects in a large number of graphics driver across
different platforms, for example, an Shield TV box with an
NVIDIA GPU and Samsung Galaxy S9 with an ARM GPU.
GraphicsFuzz was later acquired by Google in August 2018 [69].

XI. CONCLUSION

In this article, we proposed an MT-based approach (METTLE)
to assessing and validating clustering systems by considering
the various dynamic data perspectives for different application
scenarios. We defined 11 generic MRs for six common types
of data transformation. We used these generic MRs, together
with six subject clustering systems, to conduct an experiment

XIE et al.: METTLE: A METAMORPHIC TESTING APPROACH 1321

for verifying the viability and effectiveness of METTLE. Our
experiment demonstrated that METTLE is a vivid, flexible, and
practical approach toward validating and assessing clustering
systems. Furthermore, we conducted a user evaluation study on
METTLE from the user’s perspective. All the participants involved
in the study unanimously showed positive feedbacks on METTLE.

In general, METTLE has the following merits with respect to
validation and assessment.

1) Validation
a) It is generic and can be easily applied to any clustering

systems.
b) It provides an elegant and tailor-made mechanism for

end users to define their specific expectations and
requirements (in terms of MRs) when validating clus-
tering systems.

c) It is further supported by a set of 11 generic MRs,
which can be mostly applied to various clustering
scenarios.

2) Assessment
a) It provides an innovative approach to unveil the

characteristics of unsupervised machine learning
systems.

b) It helps categorize clustering systems in terms of their
strengths and weaknesses with respect to a set of
MRs (corresponding to different types of data trans-
formation). This is particularly helpful for those end
users who are not knowledgeable about the logic and
mechanisms of clustering systems.

c) It allows end users to devise their own quality as-
sessment schemes for evaluating a set of candidate
clustering systems (with respect to the user-defined
MRs and their corresponding weights).

d) It demonstrates a systematic and practical framework
for end users to assess and select appropriate clustering
system for use.

The promising and encouraging work described in this article
can be extended into three aspects. First, it would be worthwhile
to conduct another experiment involving high-dimensional data
samples (the experiment described in this article only involved
datasets in 2-D space for easy visualization of the clustering
results). Second, it would be fruitful to investigate the issue of
how to define good and representative MRs (in addition to the 11
generic ones) that are applicable to a wide range of application
scenarios. Third, the correlation between a violation to an MR
and a particular error pattern certainly represents an interesting
research topic that warrants further investigation.

REFERENCES

[1] G. Punj and D. W. Stewart, “Cluster analysis in marketing research:
Review and suggestions for application,” J. Marketing Res., vol. 20, no. 2,
pp. 134–148, 1983.

[2] K. Chaudhry, J. Yadav, and B. Mallick, “A review of fraud detection
techniques: Credit card,” Int. J. Comput. Appl., vol. 45, no. 1, pp. 39–44,
2012.

[3] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene expression data:
A survey,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 11, pp. 1370–1386,
Nov. 2004.

[4] M. Steinbach, P.-N. Tan, V. Kumar, S. Klooster, and C. Potter, “Discovery
of climate indices using clustering,” in Proc. 9th ACM Int. Conf. Knowl.
Discovery Data Mining, 2003, pp. 446–455.

[5] A. Hotho, S. Staab, and G. Stumme, “Ontologies improve text document
clustering,” in Proc. 3rd IEEE Int. Conf. Data Mining, 2003, pp. 541–544.

[6] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen, and D. Chen, “Empirical studies
of a two-stage data preprocessing approach for software fault prediction,”
IEEE Trans. Rel., vol. 65, no. 1, pp. 38–53, Mar. 2016.

[7] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, and A. Y. Zomaya,
“A survey of clustering algorithms for big data: Taxonomy and empirical
analysis,” IEEE Trans. Emerg. Topics Comput., vol. 2, no. 3, pp. 267–279,
Sep. 2014.

[8] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in Proc. 33rd Int. Conf. Int. Conf. Mach. Learn., 2016,
pp. 478–487.

[9] A. Saxena et al., “A review of clustering techniques and developments,”
Neurocomputing, vol. 267, no. C, pp. 664–681, 2017.

[10] R. S. Olson, W. L. Cava, Z. Mustahsan, A. Varik, and J. H. Moore, “Data-
driven advice for applying machine learning to bioinformatics problems,”
in Proc. Pacific Symp. Biocomput., 2018, pp. 192–203.

[11] F. Di Maio, P. Secchi, S. Vantini, and E. Xio, “Fuzzy c-means clustering
of signal functional principal components for post-processing dynamic
scenarios of a nuclear power plant digital instrumentation and control
system,” IEEE Trans. Rel., vol. 60, no. 2, pp. 415–425, Jun. 2011.

[12] A. Banerjee and J. Langford, “An objective evaluation criterion for clus-
tering,” in Proc. 10th Int. Conf. Knowl. Discovery Data Mining, 2004,
pp. 515–520.

[13] A. Williams, “What is clustering and why is it hard?” Sep. 11, 2015.
[Online]. Available: http://alexhwilliams.info/itsneuronalblog/2015/09/
11/clustering1/. Accessed on: Dec. 29, 2018.

[14] U. von Luxburg, R. C. Williamson, and I. Guyon, “Clustering: Science or
art?” in Proc. Int. Conf. Unsupervised Transfer Learn. Workshop, 2011,
pp. 65–79.

[15] T. Y. Chen et al., “Metamorphic testing: A review of challenges and
opportunities,” ACM Comput. Surveys, vol. 51, no. 1, pp. 4:1–4:27, 2018.

[16] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz, “Internal versus
external cluster validation indexes,” Int. J. Comput. Commun., vol. 5, no. 1,
pp. 27–34, 2011.

[17] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of extrinsic
clustering evaluation metrics based on formal constraints,” Inf. Retrieval,
vol. 12, no. 4, pp. 461–486, 2009.

[18] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, “Understanding of internal
clustering validation measures,” in Proc. 10th Int. Conf. Data Mining,
2010, pp. 911–916.

[19] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, “An
extensive comparative study of cluster validity indices,” Pattern Recognit.,
vol. 46, no. 1, pp. 243–256, 2013.

[20] C. Hennig, M. Meila, F. Murtagh, and R. Rocci, Eds., Handbook of Cluster
Analysis. Boca Raton, FL, USA: CRC Press, 2015.

[21] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A new
approach for generating next test cases,” Tech. Rep. HKUST-CS98-01,
Dept. Comput. Sci., Hong Kong Univ. Sci. Technol., Clear Water Bay,
Hong Kong, 1998.

[22] T. Y. Chen, P.-L. Poon, and X. Xie, “METRIC: METamorphic relation
identification based on the category-choice framework,” J. Syst. Softw.,
vol. 116, pp. 177–190, 2016.

[23] C.-A. Sun, A. Fu, P.-L. Poon, X. Xie, H. Liu, and T. Y. Chen,
“METRIC+: A metamorphic relation identification technique based on
input plus output domains,” IEEE Trans. Softw. Eng., to be published, doi:
10.1109/TSE.2019.2934848.

[24] C. Murphy, G. E. Kaiser, L. Hu, and L. Wu, “Properties of machine learning
applications for use in metamorphic testing,” in Proc. 20th Int. Conf. Softw.
Eng. Knowl. Eng., 2008, pp. 867–872.

[25] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,” J.
Syst. Softw., vol. 84, no. 4, pp. 544–558, 2011.

[26] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software
quality assessment: A study of search engines,” IEEE Trans. Softw. Eng.,
vol. 42, no. 3, pp. 264–284, Mar. 2016.

[27] M. Olsen and M. Raunak, “Increasing validity of simulation models
through metamorphic testing,” IEEE Trans. Rel., vol. 68, no. 1, pp. 91–108,
Mar. 2019.

[28] J. Ding, X. Kang, and X. Hu, “Validating a deep learning framework by
metamorphic testing,” in Proc. 2nd Int. Workshop Metamorphic Testing,
2017, pp. 28–34.

http://alexhwilliams.info/itsneuronalblog/2015/09/11/clustering1/
https://dx.doi.org/10.1109/TSE.2019.2934848

1322 IEEE TRANSACTIONS ON RELIABILITY, VOL. 69, NO. 4, DECEMBER 2020

[29] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,” Commun.
ACM, vol. 62, no. 2, pp. 61–69, 2019.

[30] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proc. 40th Int. Conf.
Softw. Eng., 2018, pp. 303–314.

[31] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-based metamorphic testing and input validation framework for au-
tonomous driving systems,” in Proc. 33rd ACM/IEEE Int. Conf. Automated
Softw. Eng., 2018, pp. 132–142.

[32] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques
The Morgan Kaufmann Series in Data Management Systems, 3rd ed.
Amsterdam, The Netherlands: Elsevier, 2011.

[33] M. Steinbach, G. Karypis, and V. Kumar, “A comparison of document
clustering techniques,” in Proc. KDD Workshop Text Mining, 2000,
pp. 109–110.

[34] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Introduction
to Cluster Analysis Wiley Series in Probability and Statistics. Hoboken,
NJ, USA: Wiley, 2009.

[35] T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann, “Stability-based val-
idation of clustering solutions,” Neural Comput., vol. 16, no. 6, pp. 1299–
1323, 2004.

[36] C. Hennig, “Cluster-wise assessment of cluster stability,” Comput. Statist.
Data Anal., vol. 52, no. 1, pp. 258–271, 2007.

[37] U. Möller, “Resampling methods for unsupervised learning from sample
data,” in Machine Learning, A. Mellouk and A. Chebira, Eds., London,
U.K.: IntechOpen, 2009, pp. 289–304.

[38] I. M. G. Dresen, T. Boes, J. Huesing, M. Neuhaeuser, and K.-H. Joeckel,
“New resampling method for evaluating stability of clusters,” BMC
Bioinformatics, vol. 9, no. 1, 2008, Art. no. 42.

[39] A. K. Jain and J. Moreau, “Bootstrap technique in cluster analysis,” Pattern
Recognit., vol. 20, no. 5, pp. 547–568, 1987.

[40] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, and S. Decker, “To-
wards dataset dynamics: Change frequency of linked open data sources,”
in Proceedings of 3rd International Workshop on Linked Data on the Web.
[Online]. Available: https://aran.library.nuigalway.ie/bitstream/handle/10
379/1120/dynamics_ldow2010.pdf?sequence=1&isAllowed=y. Access-
ed on: Dec. 29, 2018.

[41] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering
algorithm,” J. Roy. Statist. Soc. Ser. C (Appl. Statist.), vol. 28, no. 1,
pp. 100–108, 1979.

[42] J. Segal, “Two principles of end-user software engineering research,” ACM
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, 2005.

[43] M. Burnett, “What is end-user software engineering and why does it
matter?” in Proc. Int. Symp. End User Develop., 2009, pp. 15–28.

[44] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A.
Wessln, Experimentation in Software Engineering. Heidelberg, Germany:
Springer, 2012.

[45] M. G. Omran, A. P. Engelbrecht, and A. Salman, “An overview of
clustering methods,” Intell. Data Anal., vol. 11, no. 6, pp. 583–605,
2007.

[46] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining, 1996, pp. 226–231.

[47] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Prac-
tical Machine Learning Tools and Techniques, 4th ed. Amsterdam, The
Netherlands: Elsevier, 2017.

[48] D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” in Proc. 17th Int. Conf. Mach. Learn.,
2000, vol. 1, pp. 727–734.

[49] S. Konishi and G. Kitagawa, Information Criteria and Statistical Modeling
Springer Series in Statistics. New York, NY, USA: Springer, 2008.

[50] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood
and the EM algorithm,” SIAM Rev., vol. 26, no. 2, pp. 195–239, 1984.

[51] S. Dasgupta and P. M. Long, “Performance guarantees for hierarchical
clustering,” J. Comput. Syst. Sci., vol. 70, no. 4, pp. 555–569, 2005.

[52] F. Pedregosa et al., “Scikit-Learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[53] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of super-
vised learning algorithms,” in Proc. 23rd Int. Conf. Mach. Learn., 2006,
pp. 161–168.

[54] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 3133–3181, 2014.

[55] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and
adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, 1997.

[56] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” Jun. 2019. [Online]. Available: https://
arxiv.org/abs/1906.10742

[57] L. Ma et al., “DeepGauge: Multi-granularity testing criteria for deep
learning systems,” in Proc. 33rd ACM/IEEE Int. Conf. Autom. Softw. Eng.,
2018, pp. 120–131.

[58] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in Proc. 41st Int. Conf. Softw. Eng., 2019,
pp. 1039–1049.

[59] X. Xie, J. Li, C. Wang, and T. Y. Chen, “Looking for an MR? Try METWiki
today,” in Proc. 1st Int. Workshop Metamorphic Testing, 2016, pp. 1–4.

[60] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Trans. Softw. Eng., to
be published, doi: 10.1109/TSE.2018.2876433.

[61] N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy c-
means model,” IEEE Trans. Fuzzy Syst., vol. 5, no. 1, pp. 152–153,
Feb. 1997.

[62] Z. Huang, D. W. Cheung, and M. K. Ng, “An empirical study on the visual
cluster validation method with Fastmap,” in Proc. 7th Int. Conf. Database
Syst. Adv. Appl., 2001, pp. 84–91.

[63] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey on
metamorphic testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805–824,
Sep. 2016.

[64] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
testing of RESTful web APIs,” IEEE Trans. Softw. Eng., vol. 44, no. 11,
pp. 1083–1099, Nov. 2018.

[65] A. Dwarakanath et al., “Identifying implementation bugs in machine
learning based image classifiers using metamorphic testing,” in Proc. 27th
ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2018, pp. 118–128.

[66] S. Segura, J. Troya, A. Durán, and A. Ruiz-Cortés, “Performance meta-
morphic testing: A proof of concept,” Inf. Softw. Technol., vol. 98, pp. 1–4,
2018.

[67] Accenture, “Quality engineering in the new: A vision and R&D update
from Accenture labs and Accenture testing services,” Jun. 27, 2018.
[Online]. Available: https://www.accenture.com/t20180627T065422Z__
w__/cz-en/_acnmedia/PDF-81/Accenture-Quality-Engineering-POV.
pdf. Accessed on: Dec. 30, 2018.

[68] Imperial Innovations, “GraphicsFuzz launches testing solution for graph-
ics drivers,” Imperial Innovations, Apr. 26, 2018. [Online]. Available:
https://www.imperialinnovations.co.uk/news-events/news/2018/apr/26/
graphicsfuzz-launches-testing-solution-graphics-dr/. Accessed on:
Dec. 31, 2018.

[69] F. Lardinois, “Google acquires GraphicsFuzz, a service that tests android
graphics drivers,” techcrunch.com, Aug. 6, 2018. [Online]. Available:
https://techcrunch.com/2018/08/06/google-acquires-graphicsfuzz-a-ser
vice-that-tests-android-graphics-drivers/?via=indexdotco. Accessed on:
Dec. 31, 2018.

https://aran.library.nuigalway.ie/bitstream/handle/10379/1120/dynamics_ldow2010.pdf?sequence=1&isAllowed=y
https://arxiv.org/abs/1906.10742
https://dx.doi.org/10.1109/TSE.2018.2876433
https://www.accenture.com/t20180627T065422Z__w__/cz-en/_acnmedia/PDF-81/Accenture-Quality-Engineering-POV.pdf
https://www.imperialinnovations.co.uk/news-events/news/2018/apr/26/graphicsfuzz-launches-testing-solution-graphics-dr/
https://techcrunch.com/2018/08/06/google-acquires-graphicsfuzz-a-service-that-tests-android-graphics-drivers/?via=indexdotco

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

