
IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019 23

Security Testbed for Internet-of-Things Devices
Shachar Siboni , Vinay Sachidananda , Yair Meidan , Michael Bohadana, Yael Mathov , Suhas Bhairav ,

Asaf Shabtai , and Yuval Elovici

Abstract—The Internet of Things (IoT) is a global ecosystem of
information and communication technologies aimed at connecting
any type of object (thing), at any time, and in any place, to each
other and to the Internet. One of the major problems associated
with the IoT is the heterogeneous nature of such deployments; this
heterogeneity poses many challenges, particularly, in the areas of
security and privacy. Specifically, security testing and analysis of
IoT devices is considered a very complex task, as different security
testing methodologies, including software and hardware security
testing approaches, are needed. In this paper, we propose an in-
novative security testbed framework targeted at IoT devices. The
security testbed is aimed at testing all types of IoT devices, with
different software/hardware configurations, by performing stan-
dard and advanced security testing. Advanced analysis processes
based on machine learning algorithms are employed in the testbed
in order to monitor the overall operation of the IoT device un-
der test. The architectural design of the proposed security testbed
along with a detailed description of the testbed implementation
is discussed. The testbed operation is demonstrated on different
IoT devices using several specific IoT testing scenarios. The re-
sults obtained demonstrate that the testbed is effective at detecting
vulnerabilities and compromised IoT devices.

Index Terms—Internet of Things (IoT), IoT devices, privacy,
security, testbed framework.

NOMENCLATURE

IoT Internet of Things.
DoS Denial-of-service.
MITM Man-in-the-middle.
PII Personally identifiable information.
BYOD Bring your own device.
XSS Cross-site scripting.
MRM Management and reports module.
STMM Security testing manager module.
STM Security testing module.
MAM Measurements and analysis module.

Manuscript received August 14, 2017; revised November 15, 2017 and May
17, 2018; accepted August 2, 2018. Date of publication December 6, 2018; date
of current version February 26, 2019. This work was supported by the Singapore
Ministry of Defense (MINDEF). Associate Editor: Z. Chen. (Corresponding
author: Shachar Siboni.)

S. Siboni, Y. Meidan, M. Bohadana, Y. Mathov, A. Shabtai, and
Y. Elovici are with the Department of Software and Information Sys-
tems Engineering, Cyber Security Research Center, Ben-Gurion Univer-
sity of the Negev, Beersheba 84105, Israel (e-mail:, sibonish@post.bgu.ac.il;
yairme@post.bgu.ac.il; bohadana@post.bgu.ac.il; yaelmath@post.bgu.ac.il;
shabtaia@bgu.ac.il; elovici@bgu.ac.il).

V. Sachidananda and S. Bhairav are with the iTrust, Singapore Univer-
sity of Technology and Design, Singapore 487372 (e-mail:, sachidananda@
sutd.edu.sg; suhas_setikere@sutd.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2018.2864536

DUT Device under test.
ADB Android debug bridge.
OM Orchestrating machine.
CCM Control and communication machine.
AM Analysis machine.
CVE Common vulnerabilities and exposures.
CVSS Common vulnerability scoring system.
NVD National vulnerability database.
SUT System under test.
TPR True positive rate.
TNR True negative rate.

I. INTRODUCTION

THE Internet of Things (IoT) consists of a combination of
physical objects with sensors, actuators, and controllers

with connectivity to the digital world via the Internet. The low
cost of hardware, along with the prevalence of mobile devices
and widespread Internet access, has made the IoT a part of
modern everyday life. An exponential increase in the use of
IoT devices is expected in the future; as it does, security issues
must increasingly be considered given that all IoT devices are
connected to the Internet, providing the means for hackers to
obtain access to these devices.

SHODAN [1], the IoT search engine, shows the dark side of
connected IoT devices, where several vulnerabilities have been
discovered using this tool [2], [3]. Different Internet-connected
devices, ranging from cameras to industrial controllers, can be
easily manipulated [4], [5]. These studies confirm both the fact
that IoT devices are, by their very nature, prone to attacks,
and the need to seriously consider security measures for such
devices. Furthermore, no common security standard exists for
all IoT devices. Although there is a need to address the security
challenges of the IoT ecosystem, a flexible method for evaluating
the security of IoT devices does not currently exist, and there
is a lack of dedicated testbeds to perform security testing and
analysis on IoT devices [6].

The development of a testbed to perform comprehensive se-
curity testing and analysis for IoT devices under real condi-
tions will help to remedy this situation. Moreover, due to the
heterogeneity of IoT devices (different types of devices with
different configurations, such as device drivers, hardware and
software components, and more), an advanced generic security
testbed is required. In this paper, we propose a fully functional
IoT testbed for security analysis in which various IoT devices
are tested against a set of security requirements. The proposed
IoT testbed can emulate different types of testing environments
that simulate the activity of various sensors (such as GPS,

0018-9529 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9812-1190
https://orcid.org/0000-0001-9582-1538
https://orcid.org/0000-0003-4865-2334
https://orcid.org/0000-0001-7004-1375
https://orcid.org/0000-0002-2873-4431
https://orcid.org/0000-0003-0630-4059
mailto:sibonish@post.bgu.ac.il
mailto:yairme@post.bgu.ac.il
mailto:bohadana@post.bgu.ac.il
mailto:yaelmath@post.bgu.ac.il
mailto:shabtaia@bgu.ac.il
mailto:elovici@bgu.ac.il
mailto:sachidananda@sutd.edu.sg
mailto:sachidananda@sutd.edu.sg
mailto:suhas_setikere@sutd.edu.sg

24 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

movement, Wi-Fi, etc.), as presented in [7], and perform prede-
fined and customized security tests along with advanced security
testing analysis based on machine learning approaches.

The testbed consists of hardware and software components
for experiments involving wide-scale testing deployments. The
proposed security testbed supports a range of security tests,
both standard and advanced security testing, aimed at different
aspects of security requirements. Standard security tests uses
standard, of-the-shelf security analysis tools that can perform
vulnerability scans and penetration tests, in order to assess and
verify the security level of IoT devices under test. Advanced
security tests implement more complex mechanisms, such as
using machine learning algorithms in order to identify the device
type and to detect suspicious behavior of an IoT device under test
(DUT) by analyzing its network traffic, evaluating the resilience
of the IoT device to denial-of-service (DoS) attacks, or checking
the management connection password complexity test in order
to measure the device security strength.

Given the fact that the vast majority of security technologies
adopted today are primarily focused on alerting users about spe-
cific technical aspects of an attack, rather than the root cause
of an attack, an implementation of automated security testbed
can be difficult. Moreover, defining the requirements for the de-
velopment and implementation of such a testbed is also a chal-
lenging task. Furthermore, designing a comprehensive security
testing system targeted for IoT scenarios is a challenging task. In
this paper, the testbed system architecture and design is a layer-
based platform model with a modular structure. Based on this
architecture and design, any type of IoT device can be tested in
the proposed security testbed framework, including smart appli-
ances, smart city devices, smart wearable devices, and more. In
addition, any relevant simulator and/or measurement and anal-
ysis tool can be deployed in the testbed environment in order to
perform comprehensive testing in the testbed. As a modular sys-
tem, the testbed also integrates different analysis mechanisms
as plugins that are used to conduct advanced security testing.

The main contributions of this paper are threefold.
1) We provide a detailed discussion of security and privacy

threats for current and future IoT devices, and present
several approaches to mitigate the threats including our
proposed security testbed targeted for IoT devices.

2) We present the system requirements and design for a novel
advanced security testbed framework, and provide an in
depth description of the proposed testbed mechanism, in-
cluding the interactions between the relevant modules of
the testbed framework that are designed to deal with the
challenges that are associated with security testing for IoT
devices.

3) We use the implementation of our testbed to analyze dif-
ferent types of IoT devices, using the standard security
testing methodology and advanced security testing meth-
ods, in order to determine and evaluate the security level
of the tested IoT devices under test.

The structure of this paper is as follows. After providing an
introduction in Section I, related work is discussed in Section II.
In Section III, we present different security aspects related with
IoT devices. In Section IV, we describe the testbed system ar-

chitecture and design and discuss practical implementation of
the testbed in Section V. Section VI provides several test sce-
narios conducted using the proposed testbed, and Section VII
conclude this paper.

II. RELATED WORK

Several testbeds have been proposed for IoT devices [6]. In
addition, there are a few labs around the world that focus on
IoT security [8]. Most of the recent work on IoT testbeds tends
to focus on a single technology domain [e.g., wireless sensor
networks (WSNs)] [9]–[12]. Others take a more heterogeneous
approach to the study of IoT testbeds [13], [14]. There are very
few studies using various IoT devices and focusing on multiple
technology domains [15].

MoteLab [9], which provides a testbed system for WSNs,
was one of the first testbeds developed. Still in use today, it
has also served as the basis for various other testbeds such as
INDRIYA [16]. Kansei [10] is one of the most surveyed testbeds,
providing various advanced functions, including cosimulation
support, mobility support using mobile robots, and event injec-
tion possible mote level. CitySense [11] is a public mesh testbed
deployed on light poles and buildings. The following two fea-
tures make this testbed particularly interesting: 1) its realism
and domain specificity provided by a permanent outdoor instal-
lation in an urban environment, and 2) the implementation of the
control and management plane based solely on wireless links.
The Senselab [12] testbed consists of more than 1000 sensor
nodes with energy measurement supported for every node and
repeatable mobility via electric toy trains. In [13], the testbed
consists of federation architecture, cosimulation support, topol-
ogy virtualization, in situ power measurements on some nodes,
and mobility support. FIT IoT-LAB [14] provides a very large
scale infrastructure facility suitable for testing small wireless
sensor devices and heterogeneous communicating objects. The
testbed offers web-based reservation and tooling for applica-
tion development, along with direct command line access to the
platform. All of the aforementioned IoT testbeds focus solely
on WSNs.

The T-City Friedrichshafen [15] testbed considers various
IoT devices, making it multidomain; it combines innovative
information and communication technologies, together with a
smart energy grid, to test out innovative healthcare, energy, and
mobility services. Although the T-City Friedrichshafen testbed
is multidomain, it fails to take into account security aspects.

INFINITE [17], the Industrial Internet Consortium approved
testbed, encompasses all of the major technologies, domains,
and platforms for industrial IoT environments, covering the
cloud, networks, mobile, sensors, and analytics. Projects such as
FIESTA-IOT [18] provide experimental infrastructure for het-
erogeneous IoT technologies. The FIESTA-IOT project consists
of various testbeds like SmartCampus [19] and SmartSantander
[20]. SmartSantander proposes a unique city scale experimental
research facility for common smart city applications and ser-
vices. In [21], the authors propose ASSET (Adaptive Security
for Smart Internet of Things in eHealth), a project to develop
risk-based adaptive security methods and mechanisms for IoT

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 25

in eHealth. The project proposes a testbed to accurately evaluate
adaptive security solutions in realistic simulation and use case
scenarios, however, the project does not address multidomain
IoT devices and security aspects.

Stanford’s Secure Internet of Things Project [8] is a cross-
disciplinary research effort between computer science and elec-
trical engineering faculty at Stanford University; the University
of California, Berkeley; and the University of Michigan. The
research effort focuses on the following three key areas: an-
alytics, security, and hardware and software systems. Though
the project is focused on securing IoT devices, a full security
testbed system has not yet been proposed in [8].

Hence, based on our knowledge, critical gaps exist, and a
testbed that focuses on the security testing for IoT devices, and
especially considering different context environments, has not
yet been developed.

III. SECURITY ASPECTS OF IOT DEVICES

IoT devices may pose major security and privacy risks, be-
cause of their range of functionality and the variety of processes
involved in their operation, including data collection, process-
ing, storage, and transfer—by, from, and to these smart devices
[22], [23]. Furthermore, these smart devices are integrated in
enterprise networks, deployed on public spaces, and worn on
the body and can be operated continuously in order to gather
information from their surroundings; hence, they are highly vis-
ible and accessible—especially to attackers. In the following
subsections, we discuss security and privacy aspects related to
device architecture, network connectivity, and the type of data
collected by IoT devices. In addition, we present countermea-
sures to reduce and mitigate the problems discussed.

A. Device Architecture

The device architecture security aspect includes hardware
and software considerations as follows. Regarding hardware,
IoT devices are low resource devices, in terms of power source,
memory size, bandwidth communication, and computational ca-
pabilities [24], [25]. This may result in severe security flaws, as
only lightweight-based encryption mechanisms and authentica-
tion algorithms can be applied in order to encrypt the data stored
on, and transmitted from, the device [25], [26].

From a software perspective, open source and proprietary
operating systems are in use, which can be highly exposed to
known and zero-day vulnerabilities [27]. Additionally, the ap-
plications running on IoT devices are only as good as the de-
velopers who wrote them. Often, if serious bugs are identified
in the software, no one is responsible for patching them [28].
Furthermore, in contrast to standard computing systems, most
IoT devices are assumed to be less continuously maintained and
upgraded by the manufacturers [26].

IoT devices often automate certain functionalities and require
limited configuration with little intervention from the user [25].
For example, the Google Glass device enables the automatic set
up of a Wi-Fi connection after viewing QR codes or sharing in-
formation on the web. This can make IoT devices more exposed
to security risks than traditional computing devices.

B. Network Connectivity

IoT devices can be constantly connected to the Internet, either
directly via long range connectivity (e.g., via cellular network),
or indirectly using gateways via short/medium range connec-
tivity (e.g., via Wi-Fi, Bluetooth connection, etc.) [29], [30].
However, these advanced devices are not always designed with
security in mind, due to cost considerations and their limited re-
sources [31], [32]. Consequently, IoT devices can be highly
exposed to the traditional Internet attacks, such as DoS at-
tacks, data leakage, man-in-the-middle attacks, phishing attacks,
eavesdropping, side-channel attacks, and compromise attacks
[24], [25]. Moreover, due to the fact that lightweight authentica-
tion algorithms are employed, it is quite possible to manipulate
and control these devices at their weakest point—when data are
sent from, and received by, the device [23].

Another potential security issue is network disruption and
overload [26]. With the proliferation of IoT devices, especially in
private enterprise networks, public spaces, and more, these smart
connected devices are constantly producing and broadcasting
information, and thus, unceasingly consume bandwidth. More
importantly, they increase the attack surface as they become new
points of entry into the network.

C. Data Collection

A major concern related to IoT devices is the type of data
they collect, which potentially may lead to privacy invasion and
information theft [30], [33]. As data become an increasingly
valuable asset, many data brokers collect information about po-
tential customers and organizations by any means, including
vulnerable IoT devices.

From a user’s point of view, most of the collected data are
personal, and may contain sensitive information about the user’s
habits and behavior, and even private health details. Moreover,
recently, IoT technology has also been integrated into enter-
prise and organizational environments in order to increase the
business productivity and efficiency levels [30], [34]. As IoT
devices become more commonly used in the workplace, com-
panies might exploit them to violate employees’ privacy, as
employers can track and record an employee’s actions—and
even more worrisome—monitor a user’s health condition, e.g.,
using smartwatches and wristbands. On the other hand, for using
IoT devices on enterprise networks, sensitive corporate infor-
mation might also become more accessible to outsiders and can
be exposed to unauthorized individuals via these smart devices
[22], [35].

Another concern associated with IoT devices centers on theft
or loss of the device, as well as ransomware attacks [36]. Person-
ally identifiable information (PII) stored on the device renders it
at risk to security and privacy issues. Due to the lightweight se-
curity mechanisms that are employed, this sensitive information
is readily accessible to attackers and can be used for malicious
activities, such as identity theft [37].

D. Countermeasures and Mitigations

Several countermeasures can be implemented to reduce and
mitigate the security and privacy risks posed by IoT devices

26 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

[7]. For example, sensitive data stored on the device should be
limited and encrypted (both regarding the type, and the amount
of data stored on the device) in order to reduce the possibility
of personal data exposure. In addition, data scrubbing and auto-
matic wipe features that enable remote deletion of unnecessary
data from IoT devices should be employed.

From a business point of view, companies should enforce
security and privacy policies, e.g., BYOD policy. This can be
done using enterprise-grade encryption mechanisms for access
control in order to identify any new connected device in the
network, as well as to protect data from eavesdropping mea-
sures. Moreover, the rule of least privilege should be imple-
mented to limit the capability of employees to read and/or write
unauthorized data and restrict attackers from accessing sensitive
corporate data from IoT devices that have been compromised.
In addition, implementing further authentication, authorization,
and accountability mechanisms for IoT devices that directly
connect to the network is required.

As most IoT devices are wireless-based and always ON, it
is preferable to turn the wireless connectivity OFF once the de-
vice is not in use. Moreover, users should be responsible for
maintaining and periodically updating software versions and
downloading relevant updates and patches for their IoT devices.

If, for any reason, the aforementioned security problems can-
not be mitigated, IoT electronic devices will eventually need to
be banned in highly sensitive places, as is the case with other
commonly used mobile devices (such as laptops, smartphones,
tablets, etc.), in order to provide an infrastructure solution. Such
measures will be instituted in the interest of protecting the se-
curity, privacy, and confidentiality of the surroundings.

In addition to the aforementioned countermeasures and mit-
igations, there is a constant need to be able to evaluate the
security and privacy levels of IoT devices. This should be done
using a designated security testbed for the IoT, where the moti-
vation is to perform security testing targeted specifically for IoT
devices as a means of assessing their security level. Because the
conditions that trigger compromised devices to execute attacks
are not always known, the testbed should be able to simulate
possible conditions (e.g., using different simulators) [7] in order
to identify any context-based attacks the device may carry out
under predefined conditions that an attacker may set, as well
as data attacks, which may be achieved by sending crafted (or
manipulated) context/sensor data. The issue, of security testbed
for IoT devices, is discussed in more detail in this paper.

IV. TESTBED ARCHITECTURE AND DESIGN

The proposed security testbed architecture and design, pre-
sented in this section, stem from end users’ needs, prioritized
risk scenarios, regulation laws, and best practices and standards,
as well as the system architecture, including an in depth descrip-
tion of the testbed’s modules and the interactions between these
modules as a full security testing platform.

A. Testbed Capabilities

The required capabilities for a security testbed for the IoT can
be classified by and formulated on various abstraction levels as
follows.

1) Initialization and Detection: By using the simulators,
stimulators, and any other tools needed, the testbed should sim-
ulate real-world conditions in order to test the IoT devices in
different contexts. After initialization and activation of the IoT
device, the next requirement is the detection of the IoT device
present in the testbed environment. During the detection pro-
cess, a log file should be created consisting of the IoT device
operating system (OS), the processes running, actions being per-
formed, etc. This information will be used for any subsequent
anomaly detection.

2) Security Tests: The IoT testbed must support a range of
security tests, each targeting a different security aspect. The
testbed should detect various vulnerabilities that IoT devices
can be prone to and provide an analysis for these vulnerabilities.
Accordingly, our security testbed takes into account some of the
vulnerabilities from OWASP [38], including: injection, broken
authentication and session management [2], cross-site scripting
(XSS), security misconfiguration, sensitive data exposure, miss-
ing function level access control, and using Components with
known vulnerabilities. In addition, the testbed should support
templates of tests and scenarios. The testbed should be capable
of running automated tests based on specific requirements (e.g.,
extract all tests that are relevant to the accelerometer sensor) or
the device type (e.g., all tests that are relevant to IP cameras). In
addition, the testbed should provide a success criterion for each
test (for example, binary pass/fail or a scale from 1 [pass] to 5
[fail], which may be based on a predefined threshold provided
by the system operator in advance).

3) Logging and Analysis: After conducting a series of steps
associated with the functional requirements, the testbed should
be capable of logging the tests. The system collects various
data during the test execution, including network traffic infor-
mation (e.g., about Wi-Fi, Bluetooth, and ZigBee operation),
IoT device internal status information (e.g., CPU utilization,
memory consumption, and file system activity), etc. This in-
formation should be stored as a log file for further analy-
sis. In addition, the testbed system should support intelligent
analysis.

4) Usability: Usability ensures the testbed’s ease of use,
with minimal efforts on the part of the user. The security testbed
should be easy to operate and use, with easily defined tests, easy
to input configuration, and easy to interpret output.

5) Security Related:
1) Reliability: Refers to the ability of the IoT testbed to per-

form its required functions under the stated conditions for
a specific period of time.

2) Antiforensic: Refers to the capability of the testbed to
detect, and subsequently, prevent malicious applications
on the IoT device (if it has been infected) from being
activated.

3) Security: Refers to the ability of the testbed to ensure
authorized access to the system in order to safeguard the
integrity of the IoT testbed from accidental or malicious
damage.

4) Accountability (Including Nonrepudiation): Refers to the
capability of the testbed to keep audit records in order to
support independent review of access to resources/uses of
the testbed.

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 27

Fig. 1. Security testbed framework—Abstract functional architecture model.

6) Adaptive: The security testbed should be able to adapt in
accordance with new application domain concepts and support
various communication types.

1) Scalability: Refers to the capability of the testbed to in-
crease the total throughput under an increased load when
resources (typically software and hardware) are added to
the testbed.

2) Performance: Refers to the ability of the testbed to per-
form well under different conditions, e.g., performance
with respect to the time and user input.

3) Flexibility: Refers to the ability to modify the testbed after
deployment. This includes adaptability, sustainability, and
customizability.

B. System Architecture

The architecture of the security testbed, illustrated in Fig. 1,
is a layer-based platform with a modular structure. This means
that any type of the IoT device can be tested in the proposed
security testbed framework, including smart appliances, smart
city devices, smart wearable devices, and more. In addition, in
order to perform the security testing under different contexts,
any relevant simulators and/or stimulators can be deployed in
the testbed environment, along with measurement or analysis
tools used to collect and analyze test results. As a modular sys-
tem, the testbed also integrates different analysis mechanisms
as plugins that are used to conduct advanced security testing
(mainly mechanisms based on machine learning algorithms that
we developed). A detailed description of the modules that com-
prise the functional model and the interactions between these
modules as a complete security testing system are provided.
Note that the architecture model suggested here is based on our
existing model [7], as this study is a continuation of research on
this subject.

1) Management and Reports Module (MRM): This mod-
ule is responsible for a set of management and control ac-

tions, including starting/initializing the test procedure, enrolling
new devices, simulators/stimulators, security tests, measure-
ment and analysis tools, to the testbed, and generating the fi-
nal reports upon completion of the test. The testbed operator
(the user) interfaces with the testbed through this module us-
ing one of the communication interfaces (command line inter-
face\secure shell (SSH)\simple network management protocol
(SNMP)\web user interface (WEB-UI)) in order to initiate the
test, as well as to receive the final reports. Accordingly, this mod-
ule interacts with the security testing manager module (STMM)
and the measurements and analysis module (MAM), respec-
tively. The MRM contains a system database component that
stores all relevant information about the tested device (includ-
ing the OS, connectivity, sensor capabilities, advanced features,
etc.), as well as information regarding the test itself (including
config files, system snapshots, and test results).

2) Security Testing Manager Module (STMM): This module
is responsible for the actual testing sequence executed by the se-
curity testbed (possibly according to regulatory specifications).
Accordingly, it interacts with the security testing module (STM)
in order to execute the required set of tests, in the right order
and mode, based on predefined configurations provided by the
user (based on the config file loaded in the MRM).

3) Security Testing Module (STM): This module performs
standard security testing based on vulnerability assessment and
penetration test methodology, in order to assess the security
level of the IoT DUT. See Table I for a list of supported tests
and the appropriate success criteria for each test. The STM is an
operational module that executes a set of security tests as plug-
ins, each of which performs a specific task in the testing process.
This module also supports a context-based testing mode, where
it generates various environmental stimuli for each sensor/DUT.
Meaning, in this mode of operation, the STM simulates differ-
ent environmental triggers and runs the security tests in order
to simulate different contexts and working environments for the
tested IoT devices, as illustrated in [7]. This is obtained using
a simulator array list, such as a GPS simulator or Wi-Fi lo-
calization simulator (for location-aware and geolocation-based
attacks), time simulator (using simulated cellular network, GPS
simulator, or local NTP server), movement simulator (e.g., using
robots), etc. See Table II for a list of supported simulators. The
module interacts with the measurements and analysis module
(MAM) in order to monitor the test performed and analyze the
results of the test.

4) Measurements and Analysis Module (MAM): This mod-
ule employs a variety of measurement (i.e., data collection)
components and analysis components (both software and hard-
ware based). The measurement components include different
network sniffers for communication monitoring such as Wi-Fi,
cellular, Bluetooth, and ZigBee sniffers, and device monitor-
ing tools for measuring the internal status of the devices under
test, including memory consumption, CPU utilization, and file
system changes in the IoT-DUT. Based on the collected infor-
mation, advanced security testing is conducted in the testbed,
using mechanisms based on machine learning algorithms that
we developed. The analysis component processes the collected
data and evaluates the results according to a predefined suc-

28 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE I
PENETRATION TESTS SUPPORTED BY THE SECURITY TESTBED

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 29

TABLE II
SIMULATORS SUPPORTED BY THE SECURITY TESTBED

cess criterion. Note that most of the predefined success criteria
are not generic and are defined for a specific tested IoT device
and/or tested scenario. In some cases, a success criterion can-
not be clearly defined, and therefore, advanced analysis tools
and mechanisms will be deployed in the testbed (for example,
a network-based anomaly detection tool will be employed to
process the recorded network traffic of the tested IoT device in
order to detect anomalous events in the system). In this case, the
pass/fail decision will be based on a predefined threshold pro-
vided by the system operator in advance. The detected anomalies
should then be investigated and interpreted by the system oper-
ator using dedicated exploration tools that are part of the user
interface.

5) Testing Process: The testing process shown in Fig. 1 starts
by loading a configuration file (by the user/testbed operator) in
the testbed via the MRM component. Based on the configura-
tion loaded, a set of security testing is conducted in the testbed
(indicated by the red line in Fig. 1) using the STM component.
The results are then stored in the system database component.
Next, context-based security testing is performed using the STM
component (indicated by the black dashed line in Fig. 1), by se-
lecting the appropriate simulators for the test. In this phase,
different simulators are employed in order to realistically simu-
late the environment in which IoT devices operate, and the same
set of security tests are conducted (again, based on the config-
uration file loaded in advance). The results obtained are then
stored in the system database component. Both of these testing
phases are controlled by the STMM component. Note that dur-
ing the execution of the testing process, different measurement
and analysis tools are employed using the MAM component, in
order to collect relevant information about the test performed
(including network traffic, internal status of the IoT-DUT, etc.).
Finally, a forensic analysis is performed by the MRM com-

ponent, based on the results obtained from both phases and
the information collected during the testing process. The final
results of the overall testing process are then generated and sent
to the user/testbed operator (indicated by the green dashed line
in Fig. 1).

V. PRACTICAL TESTBED IMPLEMENTATION

In this section, the practical testbed implementation is pre-
sented, including a detailed description of the system’s structure
and components and the testbed’s infrastructure.

A. System Structure and Components

The testbed environment, illustrated in Fig. 2, includes both
software and hardware system components. From the internal
software system component perspective, this includes the user
interface and several testbed manager modules, each responsible
for a specific task. From the environmental system component
point of view, this includes the IoT DUT (IoT-DUT), the set of
security test tools, measurement, and analysis tools, and a set of
simulator/stimulator devices employed in the testbed.

1) Internal Software System Components: The internal soft-
ware system components of the security testbed include the user
interface (GUI/Remote), testbed manager, test manager, element
manager, and storage manager elements.

1) User interface—GUI/Remote: The user interface compo-
nent is used for sending and receiving commands and
test results to/from the testbed, respectively. This can be
handled locally (e.g., using a GUI) or remotely (e.g., via
REST API). SSH and Telnet connectivity are supported
as well.

2) Testbed manager: The testbed manager component acts
as an orchestrator in the system. It is responsible for man-
aging the workflow between the software system compo-
nents of the testbed (including the underlying managers:
element manager, test manager, etc.), as well as the hard-
ware system components, and the user interface.

3) Test manager: The test manger component is responsi-
ble for the creation and execution of testing scenarios. A
scenario defines a testing process in the testbed, including
creation and execution of security tests, each composed of
a set of security testing actions. In addition, the test man-
ager enables to generate templates of testing scenarios for
future use.

4) Element manager: The element manager component is
responsible for provisioning and deleting elements from
the testbed. An element is a general term used in the
testbed that applies to both software and hardware. Each
element is defined by its driver. A driver is a programmable
component that exposes the element’s capabilities, either
to the user or to other elements of the testbed. Examples
of types of elements used in the testbed are: IoT-DUTs,
simulators/stimulators, measurement and analysis tools,
and security tests.

5) Storage manager: The storage manager component is a
repository of system elements. In addition, it is respon-
sible for logging different events occurring in the sys-

30 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

Fig. 2. IoT security testbed system components.

tem, before, during, and after the test is conducted (e.g.,
registering simulator, driver event, test action being run,
test results, etc.).

2) Environmental System Components: The environmental
system components include both hardware and software com-
ponents, including: the IoT-DUT, a set of security tools, en-
vironmental simulators and stimulators, and different types of
measurement and analysis tools, as discussed next.

1) IoT-DUT: The security testbed is designed and imple-
mented to support examination of a wide range of IoT de-
vices, including different categories such as: smart home
appliances, smart industrial equipment, smart city devices,
wearable devices, and more.

2) Security test tools: The security testbed utilizes different
security testing tools available online, including the Nmap
security scanner tool for the network discovery and secu-
rity auditing [39], the Wireshark tool for network protocol
analysis [40], Aircrack-ng [41] to assess Wi-Fi networks,
and Metasploit, which is used for penetration testing [42];
all of these tools run under the Kali Linux penetration
testing environment [43]. Other security tools, such as
Nessus [44], OpenVAS [45], Cain and Abel [46], and OS-
SEC [47], can be employed in the testbed as well.

3) Measurement and analysis tools: The security testbed uses
different types of measurement and analysis tools, includ-
ing: data collection modules, analysis and security rating
modules, data analysis modules, and more. These mod-
ules are developed in order to enhance the testbed capa-
bilities; for example, the anomaly detection model is used
in the testbed in order to automatically identify and detect
anomalies in the network traffic of the IoT-DUTs.

4) Simulators and stimulators: The security testbed employs
different types of environmental simulators and stimula-
tors (e.g., a GPS simulator that simulates different lo-
cations and trajectories, movement simulators such as

robotic hands, etc.). Using the set of simulators (simu-
lator array), the testbed realistically generates arbitrary
real-time stimulations, ideally for all of the sensors of the
tested IoT devices. See Table II for a list of the simulators
supported by the testbed.

B. Testbed Infrastructure Implementation

Due to the diversified nature of the IoT, it is a huge chal-
lenge to develop a generalized security analysis testbed. The
capabilities of the testbed need to cover various communica-
tion standards such as Wi-Fi, Bluetooth, Zigbee, etc., and also
need to address various other issues related to other protocols
(focusing on IoT communication and applications protocols).
In addition, the system on chip used by IoT devices varies and
their functionalities range from simple to complex. Hence, to
have the ability to test any IoT device, regardless of its capabil-
ities and specs is a challenge. Furthermore, our testbed is just
not focused on a single domain (such as a testbed dedicated to
wireless sensor networks); we designed and developed a mul-
tidomain testbed to test various types of IoT devices. Moreover,
our testing capabilities are not just limited to penetration test-
ing, but also cover various other analysis methods (for example,
our tools for anomaly detection, IoT DoS resilience tool, etc.)
making our IoT testbed even more innovative and able to solve
other challenging issues. These innovative security testing tools
demonstrate the challenges and complexity of testing the secu-
rity of IoT devices. As for the future, we plan to make the use
of testbed capabilities available outside our lab, in the outside
world where the testbed can be used as a service by any indi-
vidual user or enterprise to evaluate their IoT environment and
obtain a metric score of the environment’s level of security as it
relates to the IoT.

We deployed the testbed system in a shielded room inside our
lab (shown in Fig. 3), which provides a testing environment with
minimal external disruptions. The IoT testbed setup consists

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 31

Fig. 3. Shielded room setup in the iTrust lab at SUTD.

Fig. 4. Physical design of the testbed with the OM, CCM, and AM.

primarily of three machines that are used to run and support
the security analysis. The three machines interact with each
other and are used to ensure the testbed’s functionality. The IoT
devices, measurement tools, access point, and the shielded room
are also part of our comprehensive testbed setup.

We established an access point within the shielded room,
to ensure that all of the IoT devices can connect to the Internet
without interference from any signals outside the shielded room.
The server has been configured to store test results, reports, and
maintain project details.

The three machines are as follows. 1) The orchestrating ma-
chine (OM) is located outside the shielded room. The OM runs
National Instruments’ (NI) TestStand [48], which acts as an or-
chestrator to run and generate the report following a test. (2) The
control and communication machine (CCM), which is located
within the shielded room, controls, and connects the measure-
ment tools and any IoT devices. The CCM runs NI’s LabVIEW
[49], and the IoT devices are connected to the CCM for pur-
poses such as turning the IoT device ON/OFF, power control,
measuring power consumption, etc. (3) The analysis machine
(AM) is also located inside the shielded room. The purpose of
the AM is to run the testing tools, such as Nmap, Wireshark,
etc., needed to support various test cases. All three machines are
interconnected and can speak to each other. The physical design
of the testbed is as shown in Fig. 4.

The security testing tools and mechanisms used in the security
testbed (both the open source tools, such as Metasploit, and
the mechanisms we developed) generate reports in various data
formats such as ∗.csv, ∗.txt etc.; the format of the report depends
on the tool used. The OM consolidates all of the reports to
generate a single report in one data format (in our case, a ∗.pdf

format of the report), which is accomplished by our own parser.
The user has access to the report at any time and can also get
the report in various other data formats.

C. Testbed Operation

In general, the OM (running TestStand and the MRM) starts
the test. More specifically, there are a sequence of steps written
in TestStand that initiates the test by asking the CCM (running
LabVIEW and the STMM) to perform an intense scan to find
the IoT devices present in the shielded room. Once the scan is
complete, the results are sent from the CCM to the OM; the
results will consist of a list of the IoT devices and their IP
and MAC addresses. The user can select any IoT device from
the list for further testing. Once the IoT device is chosen, the
next step in the sequence is to select the test to be performed.
The OM displays the list of tests available, e.g., fingerprinting,
vulnerability scan, etc., and the user can choose one or more tests
to perform with the selected IoT device. Once the IoT device
and test(s) have been determined, the OM sends the information
to the CCM, and the CCM sends the information to the AM with
all the relevant information (including the IP address) needed to
perform the test. The AM (which runs the testing tools, STM,
and MAM) will perform the test, and upon completion of the
test, the AM will save the report on a local server and inform
the CCM that the test has been completed. The OM retrieves the
report from the CCM via the FTP and gives the user the option
to conclude the test or view the detailed report. The detailed
report is displayed on the OM. Since the report is present on the
local server, the user can access the report anytime.

VI. SECURITY ANALYSIS USING THE TESTBED

In this section, we describe the testbed operation for sev-
eral IoT use cases. We demonstrate the use of the testbed for
conducting both standard and advanced security testing.

A. Standard Security Tests

In this section, several standard security testing scenarios
based on vulnerability scans and penetration test methodology
are performed using the security testbed, in order to assess and
verify the security level of IoT devices under test.

1) Test Scenario 1. Security Testing for IoT Devices: The
security analysis is conducted via the testbed and by consider-
ing the requirements and architecture explained in Sections IV
and V. We have chosen several IoT devices to be tested in the
testbed in this phase, such as Amazon Echo, Nest Cam, Philips
Hue, SENSE Mother, Samsung SmartThings, Withings HOME,
WeMo Smart Crock-Pot, Netatmo Security Camera, Logitech
Circle, D-Link Camera, and HP Printer. Four use cases for se-
curity testing [50], i.e., port scanning, fingerprinting, process
enumeration, and vulnerability scanning, were conducted as fol-
lows.

a) Port scanning: The goal of port scanning is to investi-
gate the detectability of IoT devices by observing wireless/wired
communication channels. More specifically, port scanning
attempts to identify the existence of the device and detect open

32 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

and vulnerable ports. The port scanning report also provides the
risk level for each port discovered.

After the initial test process as explained previously, the AM
will run Nmap to discover the open ports via the SSH setup on
a selected IoT device. We ran port scanning for each of the IoT
devices mentioned in this paper, however, the report presented
in this paper is based on the Philips Hue device.

After Nmap finishes the port scan, the results are saved as
an XML file. A custom Python script on the AM will be used
to extract a list of open ports discovered from the XML file.
The XML file is looped line by line, checking for the keyword
“Discovered.” Any line containing the keyword Discovered is
added to a file containing a list of open ports. Finally, a cus-
tom Python script compares the open port against a list of top
vulnerable open ports [51] and identifies the vulnerable ports
for reporting. If the word Discovered is not found in the XML
file, the whole XML file is copied as the output result, which
displays everything that is scanned.

We have established a metric score based on [51] to evaluate
the risk level of open ports. The risk level is set as: 0—safe,
<15—minor risk, 15< && <30—major risk, and >30—critical
risk. After obtaining the scan results from Nmap, the scan results
are compared with the scores of the top vulnerable ports (which
contains the list of top vulnerable ports and the port numbers, a
description of the ports, and a metric score given to each port), to
provide the overall results of the test. The overall results contain
a list of open ports, ports that are considered vulnerable, and
the metric ratings. For example, the ports that were considered
vulnerable with services running include: 80—A web server was
running on this port with a score of 3, 5900—A VNC server was
running on this port with a score of 3, etc. To determine the risk
level of the IoT device, a custom Python script calls on the
MetricScore file, retrieves the metric number, and determines
the risk from a predefined risk margin. In the case of the Samsung
SmartThings home monitoring kit, the risk level is safe and the
metric score is 3; the detailed report is shown in Fig. 5.

b) Fingerprinting: The goal of fingerprinting is to iden-
tify the device’s IP and MAC addresses, as well as the type
of device, manufacturer, operating system, etc., by monitoring
communication traffic to/from the device.

In order to successfully fingerprint for a specified IoT device,
the AM uses Nmap, dhcpdump, and the Scapy Python library.
We performed fingerprinting for every IoT device mentioned
previously, however, the report presented in this paper is based
on the Nest Cam device.

We begin the fingerprinting process by creating a subprocess
in the shell using the subprocess.Popen() function in Python.
The output is dhcpResults.txt that contains the DHCP dump of
any IoT device that has made a DHCP discovery or DHCP re-
quest. This process continuously runs in the background while
the script is being executed. The nmap_done_checker() func-
tion checks whether Nmap has completed the process by con-
stantly checking the output nmapResults.txt for the key phrase
“Nmap done.” In addition, nmap_done_checker() also identi-
fies the MAC and IP addresses of the IoT-DUT, which will be
used later during the deauthentication step. While the dhcpdump
process is still running, the deauth() function is tasked with forc-

Fig. 5. Port scanning report for the Samsung SmartThings home kit.

ing DHCP requests, which will result in inputs for the dhcpRe-
sults.txt file. The deauth2.py uses a Scapy Python library that
allows for the deauthentication of a device with the specified
MAC address. The mac_catcher() function opens up the text
file nmapResults.txt and identifies the MAC address that exists
in the text file itself. The mac_finder() function searches for the
DHCP dump for the MAC address in the text file in order to
get the “Parameter Request List” of the IoT device itself. The
parameter request list is helpful in obtaining the device’s OS
fingerprint.

The chunk_siever() function creates a list of numbers from
the parameter request list, which will be used later for com-
parison against the OS fingerprint list provided by Packet-
Fence’s [52] DHCP fingerprints. The Comparator() function
compares the list obtained in the previous function against
the dhcp_fingerprints.txt. This comparison allows the system
to identify which OS the IoT device is using. Finally, the
result of this entire process is contained in an output file
called dhcp_fingerprinting_results.html. The fingerprinting re-
port shown in Fig. 6 is for the Nest Cam IoT device.

c) Process enumeration: The goal of process enumeration
is to monitor the device’s activities and list all services running
on the device, in order to understand the state of the device and
identify the protocol used and port number. To start the process

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 33

Fig. 6. Fingerprinting report for the nest cam device.

Fig. 7. Process enumeration reports for the philips hue, withings home, Sam-
sung SmartThings, Amazon echo, and D-link camera.

enumeration the AM runs the nmapScan Python script, which
conducts an intense scan on the selected IoT device to reveal
any open user datagram protocol (UDP) or transmission control
protocol (TCP) ports. We performed process enumeration for
all of the IoT devices mentioned previously, however, the report

Fig. 8. Vulnerability scan report for the HP printer.

presented in this paper is based on the following devices: Philips
Hue, Withings HOME, Samsung SmartThings, Amazon Echo,
and D-Link Camera.

The custom Python script nmapScan creates an output called
ScanResults.xml, which is used by the processEnumeration()
function. First, this function filters the port numbers and var-
ious types of services, states, and protocols from the ScanRe-
sults.xml. Once filtered, the output can be formatted into HTML
format, with the different services highlighted. Finally, the re-
sults are provided as an output file in ProcessEnumerationRe-
sults.html.

The results only contain the known ports, ignoring the un-
known ports as their vulnerabilities are also unknown. Fig. 7
contains a process enumeration report for the following IoT

34 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE III
OVERALL RESULTS OF SECURITY ANALYSIS WITH SELECTED IOT DEVICES

devices: Philips Hue, Withings HOME, Samsung SmartThings,
Amazon Echo, and D-Link camera.

d) Vulnerability scan: The goal of vulnerability scanning
is to search for additional classes of vulnerabilities by under-
standing and measuring the CVE and CVSS [53]. The NVD
[53] has been maintaining a list of vulnerabilities from 2005 on-
wards, including metric scores that helps us determine impact
and exploitability subscores, maintain a database of attacks, and
evaluate selected attacks on the tested IoT device.

We run the vulnerability scan on the OS of the IoT device, and
therefore, to start a vulnerability scan, a fingerprinting output
(i.e., the OS) is provided as input. We ran the vulnerability scan
for each IoT device mentioned previously, however, the report
presented in this paper is based on the HP printer.

The checkCVE function utilizes multiple Python libraries
to check the vulnerabilities from [53]. The queryer() function
creates a string that contains appropriate HTML formatting, and
then, opens the allitems2005.csv, which contains all of the CVE
and vulnerabilities from the year 2005. The function queryer()
also goes through the CSV file line by line and searches for
the CVE number, using the get request function to extract the
vulnerability details of the specific CVE number. Finally, the
htmlFormatter() function allows the output to be highlighted
where needed. Fig. 8 presents the report for the HP printer.

Table III presents an overview of the test results for each of
the IoT devices tested so far. Our testing efforts and findings
for the selected IoT devices have demonstrated the vulnerability
level of IoT devices.

2) Test Scenario 2. Fuzzing for IoT Devices: The increasing
demand for improved cyber security protection has necessitated
the involvement of the penetration testing field. Fuzz testing,
or fuzzing, is an advanced and popular pen testing technique.
In order to reveal unknown vulnerabilities and security holes in
a software program, the fuzzer (fuzzing tool) sends malformed
input data to the system under test (SUT). Fuzzing can be per-
formed on a variety of input types, including protocols, file
format, etc. In general, the fuzzing process includes input inter-
face identification (the target to be tested), test case generation,
connecting and fuzzing the SUT, and monitoring for exceptions
in order to identify abnormal behavior of the SUT due to the
fuzzing process.

In this section, we perform fuzz testing on several IoT devices
using the proposed security testbed. Fuzz testing is conducted

Fig. 9. Fuzzing setup environment in the security testbed.

as part of the standard vulnerability testing process presented in
Section IV, and is based on the scanning information gathered
in the testbed.

Regardless of whether an attacker’s aim is to expose the user
name and password, disrupt the normal activity of the IoT de-
vice, or to achieve any other malicious goal, the protocol input
type is the first input interface that a remote attacker can exploit.
Therefore, in this scenario, we focused on finding automatic vul-
nerabilities in several IoT devices by utilizing protocol fuzzers.

The fuzzing process conducted in the security testbed is as
follows. We connected several IoT devices to the testbed en-
vironment, including the Ennio doorbell, Proteus motion de-
tector, and Provision ISR security camera, as shown in Fig. 9.
The fuzz testing is based on the information that was collected
by the scanning capabilities of the testbed (e.g., port scanning,
OS fingerprinting, etc.). After connecting the tested IoT device
(IoT-DUT) to the testbed, we let it run without any interference
with its natural behavior. Several minutes after this, we ran the
automatic fuzzing tool. According to the configuration of the
testbed, the fuzzer tested and monitored the device using
the fuzzer’s functionality. When the fuzzer finished its test-
ing and presented the results that were calculated based on the
tool’s monitoring process, the testbed allowed the IoT-DUT to
run for several more minutes, again without any interference.
After examining the fuzzer’s output, we reproduced the errors
reported in order to better understand the results and filtered out
false positive alerts.

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 35

Fig. 10. Error 500 shown from fuzz testing the Ennio doorbell.

The fuzzer we chose to work with is Nikto [54], a fully
automated tool that conducts an extensive test on a web server
by sending packets to the SUT, in our case, IoT device, and
monitors the network. Like other HTTP-based fuzzers, Nikto
performs its testing by sending various types of user data to the
SUT in order to find vulnerabilities, but unlike the traditional
fuzzers, it send a fixed set of packets instead of malformed
input every time. By sending different packets to the tested
device, Nikto can identify dangerous files and common gateway
interface, outdated and vulnerable server versions, and more.

The Ennio Doorbell was the first device to be tested. Af-
ter receiving the information from the scanning process in the
testbed for that device, we learned that a GoAhead HTTP web
server was running behind port 81. Nikto discovered the web
server correctly. After examining the tool’s log file, we found
that the device is vulnerable to clickjacking and also found that
a citrine GET request (%5c/) causes error 500. We successfully
reproduced both scenarios and showed that although most GET
requests to the device cause error 401, the %5c command causes
error 500 (“invalid URL”), as shown in Fig. 10.

The Proteus Motion Sensor device was also tested in the
testbed as part of the fuzzing process. Based on the scanning
test results, we discovered that a tcpwrapped (HTTP) service
is running on port 80. The testing process informed us that
the device’s response contained an uncommon header (access-
control-allow-origin), and even though this is not a security
hole, we confirmed this information by checking the packets on
Wireshark. Based on the fuzzer’s output, we also learned that
the device is vulnerable to clickjacking, and we were able to
confirm this. We believe that in this case clickjacking can be
used to imitate the sensor’s clean web application for malicious
purposes. By embedding the real device’s GUI in an iframe on
an external website, the attacker can perform a phishing attack.

The Provision ISR T737E camera was also tested in the
testbed. The information from the scanning test showed that
a GoAhead server (HTTP) was running on this device. Nikto
found the same information and reported it as was done in the
doorbell testing. The fuzzer also showed that the web applica-
tion is vulnerable to clickjacking, and we were able to confirm
this as well. The fuzz testing also showed a default user name

Fig. 11. Functionality of the testbed’s IoT-device-type identification module.

and password for a specific path, however, we failed to connect
with the given credentials. These results are important, because
this shows that fuzzing tools can make mistakes. The testbed
can identify those mistakes, and by reproducing the reported
vulnerability, the testbed can ensure that this issue really ex-
ists. Such false positive filtering is an important capability that
increases trust in the security system.

B. Advanced Security Tests

In this section, various advanced security testing scenarios,
demonstrate the capabilities of the advanced analysis plugins
embedded in the security testbed, are performed. This obtained
using our self-developed mechanisms, including device identi-
fication and anomaly detection mechanisms based on machine
learning algorithms, a security test for checking resilience to
DoS attacks of IoT devices, and checking the password com-
plexity of the management connection of the IoT devices under
test.

1) Test Scenario 1. IoT-Device-Type Identification: The ever
growing variety of commercially available IoT devices includes
smart doorbells, smoke detectors, TVs, refrigerators, humidity
sensors, glasses, light bulbs, speakers, watches, thermostats, and
many other types of devices. In order to allow the user to in-
teract with them, the devices usually have to be connected to
the Internet, often via Wi-Fi. In this test scenario, we demon-
strate how the traffic data emanating from IoT-DUTs connected
to the testbed’s network via Wi-Fi can be leveraged for the
security testing. More specifically, as part of providing secu-
rity analysis for a given IoT device, we analyze its traffic data
and perform traffic-based IoT-device-type identification. For a
connected IoT-DUT in the testbed, we address the following
question: Does the IoT-DUT behave like a device of its type or
does its network behavior resemble that of a different (possi-
bly unknown) IoT device type? A mismatch between the actual
and predicted device type might indicate that the IoT-DUT is
compromised, e.g., deliberately forced by a hacker to behave
like a different IoT device type in order to bypass a traffic-based
blacklisting or whitelisting system.

Traffic-based identification of the type of the connected IoT
device is a task supported by the STM and MAM modules
of our security testbed. In this task, portrayed in Fig. 11, the
IoT-DUT first connects (often wirelessly) to the testbed’s net-
work. Then, the connected IoT-DUT operates normally for a
given duration, e.g., a smart TV may be switched ON, and have
its channel changed and the volume adjusted. Using the STM
module of the testbed, the resulting network traffic data are

36 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE IV
IOT DEVICES USED TO TRAIN THE DEVICE TYPE CLASSIFIER

captured and saved as a ∗.pcap file. Then, in order to structure
this raw captured data, a feature extractor [55] is employed in
the MAM module of the testbed. Given a ∗.pcap file, it recon-
structs TCP/IP sessions, defined as 4-tuples consisting of IP
addresses and port numbers of the source and destination, from
SYN to FIN. The feature extractor describes each session by
nearly 300 session-level features, such as the interarrival time
of packets (minimum, maximum, average, variance, and en-
tropy), ratio between incoming and outgoing bytes, time to live
statistics, session duration, and more. Finally, the (structured)
data are processed by a device type classifier, trained in advance
on the network traffic collected in the testbed from the devices
in Table IV.

Given a set of IoT device types (shown in Table IV) and a
structured set of labeled traffic data, we treat the task of IoT-
device-type identification as a multiclass classification problem.
That is, we wish to label each IP stream with the type of the IoT
device that is most likely to have produced it. To achieve this,
we employ the random forest supervised machine learning al-
gorithm for training a classifier. This is conducted by the STM,
where network traffic data are first collected, and MAM modules
of the testbed, in order to generate appropriate models in advance
to use in the testing phase of this test scenario. The classifier is
comprised of the following two steps: 1) session-level classifica-
tion, where a multiclass classifier is used to classify one session
at a time; and 2) sequence-level classification, which performs
a majority vote on a sequence of session classifications to make
a final decision regarding the IoT device type.

In step 1 (the session-level classification of the classifier oper-
ation), we train a random forest multiclass classifier on a training
set. Then, we optimize its classification threshold, denoted as
tr, such that it maximizes the F-measure [see (1)] on a sepa-
rate validation set. This traditional metric, also known as the
balanced F-score or F1 score, ranges from 0 (the worst value
for the harmonic mean of precision and recall) to 1 (best value,
attained when both recall and precision are high).

F = 2 · precision × recall
precision + recall

. (1)

Fig. 12. Classification accuracy with the test set as a function of the length of
the session sequence used for majority voting.

When applied to a single session, the classifier outputs a vec-
tor of posterior probabilities P, whose length is equal to the
number of IoT device types in the training set. Each probabil-
ity pi ∈ P denotes the likelihood of the inspected session to
originate from the respective device type. Given the probability
vector P, if there exists any pi > tr∗, then the session is classi-
fied as originating from device i which maximizes P. Otherwise,
the session is classified as “unknown.” In step 2 (the sequence-
level classification of the classifier operation), the length of the
sequence is optimized to reach the maximum accuracy on the
validation set with a minimal sequence length.

For empirical evaluation of the testbed’s IoT-device-type
identification plugin, we conducted nine experiments, corre-
sponding to the nine device types available in our testbed. In
each experiment, one IoT device type was left out of the train-
ing and validation sets, to represent an unknown IoT device
type. Then, a classifier was trained on the remaining (known)
IoT device types while optimizing tr for the single-session
classifier and the sequence length for the majority vote. Fig. 12
and Table V summarize the nine experiments we conducted.
In Fig. 12, it can be seen how longer sequences of consecutive

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 37

TABLE V
PERFORMANCE WITH THE TEST SET (CLASSIFICATION BASED ON SEQUENCES OF 20 SESSIONS EACH)

sessions lead to a higher classification accuracy of both known
and unknown IoT device types. At the same time, however,
longer sequences directly translate into longer detection times.
Hence, we chose the sequence length of 20 sessions as the point
that optimizes the tradeoff between classification accuracy and
speed. Based on this sequence length and the optimized classi-
fication threshold tr∗ for each device type, Table V shows the
classification accuracies obtained with the test set. Overall, these
results demonstrate the feasibility of our approach for the IoT-
device-type identification: classification accuracy of 0.99±0.01
for known IoT device types and 0.96±0.07 for unknown types.

The final classification results obtained in the MAM module
are eventually sent to the database of the testbed system in the
MRM module. Then, the testbed generates the final report for
this test scenario for the user. It also enables the comparison
between the IoT device type predicted by the model and the
actual type.

2) Test Scenario 2. Automatic Anomaly Detection: The
always-connected nature of IoT devices, in addition to their
inherent computational weakness, makes them especially vul-
nerable to breaches from outside attackers or compromised de-
vices sharing the same network, potentially exposing all of the
network nodes and the data they may hold to cyberattacks. In this
test scenario, we demonstrate the anomaly detection capability
of the security testbed as an advanced analysis module. The
main goal of this module is to detect compromised IoT devices
in advance, based on their traffic data alone. The entire process
of this module, from the network scanning to anomaly detec-
tion conducted in the testbed, is described next and illustrated
in Fig. 13.

For the testbed’s anomaly detection operation, we first uti-
lize the scanning test supported by the security testbed’s STM
module. More specifically, we employ a passive monitoring ca-
pability of the scanning test, by which network data traffic from
the IoT-DUT is collected without any interference. This is differ-
ent from active monitoring, where data about the configuration
of a connected IoT device is collected by interacting with it,
for example, discovering open ports with Nmap, as shown in
Section VI-A Test Scenario 1. For anomaly detection, the net-
work traffic data are passively monitored using the Wireshark
[40] tool, which is embedded in the testbed (this tool is run by
the testbed’s MAM module). The network traffic is then saved

Fig. 13. The anomaly detection process in the security testbed.

as a ∗.pcap file and used as the raw data for the anomaly detec-
tion model of the testbed. To structure the raw network traffic
data collected such that it can be processed by machine learning
algorithms, we use the same process presented in the device-
type identification process, (Test Scenario 1) using the STM and
MAM modules of the testbed. In essence, the raw traffic data,
stored in pcap format, is processed by a feature extractor tool
[55], which reconstructs the TCP sessions, and then, extracts
an abundance of session-level features. The original vector for
each session includes 274 features. For anomaly detection, we
only select the most valuable features in terms of information
gain; see Table VI for the set of the 20 most valuable features
extracted.

In order to train an anomaly detector for each IoT device
type, we use the one-class support-vector-machine algorithm,
implemented in Python’s Scikit Learn library [56]. At this stage,
referred to as the learning (or training) process, only benign
traffic is used in the testbed so that future deviations from normal
behavior are likely to be detected as anomalous. Similarly to the
algorithm of the IoT-device-type classification described in Test
Scenario 1, we designed the anomaly detector to operate in the
following two steps: in step (1), session-level anomaly scoring
and categorization (i.e., is the session normal or anomalous?)
is conducted, followed by step (2), where a majority vote on
a sequence of session anomaly classifications is obtained to
improve the accuracy.

When in operation mode (as opposed to training mode), be-
fore looking for anomalous patterns in the traffic data of an

38 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE VI
THE 20 MOST VALUABLE FEATURES IN TERMS OF INFORMATION GAIN

IoT-DUT, it is important to first identify its device type, and
only then, apply the corresponding anomaly detection model
that has been trained specifically for this device type. Ac-
cordingly, an IoT-device-type identification operation is con-
ducted in the testbed as a preliminary process, as presented in
Section VI-B Test Scenario 1. In practice, the testbed’s STMM
executes the scanning test in the STM to collect the network
traffic data produced from the IoT-DUT. Once enough data are
captured (e.g., 10 min of device operation), the feature extractor
is executed on the collected data, and device-type identification
is performed in order to select the proper model to apply for
anomaly detection in the MAM.

To evaluate the performance of the anomaly detection mod-
ule described previously, which is operated as a plugin by the
testbed, we used an IP camera (SimpleHome XCS7-1001-WHT;
5,573 collected sessions) and a smartwatch device (Sony Smart-
Watch 3 SWR50; 2,005 collected sessions). Accordingly, we
trained two respective anomaly detectors on these devices’ be-
nign data, and then, compromised the devices under test (the
IP camera and the smartwatch device) to test the ability of our
anomaly detectors to identify them as compromised devices. In
order to compromise the smartwatch device, we gained shell ac-
cess via its Android Debug Bridge (ADB) connectivity. The IP
camera provides Telnet access with default credentials, allow-
ing us remote control. Having gained shell access, we infected

TABLE VII
TPR AND TNR FOR THE IP CAMERA

Fig. 14. TNR for the IP camera.

TABLE VIII
TPR AND TNR FOR THE SMARTWATCH

the IP camera and the smartwatch device with Gafgyt’s C&C
malware binaries collected from the IoTPOT dataset [57], and
adjusted it to operate locally in our testbed. In addition, a version
of Nmap that had been adjusted to Android Wear OS was used
to perform portscanning and was executed via the smartwatch
device to simulate a port scan attack, as shown in [7]. In the test
set we used 1000 TCP sessions from each of the compromised
devices. Table VII presents the TPR and TNR for the IP camera
anomaly detection model as a function of the length of the ses-
sion sequence for majority voting. As can be seen in Table VII,
the malware-infected IP camera was immediately detected as
anomalous (100% TPR), based on a single session. In addition,
a sequence of ten consecutive sessions was sufficient to perfectly
identify benign traffic as such (100% TNR), as can be seen in
Fig. 14.

Similarly, Table VIII contains the TPR and TNR results ob-
tained by applying the anomaly detection model on the smart-
watch device. For perfect accuracy (TPR and TNR), a majority
vote had to be performed on a sequence of 31 consecutive ses-
sions, as can be seen in Fig. 15.

3) Test Scenario 3. Resilience of Internet of Things Against
DoS: The IoT exposes various vulnerabilities at different levels.
One such exploitable vulnerability is DoS. As a case in point,

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 39

Fig. 15. TPR for the smartwatch.

IoT devices have recently been used to launch various attacks
such as DoS to steal end user information [58]. Most of the recent
research in the area of the IoT and DoS attacks focuses on Bot-
nets exploiting IoT devices to launch distributed DoS (DDoS)
attacks [59]. The scientific community has placed less emphasis
on DoS attacks targeted against IoT devices themselves. In other
words, DoS attacks are a threat to the IoT devices. Although IoT
devices expose various vulnerabilities, they have less computing
power compared to desktop computers and other computing de-
vices, and thus, are susceptible and less resilient to such attacks.

In order to evaluate the resilience of IoT devices against DoS
and DDoS attacks, we introduced the IoT resilience metric, re-
ferred as RIoT. The IoT resilience metric is calculated based on
the services running on an IoT-DUT and the security vulnera-
bilities exposed by that IoT device.

In order to measure the resilience of a tested IoT device to the
attack, we integrated the DoS plugin to the testbed, running by
STM and MAM modules of the testbed, which can perform DoS
attacks against IoT devices. The DoS plugin has the capability of
generating legitimate and nonlegitimate packets for various pro-
tocols such as UDP, TCP, HTTP, Bluetooth Low Energy (BLE),
etc. and mutates those packets to cause a DoS attack on IoT de-
vices. Furthermore, we also adopt and evaluate legacy metrics
such as the allocation of resources [60]–[62] and percentage of
failed transactions [63] metrics with our IoT resilience metric.

a) IoT resilience: Before we define the Resilience of an
IoT device, we need to understand its Permeance [64]. We define
the Permeance, referred as PIoT [see (2)], of an IoT device
against a DoS and DDoS attack as follows.

Definition 1 (a) The total number of packets an IoT device
can service over a period of time when it is bombarded with
attack packets before the IoT device fails to provide service:

PIoT = S ∗ (Pn ∗ Pa)
TRRT

(2)

where Pn represents the total number of normal packets, Pa

represents the total number of attack packets, TRRT represents
the request response time of the IoT DUT, and S represents
the resilience constant specific to an IoT device vulnerability.
In [50], we presented a penetration testing procedure for IoT
devices, and we defined a metric system for port scanning to
rate the vulnerable ports of the IoT device. We make use of the

same metric system to measure our constant S. The resilience
constant S varies as a function of the risk level of the scanned
ports. The total number of open ports running specific services
on each of them indicates a possibility of those services being
affected when the device is under a DoS or DDoS attack. The
higher the number of open ports, the higher the chances of
the device being attacked. Keeping this in mind, in [50], we
calculate the exploitability score for an IoT device. We use the
same methodology to calculate the score of the IoT devices used
in our experiments.

The unit of Permeance is P 2

S , where P denotes the total num-
ber of packets including the normal and attack packets. From
the definition of Permeance, we can define the Resilience of an
IoT device against a DoS attack, referred as RIoT [see (3)], as
follows.

Definition 1 (b) The resilience of an IoT device is defined as
the reciprocal of its permeance:

RIoT =
1

PIoT
(3)

where RIoT is the resilience of an IoT device whose unit is S
P 2 .

b) Legacy metrics: We identify and discuss an array of
DoS metrics known as legacy metrics [62], [63] and utilize
them to quantify the impact of such attacks on IoT devices.
We have selected some of the widely used metrics from the
state-of-the-art and are as follows.

Allocation of resources: According to Bhandari et al. [62],
allocation of resources (4) is defined as the ratio of the bandwidth
(BW) of legitimate traffic to the bandwidth of attack traffic:

Allocation of Resources =
Legitimate traffic BW

Attack traffic BW
. (4)

The percentage of failed transactions [pft, see (5)] is a DoS
impact measure for the percentage of failed transactions for each
application on an IoT device [63]. Formally, pft is defined as

pft =
(

failed transactions
total no of transactions

)
×100. (5)

c) Experimental methodology and results: Our experi-
ments were conducted in our IoT security testbed using the
DoS plugin (via the STM and MAM modules of the testbed)
to evaluate and calculate the Resilience of IoT devices against
various DoS attacks.

DoS attacks: For performing DoS attacks aimed at IP de-
vices, we conducted resource exhaustion by sending spoofed
legitimate packets to the IoT devices. For example, the commu-
nication between the Android app on the mobile phone and an
IP Camera are monitored, and the legitimate packets are injected
into the communication network channel of the IP camera. This
kind of resource exhaustion is performed for various IP-based
IoT devices in the testbed in man-in-the-middle attack fashion.
On BLE devices, we were able to carry out DoS attacks on de-
vices such as a Fitbit, a blood pressure monitor, etc. A BLE
packet injection attack involves bombarding the BLE devices
with a large number of illegitimate BLE packets resulting in the
devices being overwhelmed.

40 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

TABLE IX
EVALUATION OF IOT DEVICES IN OUR TESTBED

DDoS attacks: Compromised IoT devices are capable of car-
rying out DDoS attacks on other IoT devices, computers, or
services. One such way of facilitating a DDoS is via malware,
such as Mirai [65], which was used in our experiments. Mi-
rai turns networked devices into remotely controlled Bots. We
launched a DDoS attack using ten IP cameras on the victim IP
camera. In our Botnet experimentation, we used a total of 11 D-
Link DCS-942L [66] IP cameras, two laptops, and a dedicated
access point. We monitored the network traffic on a desktop
computer through a mirror port. We have evaluated our pro-
posed RIoT metric against the legacy metrics with various DoS
attacks as mentioned previously. Table IX provides the compre-
hensive results for the relevant metrics for testing several IoT
devices used in our experimentation in the testbed.

Based on our evaluation, we can conclude that the resilience
of IoT metric can better calculate how resilient an IoT device is
against a DoS attack than other metrics, by considering security
of the IoT device and just not limiting to the resources and
transactions.

4) Test Scenario 4. Check Password Complexity: Many of
the IoT devices connected to the Internet lack basic security
protection, such as secure password authentication. As a result,
those IoT devices can easily become infected by a malware and
get recruited into malicious botnets (for example, the infamous
Mirai botnet that targeted IoT devices running the Telnet service
with default credentials).

To address this issue, a new plug-in was added to the testbed
as a part of the STM module. The plug-in checks the com-
plexity of a device’s credentials and, thus, evaluates the risk
that an IoTDUT may be exploited by an attacker or malware to
gain remote access to the IoT-DUT. First, a simple port scan is
performed in order to identify available administration services
(e.g., SSH or Telnet) that may allow remote access. If such ports
are found to be open, an attempt is made to log in to the device
with default credentials using a dictionary of known passwords
(rockyou.txt). If all login attempts fail or no such ports were
found to be open, a message is displayed, informing the testbed
operator that intervention with the IoT hardware is necessary in
order to proceed with the test process.

In the next step of the test, the plug-in executes a black-
box reverse engineering methodology according to [69] and
[70]. Using this methodology, a message is displayed, asking
the testbed operator to identify and connect to the universal
asynchronous receiver–transmitter (UART) ports of the IoT-
DUT (if such ports exist).

Fig. 16. Example of UART terminals of an IP camera.

UART ports are commonly used for the development and
maintenance of IoT devices (an example of a UART port can be
seen in Fig. 16). Connecting to UART terminals allows easy ac-
cess for communication with the OS. Once a UART connection
has been identified, the test proceeds with an attempt to ex-
tract the password files “/etc/passwd” or “/etc/shadow” that are
stored in the OS. Then, the hashcat tool [67] is used to perform
advanced password cracking on the password files based on the
pattern generation guidelines and pattern list presented in [69].
Table X summarizes the results obtained in this test scenario for
16 IoT devices according to [69]. The level of complexity of a
password is determined based on the time it takes to recover it.
As can be seen from Table X, two IoT devices have a medium
level of password complexity, five devices have a low level of
password complexity, another four devices have very low com-
plexity, four devices have unknown complexity, and one device
has no password, and thus is defined as “None” in the table.

VII. DISCUSSION AND FUTURE WORK

The IoT is an emerging technology that transforms ordinary
physical devices, such as televisions, refrigerators, watches,
cars, and more, into smart connected devices. The potential
applications associated with the IoT are seemingly infinite, with
new and innovative features and capabilities being developed
almost daily. However, the extensive benefits and opportuni-
ties provided by the IoT computing are accompanied by ma-
jor potential security and privacy risks. Moreover, due to the
heterogeneous nature of such devices (different types of devices
with different software and hardware configurations installed,
produced by different manufacturers, etc.) and the fact that they
are used in a variety of contexts, analyzing and ensuring the
security of such devices is considered a complex task. There-

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 41

TABLE X
THE PASSWORD COMPLEXITY OF THE EVALUATED DEVICES

fore, in this paper, we propose an innovative security testbed
framework targeted specifically for IoT devices.

Our proposed security testbed deals with the greatest chal-
lenge in the IoT research domain, namely security testing and
analysis operations, as IoT systems are considered highly com-
plex environments due to the range of functionality and the vari-
ety of operations involved in the process. Analyzing the security
and privacy risks of IoT devices and their effects on existing sys-
tems/environments is considered an extremely complex task due
to their heterogeneous nature, the number of types of devices,
and the many different vendors and suppliers, technologies, op-
erating systems in use, and connectivity capabilities, and the fact
that these smart devices are used in many contexts and states.

In addition, the proposed testbed deals with the challenge of
testing different IoT devices and configurations, including pro-
prietary and open-source operating systems and applications,
therefore, generic and easily updatable security testing mech-
anisms are required, as used in our testbed. Moreover, as IoT
devices are developed as closed systems (both hardware and
software), the security testbed aims at dealing with the chal-
lenge of testing any embedded-based device using a combi-
nation of standard security testing mechanisms along with ad-
vanced monitoring and analysis tools, in order to examine both
the internal status of the IoT-DUT (including CPU utilization,
memory consumption, file system operation, and more) and the
implication/impact of the device on the environment the IoT de-
vice is deployed (mainly using traffic analysis operation). The
latter is done by the testbed by employing different security
testing for different means of communication supported by the
IoT devices, including Wi-Fi, Bluetooth, ZigBee, and others,
using both standard and advanced software and hardware-based
analysis tools (such as Wireshark, Ubertooth, etc.), in order to
analyze the incoming and outgoing traffic patterns to/from the
IoT DUT.

In order to accomplish this, the testbed employs standard
and advanced security testing mechanisms in order to evalu-
ate the security level of the IoT-DUT. The standard security
testing is mainly based on penetration testing methodology,
including discovery, vulnerability scans, and penetration tests

(such as port scanning, fingerprinting, process enumeration, and
fuzzing), which use basic and standard testing techniques that
are generic and easily updatable security testing in the testbed.
In contrast, the advanced security testing is based on unique
capabilities of the testbed. For example, the testbed can simu-
late real environments where IoT devices are deployed in order
to identify possible context-based attacks by compromised IoT
devices, as demonstrated in our previous work [7]. In addition,
in the testbed innovative security testing mechanisms based on
machine learning approaches are applied; these mechanisms are
aimed at device identification, where the type of the device is
identified based only on an analysis of the network traffic the
device generates. Similarly, an anomaly detection mechanism
to detect anomalous behavior of an IoT DUT (also based on its
network traffic analysis) is also applied in the testbed. More-
over, resilience to DoS attacks test and checking the manage-
ment connection password complexity test are also employed
as advanced mechanisms in order to measure the device secu-
rity strength. Using this methodology, of applying the standard
security testing based on well-known penetration testing ap-
proaches, along with advanced security testing, which are based
on innovative testing capabilities and mechanisms (including
applying simulators and stimulators tools along with advanced
monitoring and analysis mechanisms based on machine learning
approaches), our proposed security testbed can conduct a wide
range of security tests for testing and evaluating IoT devices in
several contexts in order to evaluate their security level, provid-
ing a state of the art multilayered testing model. Furthermore, the
testbed can be extended with new security tests, simulators, and
stimulators, and monitoring and advanced analysis mechanisms
that are used as internal and external plugins of the testbed.

To the best of our knowledge, we are the first to propose such
an extensive security testing framework for IoT devices. Accord-
ingly, in this paper, we emphasize the need for such a security
testing platform, defining the testbed requirements and system
architecture, and developing the core structure and the system
infrastructure of the proposed security testbed, along with im-
plementing a variety of security testing capabilities, based on
open-source and standard tools and self-developed innovating

42 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

advanced mechanisms. As part of the building blocks in our
security testing system, we integrate different peer tools as plu-
gins to our testbed in order to meet the requirements and design
for such a security testing platform, as well as to ensure that the
testbed is compliant with the security testing system demands
as possible. In addition, different advanced and innovative se-
curity testing mechanisms and algorithms were developed as
advanced plugins as part of the testbed and are demonstrated
by our security testbed, such as plugins that simulate real-time
environments for IoT devices using different simulators and
stimulators (as demonstrated by [7]) or employ device identifi-
cation and automatic anomaly detection mechanisms based on
machine learning approaches that we developed, and more. Ac-
cordingly, from our point of view, we are not competing with
other peer tools, rather we are utilizing their capabilities in order
to suggest as the most comprehensive security testing platform
for IoT devices possible.

In future work, we intend to enhance the testbed system’s
capacity in order to support its full operational capability. This
includes deployment of additional simulator devices, implemen-
tation of advanced measurement and analysis tools, and further
automation of the testing process. Moreover, in order to ex-
tend the scope of the security testing, we intend to connect the
security testbed with external testing systems targeted for IoT
devices, such as a honeypot environment [68]. Based on that,
additional requirements for the developing IoT security testbed,
as well as its potential limitations, will be addressed. This will
allow us to define which features are essential for testing var-
ious IoT devices used in different contexts and environments.
Furthermore, in the future, we are planning to offer the security
testbed as a service for end users from academia and industry,
as well as individual smart home users; in order to do this, we
plan to develop algorithms such that any individual can use our
testbed capabilities to test their IoT devices. Researchers and
end users will also be allowed to add their own tests to the
testbed. With regard to smart home users, we are in the process
of developing software that an individual can download to test
their smart home network. In this case, the software will be
able to scan the home network to collect the network traffic and
upload a ∗.pcap file to our cloud service while preserving the
end user’s privacy. Our proposed solution will use an anomaly
detection plugin and produce a report. The report will provide
an assessment of how protected (or compromised) the smart
home network is by assigning an overall metric score.

REFERENCES

[1] SHODAN, “The search engine for the internet of things,” 2018. [Online].
Available: https://www.shodan.io/

[2] M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen, “Unin-
vited connections: A study of vulnerable devices on the internet of things
(IoT),” in Proc. IEEE Joint Intell. Secur. Informat. Conf., Sep. 2014,
pp. 232–235.

[3] L. Markowsky and G. Markowsky, “Scanning for vulnerable devices in the
Internet of Things,” in Proc. IEEE 8th Int. Conf. Intell. Data Acquisition
Adv. Comput. Syst., Technol. Appl., Sep. 2015, vol. 1, pp. 463–467.

[4] “Computerworld, a publication website and digital magazine for infor-
mation technology (IT) and business technology professionals,” 2018.
[Online]. Available: http://www.computerworld.com/

[5] “The Next Web, an online publisher of tech and web development news,”
2018. [Online]. Available: http://thenextweb.com/

[6] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T.
Razafindralambo, “A survey on facilities for experimental internet of
things research,” IEEE Commun. Mag., vol. 49, no. 11, pp. 58–67, Nov.
2011.

[7] S. Siboni, A. Shabtai, N. O. Tippenhauer, J. Lee, and Y. Elovici, “Advanced
security testbed framework for wearable IoT devices,” ACM Trans. Inter-
net Technol., vol. 16, no. 4, 2016, Art. no. 26.

[8] Stanford, Secure Internet of Things Project, 2018. [Online]. Available:
http://iot.stanford.edu/

[9] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: A wireless
sensor network testbed,” in Proc. 4th Int. Symp. Inf. Process. Sensor Netw.,
Apr. 2005, pp. 483–488.

[10] A. Arora, E. Ertin, R. Ramnath, M. Nesterenko, and W. Leal, “Kansei:
A high-fidelity sensing testbed,” IEEE Internet Comput., vol. 10, no. 2,
pp. 35–47, Mar./Apr. 2006.

[11] J. Bers, A. Gosain, I. Rose, and M. Welsh, “Citysense: The design
and performance of an urban wireless sensor network testbed,” in Proc.
IEEE Int. Conf. Technol. Homeland Secur., Waltham, MA, USA, 2008,
pp. 583–588.

[12] C. B. Des Rosiers et al., “Very large scale open wireless sensor network
testbed,” 2011.

[13] I. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and D. Pfisterer,
“WISEBED: An open large-scale wireless sensor network testbed,” in
Proc. Int. Conf. Sensor Appl., Exp. Logistics, Sep. 2009, pp. 68–87.

[14] FIT IoT-LAB, “IoT experimentation at a large scale,” 2018. [Online].
Available: https://www.iot-lab.info/.

[15] “German telekom and city of friedrichshafen, friedrichshafen smart
city,” 2010. [Online]. Available: http://www.telekom.com/dtag/cms/
content/dt/en/395380

[16] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda, “Indriya: A low-
cost, 3D wireless sensor network testbed,” in Proc. Int. Conf. Testbeds
Res. Infrastructures, Apr. 2011, vol. 90, pp. 302–316.

[17] INFINITE, International Future Industrial Internet Testbed. [Online].
Available: http://www.iotinfinite.org/

[18] FIESTA-IoT, “Federated interoperable semantic IoT testbeds and appli-
cations.” [Online]. Available: http://fiesta-iot.eu/

[19] M. Nati, A. Gluhak, H. Abangar, and W. Headley, “Smartcampus: A user-
centric testbed for internet of things experimentation,” in Proc. 16th Int.
Symp. Wireless Pers. Multimedia Commun., Jun. 2013, pp. 1–6.

[20] SmartSantander, “World city-scale experimental research facility for a
smart city.” [Online]. Available: http://www.smartsantander.eu/

[21] Y. Berhanu, H. Abie, and M. Hamdi, “A testbed for adaptive security for
IoT in eHealth,” in Proc. Int. Workshop Adaptive Secur., Sep. 2013, p. 5.

[22] R. H. Weber, “Internet of things—New security and privacy challenges,”
Comput. Law Secur. Rev., vol. 26, no. 1, pp. 23–30, 2010.

[23] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Comput. Netw.,
vol. 76, pp. 146–164, 2015.

[24] Al Ameen, Liu M., Jr., and K. Kwak, “Security and privacy issues in wire-
less sensor networks for healthcare applications,” J. Med. Syst., vol. 36,
no. 1, pp. 93–101, 2012.

[25] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the
internet of things: Perspectives and challenges,” Wireless Netw., vol. 20,
no. 8, pp. 2481–2501, 2014.

[26] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar, and K.
Wehrle, “Security challenges in the IP-based internet of things,” Wireless
Pers. Commun., vol. 61, no. 3, pp. 527–542, 2011.

[27] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen, and
S. Shieh, “IoT security: Ongoing challenges and research opportunities,”
in Proc. IEEE 7th Int. Conf. Service-Oriented Comput. Appl., Nov. 2014,
pp. 230–234.

[28] G. M. Køien, “Reflections on trust in devices: An informal survey of
human trust in an Internet-of-Things context,” Wireless Pers. Commun.,
vol. 61, no. 3, pp. 495–510, 2011.

[29] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed internet of things,” Comput. Netw.,
vol. 57, no. 10, pp. 2266–2279, 2013.

[30] A. Ukil, J. Sen, and S. Koilakonda, “Embedded security for Internet
of Things,” in Proc. 2nd Nat. Conf. Emerg. Trends Appl. Comput. Sci.,
Mar. 2011, pp. 1–6.

[31] J. Granjal, E. Monteiro, and J. S. Silva, “Network-layer security for the
Internet of Things using TinyOS and BLIP,” Int. J. Commun. Syst., vol. 27,
no. 10, pp. 1938–1963, 2014.

https://www.shodan.io/
http://www.computerworld.com/
http://thenextweb.com/
http://iot.stanford.edu/
https://www.iot-lab.info/
http://www.telekom.com/dtag/cms/content/dt/en/395380
http://www.telekom.com/dtag/cms/content/dt/en/395380
http://www.iotinfinite.org/
http://fiesta-iot.eu/
http://www.smartsantander.eu/

SIBONI et al.: SECURITY TESTBED FOR INTERNET-OF-THINGS DEVICES 43

[32] L. Li, “Study on security architecture in the Internet of Things,” in Proc.
Int. Conf. Meas., Inf. Control, May 2012, vol. 1, pp. 374–377.

[33] M. Abomhara and G. M. Køien, “Security and privacy in the internet of
things: Current status and open issues,” in Proc. Int. Conf. Privacy Secur.
Mobile Syst., May 2014, pp. 1–8.

[34] K. T. Nguyen, M. Laurent, and N. Oualha, “Survey on secure commu-
nication protocols for the Internet of Things,” Ad Hoc Netw., vol. 32,
pp. 17–31, 2015.

[35] X. Xiaohui, “Study on security problems and key technologies of the
internet of things,” in Proc. 5th Int. Conf. Comput. Inf. Sci., Jun. 2013,
pp. 407–410.

[36] We Live Security, “Ransomware and the internet of things,”
2016. [Online]. Available: http://www.welivesecurity.com/2016/04/27/
ransomware-internet-things/

[37] A. W. Atamli and A. Martin, “Threat-based security analysis for the inter-
net of things,” in Proc. Int. Workshop Secure Internet Things, Sep. 2014,
pp. 35–43.

[38] OWASP, The Open Web Application Security Project, 2018. [Online].
Available: https://www.owasp.org/index.php/Top_10_2013-Top_10

[39] Nmap, Free Security Scanner for Network Exploration and Security Au-
dits, 2018. [Online]. Available: https://nmap.org/

[40] Wireshark, A Network Protocol Analyzer, 2018. [Online]. Available:
https://www.wireshark.org/

[41] Aircrack-NG, A Network Software Suite to Assess WiFi Network Security,
2018. [Online]. Available: http://aircrack-ng.org/

[42] Metasploit, Penetration Testing Tool, 2018. [Online]. Available:
https://www.metasploit.com/

[43] Kali Linux, Penetration Testing and Ethical Hacking Linux Distribution,
2018. [Online]. Available: https://www.kali.org/

[44] Nessus, A Network Vulnerability Scanner, Tenable Network Secu-
rity, 2018. [Online]. Available: http://www.tenable.com/products/nessus-
vulnerability-scanner

[45] OpenVAS, A Framework for Vulnerability Scanning and Vulnerability
Management, 2018. [Online]. Available: http://openvas.org/

[46] Cain & Abel, A Password Recovery Tool for Microsoft Operating Systems,
OXID.IT, 2018. [Online]. Available: http://www.oxid.it/cain.html

[47] OSSEC, Open Source HIDS Security, 2018. [Online]. Available:
http://ossec.github.io/

[48] TestStand NI, A Test Management Software for Automated Test, National
Instruments, 2018. [Online]. Available: http://www.ni.com/teststand/

[49] LabVIEW, A System-Design Platform and Development Environment, Na-
tional Instruments, 2018. [Online]. Available: http://www.ni.com/labview/

[50] V. Sachidananda, S. Siboni, A. Shabtai, J. Toh, S. Bhairav, and Y. Elovici,
“Let the cat out of the bag: A holistic approach towards security analysis
of the internet of things,” in Proc. 3rd ACM Int. Workshop IoT Privacy,
Trust, Secur., Apr. 2017, pp. 3–10.

[51] Tenable, Vulnerability Reporting by Common Ports, 2018. [Online].
Available: http://www.tenable.com/sc-report-templates/vulnerability-
reporting-by-common-ports

[52] PacketFence, 2018. [Online]. Available: https://packetfence.org/dhcp_
fingerprints.conf

[53] National Vulnerability Database (NVD)-NIST, 2018. [Online]. Available:
https://nvd.nist.gov/

[54] Nikto, A Web Server Fuzzer, 2018. [Online]. Available: https://github.com/
sullo/nikto

[55] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware de-
tection using network traffic classification,” in Proc. IEEE Conf. Commun.
Netw. Secur., Sep. 2015, pp. 134–142.

[56] Scikit-Learn, Machine Learning in Python, 2018. [Online]. Available:
http://scikit-learn.org/stable/

[57] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C.
Rossow, “Iotpot: A novel honeypot for revealing current IoT threats,” J.
Inf. Process., vol. 24, no. 3, 522–533, 2016.

[58] Distributed Denial of Service Using Mirai, 2018. [Online]. Available:
https://www.bankinfosecurity.com

[59] Mirai Malware for IoT, 2018. [Online]. Available:
https://www.symantec.com

[60] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S.
Shenker, “Controlling high bandwidth aggregates in the network,” ACM
SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 62–73, 2002.

[61] G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson, “A framework
for a collaborative DDoS defense,” in Proc. 22nd Annu. Comput. Secur.
Appl. Conf., Dec. 2006, pp. 33–42.

[62] A. Bhandari, A. L. Sangal, and K. Kumar, “Performance metrics for
defense framework against distributed denial of service attacks,” Int. J.
Netw. Secur., vol. 5, no. 2, p. 38, 2014.

[63] J. Mirkovic et al., “Towards user-centric metrics for denial-of-service
measurement,” in Proc. Workshop Exp. Comput. Sci., Jun. 2007, p. 8.

[64] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense
mechanisms,” ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 2,
pp. 39–53, 2004.

[65] Malware Must Die - Mirai Malware, 2018. [Online]. Available: http://
blog.malwaremustdie.org

[66] Dlink IP Camera, 2018. [Online]. Available: http://www.dlink.com.sg/
[67] Hashcat, Advanced Password Recovery, 2018. [Online]. Available: https://

hashcat.net/hashcat/
[68] J. D. Guarnizo et al., “Siphon: Towards scalable high-interaction phys-

ical honeypots,” in Proc. 3rd ACM Workshop Cyber-Phys. Syst. Secur.,
Apr. 2017, pp. 57–68.

[69] O. Shwartz, Y. Mathov, M. Bohadana, Y. Elovici, and Y. Oren, “Open-
ing Pandora’s box: Effective techniques for reverse engineering IoT de-
vices,” in Proc. Int. Conf. Smart Card Res. Adv. Appl. Cham, Switzerland:
Springer, Nov. 2017, pp. 1–21.

[70] O. Shwartz, Y. Mathov, M. Bohadana, Y. Oren, and Y. Elovici, “Reverse
engineering IoT devices: Effective techniques and methods,” IEEE Inter-
net Things J., to be published.

Shachar Siboni received the B.Sc. and M.Sc. degrees
in communication systems engineering from the Ben-
Gurion University of the Negev (BGU), Beersheba,
Israel, where he is currently working toward the Ph.D.
degree at the Department of Software and Informa-
tion Systems Engineering.

For the last 15 years, he has worked in a variety
of roles at leading companies in the hi-tech industry,
ranging from IT Technical Leader, Communication
Systems Engineer, Real-Time Embedded Software
Engineer/Developer and Team Leader, to Security

Researcher and Project Manager. In his most recent role, he led a joint research
project collaborating with research groups from BGU’s Cyber Security Re-
search Center and the iTrust Centre for Research in Cyber Security, Singapore
University of Technology and Design. His research interests include security
risk analysis and machine learning approaches in the Internet of Things research
domain.

Vinay Sachidananda received the master’s degree
from the University of Trento, Trento, Italy, and the
Ph.D. degree from the Technical University of Darm-
stadt, Darmstadt, Germany.

He is currently a Research Scientist with iTrust,
Singapore University of Technology and Design, Sin-
gapore. He has been researching in the area of cyber
security focusing on Internet of Things (IoT) and has
been developing various techniques on how to ex-
pose the IoT devices by finding known and unknown
vulnerabilities. Apart from security, he also has been

researching privacy issues related to IoT. His past research has focused on qual-
ity of information in wireless sensor networks.

Yair Meidan received the B.Sc. and M.Sc. degrees
in industrial engineering and management from the
Ben Gurion University of the Negev, Beersheba, Is-
rael, where he is currently working toward the Ph.D.
degree at the Department of Software and Informa-
tion Systems Engineering.

Afterward, for eight years, he served in several
data science roles in the industry, while teaching in-
troductory courses on data mining at Ben- Gurion
University, the Open University, and Shenkar Col-
lege of Engineering. He is currently a Researcher

with the Department of Software and Information Systems Engineering, Ben-
Gurion University of the Negev. His research interests include applied machine
learning, Internet of Things analytics, and cyber security.

http://www.welivesecurity.com/2016/04/27/ransomware-internet-things/
http://www.welivesecurity.com/2016/04/27/ransomware-internet-things/
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://nmap.org/
https://www.wireshark.org/
http://aircrack-ng.org/
https://www.metasploit.com/
https://www.kali.org/
http://www.tenable.com/products/nessus-vulnerability-scanner
http://www.tenable.com/products/nessus-vulnerability-scanner
http://openvas.org/
http://www.oxid.it/cain.html
http://ossec.github.io/
http://www.ni.com/teststand/
http://www.ni.com/labview/
http://www.tenable.com/sc-report-templates/vulnerability-reporting-by-common-ports
http://www.tenable.com/sc-report-templates/vulnerability-reporting-by-common-ports
https://packetfence.org/dhcp_fingerprints.conf
https://packetfence.org/dhcp_fingerprints.conf
https://nvd.nist.gov/
https://github.com/sullo/nikto
https://github.com/sullo/nikto
http://scikit-learn.org/stable/
https://www.bankinfosecurity.com
https://www.symantec.com
http://blog.malwaremustdie.org
http://blog.malwaremustdie.org
http://www.dlink.com.sg/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/

44 IEEE TRANSACTIONS ON RELIABILITY, VOL. 68, NO. 1, MARCH 2019

Michael Bohadana received the Master of Science
and Graduate degrees from the Department of Soft-
ware and Information Systems Engineering, Ben-
Gurion University of the Negev, Beersheba, Israel.

His research interests include machine learning,
deep learning, reverse engineering, and IoT security.

Yael Mathov received the B.Sc. degree in computer
science and the M.Sc. degree in software and in-
formation systems engineering from the Ben- Gurion
University of the Negev, Beersheba, Israel, where she
is currently working toward the Ph.D. degree.

Her work has been focusing on IoT security, re-
verse engineering, and machine learning. Her cur-
rent research interest includes adversarial machine
learning.

Suhas Bhairav received the master’s degree
from Technische Universität Darmstadt, Darmstadt,
Germany.

He is currently a Researcher with iTrust, Singapore
University of Technology and Design, Singapore. His
research interests include IoT security, static analy-
sis, programming languages, and graph theory.

Asaf Shabtai received the B.Sc. degree in mathe-
matics and computer sciences, the B.Sc. degree in
information systems engineering, the M.Sc. degre in
information systems engineering, and the Ph.D. de-
gree in information systems engineering, all from
Ben-Gurion University of the Negev, Beersheba, Is-
rael.

He is currently an Assistant Professor with the De-
partment of Software and Information Systems En-
gineering, Ben-Gurion University of the Negev. He
is a recognized expert in information systems secu-

rity and has led several large-scale projects and researches in this field. Since
2005, he has been a Principle Investigator of various research projects funded
by Deutsche Telekom AG (Telekom Innovation Laboratories @ BGU), Israeli
Ministry of Defense, Israeli Ministry of Trade and Commerce, and several lead-
ing cyber security companies. He has authored/coauthored papers in leading
peer-reviewed journals and conferences. In addition, he has coauthored a book
on information leakage detection and prevention. His main research interests
include computer and network security, machine learning, cyber intelligence,
security awareness, security of IoT and smart mobile devices, social network
analysis, and security of avionic and operational technologies systems.

Yuval Elovici received the B.Sc. and M.Sc. degrees
in computer and electrical engineering from Ben-
Gurion University of the Negev (BGU), Beersheba,
Israel, and the Ph.D. degree in information systems
from Tel- Aviv University, Tel Aviv, Israel.

He is currently the Director of the Telekom Inno-
vation Laboratories, Ben- Gurion University of the
Negev (BGU), the Head of the BGU Cyber Security
Research Center, and a Professor with the Department
of Software and Information Systems Engineering,
BGU. For the past 14 years, he has led the coopera-

tion between BGU and Deutsche Telekom. He also consults professionally in
the area of cyber security and is the cofounder of Morphisec, startup company
that develop innovative cybersecurity mechanisms that relate to moving target
defense. He has authored/coauthored articles in leading peer-reviewed journals
and in various peer-reviewed conferences. In addition, he has coauthored a book
on social network security and a book on information leakage detection and pre-
vention. His primary research interests include computer and network security,
cyber security, web intelligence, information warfare, social network analysis,
and machine learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

