
38 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

Combining Models for Improved Fault
Localization in Spreadsheets

Birgit Hofer, Andrea Höfler, and Franz Wotawa

Abstract—Spreadsheets are the most prominent example of end-
user programing, but they unfortunately are often erroneous, and
thus, they compute wrong values. Localizing the true cause of such
an observed misbehavior can be cumbersome and frustrating es-
pecially for large spreadsheets. Therefore, supporting techniques
and tools for fault localization are highly required. Model-based
software debugging (MBSD) is a well-known technique for fault
localization in software written in imperative and object-oriented
programing languages like C, C++, and Java. In this paper, we
explain how to use MBSD for fault localization in spreadsheets
and compare three types of models for MBSD, namely the value-
based model (VBM), the dependency based model (DBM), and
an improved version of the DBM. Whereas the VBM computes
the lowest number of diagnoses, both DBMs convince by their
low computational complexity. Hence, a combination of these two
types of models is desired, and we present a solution that combines
value-based and DBM in this paper. Moreover, we discuss a de-
tailed evaluation of the models and the combined approach, which
indicates that the combined approach computes the same number
of diagnoses like the VBMs while requiring less computation time.
Hence, the proposed approach is more appropriate to be used in
tools for fault localization in spreadsheets.

Index Terms—Fault diagnosis, fault location, model-based diag-
nosis (MBD), reasoning about programs, spreadsheet programs.

ABBREVIATIONS & ACRONYMS LIST

AB Abnormal (usually used in MBSD as predicates in
formulas).

CSP Constraint Satisfaction Problem.
DBM Dependency Based Model.
HPD High Priority Diagnoses.
ISSRE The IEEE International Symposium on Software Re-

liability Engineering.
LPD Low Priority Diagnoses.
MBD Model-Based Diagnosis.
MBSD Model-Based Software Debugging.
NDM Novel Dependency based Model.

Manuscript received April 8, 2015; revised October 29, 2016, May 10, 2016,
and August 17, 2016; accepted November 16, 2016. Date of publication January
4, 2017; date of current version March 1, 2017. This work was supported by
the Austrian Science Fund (FWF) project DEbugging Of Spreadsheet Programs
under contract number I2144 and the Deutsche Forschungsgemeinschaft (DFG)
under contract number JA 2095/4-1. Associate Editor: T. H. Tse.

B. Hofer and F. Wotawa are with the Institute for Software Technology,
Graz University Technology, Graz 8010, Austria (e-mail: bhofer@ist.tugraz.at;
wotawa@ist.tugraz.at).

A. Höfler is with the Graz University of Technology, Graz 8010, Austria
(e-mail: andrea.hoefler@student.tugraz.at).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2016.2632151

OBS Observations, i.e., values of cells in a spreadsheet.
SD System Description; formal model of a spreadsheet.
SMT Satisfiability Modulo Theories.
VBM Value-Based Model.

I. INTRODUCTION

S PREADSHEETS are by far the most successful and promi-
nent example of end-user programing. Spreadsheet users

outnumber professional programers many times over. The US
Bureau of Labor and Statistics estimates that, in 2012, more than
55 million people used spreadsheets and databases at work on
a daily basis [1]. Moreover, spreadsheets are used in companies
for example for financial reporting and forecasting.

Given that important decisions are often based on spread-
sheets, it is desirable that spreadsheets are free from errors.
Unfortunately, numerous studies have shown that existing
spreadsheets contain an alarmingly high number of errors [2].
The list of horror stories where spreadsheets caused immense
financial loses or damage of image is long1. For example, the
economists Reinhart and Rogoff suffered from a loss of reputa-
tion, when it became public that they published erroneous data
because of a spreadsheet fault [3], [4]. A recent example of a
financial loss caused by a spreadsheet is the “London whale”
trading debacle [5]: A loss of $400 million was not immediately
detected because of a fault in JP Morgan’s value at risk model
spreadsheet. According to Panko [6], there is a 3% to 5% chance
of making a mistake when writing a formula; hence, the prob-
ability that a spreadsheet with 1000 formulas contains at least
one fault is more than 99.9%.

Localizing the cell(s) which are responsible for an observed
error can be very demanding because spreadsheets lack sup-
port for abstraction, encapsulation, or structured programing.
Furthermore, spreadsheets are often created without previous
planning of time for maintainability or scalability. Therefore,
support for fault localization is strongly needed. There have been
studies on how users manually debug spreadsheets, e.g., [68].
In this paper, we focus on automated debugging, in particular
model-based fault localization for spreadsheets.

Fig. 1 illustrates our running example. This spreadsheet cal-
culates the moving behavior of an object in three subsequent
phases: constant acceleration, constant velocity, and constant
deceleration. These phases are represented by the columns B,
C, and D, accordingly. When a domain expert examines this

1See European Spreadsheet Risks Interest Group (EuSpRiG), http://www.
eusprig.org/horror-stories.htm.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 39

Fig. 1. Running example. Input cells are shaded in blue. Output vales are given in bold font. Correct output values are given in green color, erroneous output
values are given in red color. The faulty cell is framed in red. (a) Value view of the faulty spreadsheet and (b) formula view of the faulty spreadsheet.

spreadsheet, he/she first identifies the cells that are important
in the expert’s opinion. For example, the expert decides that
the cells B6, C6, D6, and E2 are important. Afterward, he/she
makes back-of-an-envelope calculations for these cells to get
a feeling for the order of magnitude the values of these cells
should have. Assume that the domain expert calculates that the
value for cell B6 must be around 100, the values for the cells C6
and D6 must be more than 100 000, and the value for E2 must
be 0. These back-of-an-envelope calculations help to detect that
the values for the cells C6 and D6 must be wrong because the
order of magnitude of the computed values differs from that of
the estimation (100 versus 100 000). The correct values for C6
and D6 are 200 100 and 200 150, respectively. Please note that
the user might have also used spreadsheet testing tools, e.g.,
WYSIWYT [51], Expector [65], or AUTOTEST [53] to detect
these errors.

Why do the computed values for these cells deviate from the
expected values (while the values for B6 and E2 are correct)? For
this small example, we identify the root cause of the observed
misbehavior, i.e., the faulty formula, by investigating all formu-
las step by step. However, for larger spreadsheets comprising
several hundred or even thousands of formulas, identifying the
root cause of an observed misbehavior is challenging, difficult,
and time consuming.

One possibility to deal with the fault localization problem
is model-based software debugging (MBSD) [7], where we
make assumptions about the correctness of cells. For exam-
ple, when assuming that the cell C5 of the running example
contains a wrong formula, we ignore this formula and we in-
vestigate whether the remaining formulas do not contradict the
expected values. This can be automatically done when consider-
ing formulas as equations and using a constraint or satisfiability
modulo theories (SMT) solver for consistency checking. When
ignoring the formula given in C5, a solver would not detect an
inconsistency with the expected output values (B6 = 100, C6 =
200,100, D6 = 200,150, and E2 = 0). Therefore, C5 is a root

cause explanation for the observed misbehavior; changing its
formula to C2 * C4 + C3 * C4 * C4/2 is a repair.

MBSD requires a model of the spreadsheet for the consis-
tency checks. This model contains either concrete or abstract
information. In the first case, we speak of a value-based model
(VBM); in the second case, we speak of a dependency based
model (DBM). Both model types can be automatically generated
from a faulty spreadsheet without any user interaction.

In the VBM [8]–[11], the formulas are directly con-
verted into constraints. Concrete values are propagated
within the individual constraints of the model. The main
advantage of VBMs is their precision: they allow for computing
a small set of diagnoses, i.e., explanations for an observed
misbehavior. Unfortunately, they have high computation times
and they do not scale. In addition, real numbers cannot be
handled satisfactorily [12].

In the DBM, only the data and control dependencies are cap-
tured. Instead of propagating concrete values, only correctness
information is propagated: the computed value of the cell is cor-
rect, if the cell is assumed to behave as expected, and all of its
input values are also correct. This type of model is well-known
for debugging programs written in traditional programing lan-
guages such as C, C++, and Java [18], [19]. In our previous
work presented at ISSRE 2014 [20], we introduced this type of
model for spreadsheet debugging. Unfortunately, DBMs are less
accurate than VBMs: they compute significantly more diagnoses
compared to VBMs. For our running example, we obtain two
single fault diagnoses, B5 and C5, when using the DBM. Even
though DBMs have a lower diagnostic accuracy than VBMs,
they have a convincing advantage: they require significantly
less computation time. VBMs often cannot be solved by state-
of-the-art constraint and SMT solvers, but DBMs for the same
underlying spreadsheets are solved in less than 1 s.

Small modifications in the DBM improve its diagnostic ac-
curacy [20]. However, this improved DBM still has, on average,
a higher number of diagnosis candidates than the VBM. MBSD

40 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

will only be accepted in practice if it 1) provides a small num-
ber of diagnosis candidates without missing the true fault, and
2) computes the diagnoses in real time.

This paper directly builds upon our previous work [20] and
improves it in several ways as follows:

1) We present an approach that combines the value-based
and the DBM. This approach allows for a small number
of diagnoses while having a moderate computation time.

2) We refine our list of operations and functions where
coincidental correctness might occur. Knowledge about
coincidental correctness is required for the improved
DBM.

3) We provide an in-depth evaluation of the basic models as
well as their combination.

The remainder of this paper is organized as follows: In
Section II, we discuss related research both in the field of MBSD
and in the field of spreadsheet debugging. In Section III, we
briefly review the basic definitions of the spreadsheet language.
In Section IV, we explain MBSD for spreadsheets and the dif-
ferent types of models that we have introduced for spreadsheets
in our previous work [20]. In addition, we illustrate the three
different types of models by means of the running example.
Afterward, we present in Section V the diagnosis partition-
ing approach, which combines the dependency based and the
VBMs. In Section VI, we present the setup and the results of the
empirical evaluation. The results of this evaluation are in line
with the results obtained in our previous work [20] where we
stated that the basic DBMs compute more diagnoses, but in a
fraction of the time required for the VBM. In addition, we show,
in this new evaluation, that the DBM solves more spreadsheet
diagnosis problems than the VBM. Furthermore, the empiri-
cal evaluation shows that the DBMs with diagnosis partitioning
have a 30% lower median runtime than the median runtime of
the VBM. The search space is reduced by more than 90% for the
majority of the spreadsheets when using MBSD. We conclude
the paper in Section VII.

II. RELATED WORK

Weiser [30], [31], Shapiro [32], and Reiter [21] were among
the first who focused on automated debugging. Reiter [21] has
laid the foundations for modern MBSD with his theory about
“Reasoning from first principles.” He used a system descrip-
tion and a set of observations as logical sentences to iden-
tify the faulty parts of circuits. Reiter’s diagnosis algorithm,
namely model-based diagnosis (MBD), computes all minimal
diagnoses; a diagnosis is minimal if no proper subset of the di-
agnosis is a diagnosis. Greiner et al. [29] presented a corrected
version of Reiter’s diagnosis algorithm.

While Reiter has focused on hardware debugging, Console
et al. [7] and Bond [33] used the ideas of MBD [21] to improve
debugging for software: They used Reiter’s algorithm to elimi-
nate parts of the source code that does not explain an observed
error. With their paper [7], Console et al. started the research
area called MBSD.

Nowadays, MBSD has a wide area of application in the
software domain: Besides the application of MBSD to logic

programing languages [7], MBSD has successfully been used
in hardware design languages [18], [34] and functional lan-
guages [35]. Wotawa [19] has investigated the relationship of
DBMs and program slicing. Mayer and Stumptner [36], [37]
focus on the different types of MBSD models. In addition to the
value-based and DBMs, they propose abstraction-based models.
Mayer’s Ph.D. thesis [38] summarizes and compares different
types of dependency based and VBMs. Another work of Mayer
et al. that is worth mentioning is their experience report about
using VBMs in the debugging process [39].

Mateis et al. [40], [41] were among the first who applied
MBSD to an object-oriented language, namely Java. While
Mateis et al. use DBMs, Wotawa et al. [23], [42] build upon
VBMs. They explain how to convert a debugging problem into a
constraint satisfaction problem (CSP). Another work of Wotawa
et al. [43] deals with the computational costs of MBSD: they
illustrate CSPs as hypertrees, because the width of hypertrees
indicates the complexity of the CSP: Hypertrees with a width
> 5 are hard problems. Wotawa et al. showed that the hypertree
width is often greater than 5, and therefore, debugging is a hard
problem.

Jannach and Engler [44] used constraint solving for spread-
sheet debugging. In a follow-up work, Jannach and Schmitz [8]
presented the EXQUISITE debugging tool as an add-on for MS
Excel. Abreu et al. [9]–[11] developed a model-based debug-
ging approach for spreadsheets which converts a spreadsheet
into a value-based CSP. In contrast to Jannach and Schmitz’s
approach, Abreu’s approach relies on a single test case, and
Abreu et al. directly encode the reasoning about the correctness
of cells into the CSP. The VBM used in this paper directly builds
upon the model presented in [9], [10], and [11]. Ayalew and
Mittermeir [45] propose a slicing approach for spreadsheet fault
localization. In this approach, the number of incorrect successor
and predecessor cells influences the ranking of a cell in the fault
localization. Ruthruff et al. [46] adapted spectrum-based fault
localization to the spreadsheet domain.

Abraham and Erwig presented GoalDebug [47], [48]: a tool
supporting end users in the debugging process by generating
repair candidates for faulty cells. In addition to GoalGebug,
the authors presented a list of mutation operators for spread-
sheets [28] and the UCheck system [49] which detects errors
that are caused by unit faults. Coblenz et al. [50] developed an
approach which is close to UCheck. In their approach, Coblenz
et al. also use header information to reason about errors.

Besides spreadsheet debugging approaches, there are test-
ing approaches, e.g., WYSIWYT [51] Expector [65], [52], AU-
TOTEST [53], and metamorphic testing [69]. Testing approaches
can be used to identify a misbehavior, i.e., a wrong result. Once
abnormal behavior has been identified, our MBSD approach can
be used in order to locate the root source of the observed misbe-
havior, i.e., the faulty formula(s). WYSIWYT works as follows:
users indicate correct and erroneous values in their spreadsheet
and WYSIWYT informs the users about the testedness of their
spreadsheet via computing metrics relying on the definition-use
(DU) coverage criteria: A cell C is used in another cell C1 for
computing C1’s value or within C1’s predicate (if C1’s formula
contains a conditional). DU links a definition of C with a use

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 41

of C. A DU is exercised when there are inputs which cause
that the definition of C is used in C1 . When all possible DU
pairs are covered by the given test cases, 100% DU coverage
is achieved. In contrast, Expector makes use of test formu-
las which are basically conditional formulas, e.g., IF(A1 >
10;‘‘OK’’;‘‘ERROR’’). The work mentioned in [52] and
AUTOTEST [53] are automated testing techniques. Metamorphic
testing originates from the software domain [70]. Poon et al.
[69] proposed to use this testing technique to test spreadsheets
which suffer from the test oracle problem. These are for example
large spreadsheets where the computation of concrete values is
impractical due to large amount of data.

Several researchers have adapted techniques well known from
software engineering to spreadsheets, e.g., assertions [55],
model-driven spreadsheet engineering [56], complexity metrics
for spreadsheets [59], and code smells [60], [61]. In partic-
ular, code smells are important for improving the quality of
spreadsheets, which is defined by the terms usability, maintain-
ability, and error frequency. Amongst other smells, in particular,
code smells defined for object-oriented programs (e.g., coupling
and cohesion of classes) were successfully used in the spread-
sheet domain [60], [61]. Besides their work on code smells,
Hermans et al. focused on the visualization of the dataflow in
spreadsheets [62], data clone detection [63], and complexity
metrics [64]. Cunha et al. [57] have developed a catalog of
smells for spreadsheets. This catalog covers statistical smells
(e.g., the standard deviation smell), type smells (e.g., empty cell
and pattern finder), content smells (e.g., string distance and ref-
erence to empty cells), and functional dependency based smells
(e.g., quasi-functional dependencies). A follow-up work [54]
used these smells to localize faulty cells within spreadsheets.
The concept of code smells differs from MBSD in the following
aspect: Code smells match certain patterns, and therefore, point
to cells which might cause a problem with respect to complexity
(e.g., interworksheet smells) and wrong input data (e.g., typos
detected via standard deviation or string distance). MBSD re-
quires that a misbehavior, i.e., an erroneous output is already
detected, e.g., by test cases, which is not necessary for code
smell techniques. In contrast, MBSD identifies faulty formulas
which might not be detected by pattern matching approaches.

Several researchers have addressed the challenge of automat-
ically creating models from spreadsheets. For example, Cunha
et al. [13] have inferred ClassSheet models from spreadsheets.
ClassSheet models are the spreadsheet counterpart to entity rela-
tionships for databases. The intent of [13] is to obtain a business
model from an existing spreadsheet. In contrast, our models are
not mental models, and therefore, they cannot support the user
in understanding a spreadsheet. In [15], Cunha et al. present
a framework which supports users in the model-driven devel-
opment of spreadsheets. This framework supports the user to
coevolve the model and the data. The developed models repre-
sent the entity relationships of the data and they strongly differ
from the models which we automatically derive from faulty
spreadsheets for debugging purposes. Another interesting work
of Cunha et al. [14] directly focuses on the conversion of spread-
sheets into relational databases and vice versa. This approach is
used to detect data redundancy errors. In contrast, our approach

helps to identify faulty formulas once an erroneous output has
been detected.

For an exhaustive survey on different techniques and methods
for detecting, localizing, and repairing spreadsheets, we refer the
interested reader to Jannach et al. [66].

III. PRELIMINARIES

To be self-contained, we briefly discuss the basic definitions
required in this paper and state the spreadsheet debugging prob-
lem formally. Most of the definitions given in this section are
taken from [9]. We introduce a spreadsheet Π as a set of cells,
where each cell c has an attached formula �(c) and a value ν(c).
We assume that if a cell has no formula, then � returns 0, and
its value is undefined (ε). The value of each cell is computed
directly from the execution of its corresponding � function. For
specifying formulas in [9], Abreu et al. introduce the program-
ing language L, which we describe later. When executing a
formula, the resulting value might be an error ⊥ (in case of a
faulty execution), or any other defined data-type like Number,
Boolean, or String. For simplicity, we ignore undefined cells,
which are never used in a formula) and assume that there is a
function CELLS that maps a spreadsheet Π to a set of cells that
are either used in a formula or have an attached formula.

Cells might be accessed using their column and row num-
ber. In most spreadsheet languages, the rows have numbers and
columns have a corresponding letter, e.g., A3 denotes the cell in
the third row and the first column (A). In [9], Abreu et al. also
introduce a function ϕ mapping cell names from CELLS(Π)
to their corresponding position (x, y) where x represents the
column and y the row number. The functions ϕx and ϕy return
the column and row number of a cell, respectively. In addition
to accessing single cells, all spreadsheet languages also allow
for accessing sets of cells that are in close proximity. These cell
areas are defined as follows:

Definition 1 (Area (from [9])): An area c1 :c2 is the set of
neighboring cells inside the box spanned by the cells c1 , c2 :

c1 :c2 ≡def

{
c ∈ CELLS(Π)

∣∣∣∣∣
ϕx(c1) ≤ ϕx(c) ≤ ϕx(c2)∧
ϕy (c1) ≤ ϕy (c) ≤ ϕy (c2)

}
.

In the following, we discuss the languageL taken from [9] but
we restrict our view on its syntax, because this part is needed for
the other definitions. We refer the interested reader to [9] for the
details of the semantics of L as well as functions mapping L to
a constraint representation. It is worth noting that L relies on the
cell values, constants, operators, and functions for computing
values of other cells. Recursive functions are not allowed in L
because in practice they are not often used.

Definition 2 (Syntax of L (from [9]; slightly modified)):
The syntax of L is recursively defined as follows:

1) Constants k representing ε, number, Boolean, or string
values are elements of L (i.e., k ∈ L).

2) All cell names are elements of L (i.e., CELLS(Π) ⊂ L).
3) Areas c1 : c2 are elements of L.
4) If e1 , e2 , . . . , en are elements of the language

(e1 , e2 , . . . , en ∈ L), then the following expressions are
also elements of L:

42 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

1) (e1) is an element of L.
2) If o is an operator (o ∈ { + , − , ∗, /,<, = , >}),

then e1 o e2 is an element of L.
3) A function call f(e1 , . . . ,en) is an element of L

where f denotes functions like (but not limited to)
IF, SUM, AVG.

In this paper, we need information regarding the dependen-
cies of cells. These dependencies are obtained directly from the
information given in the formulas. Like in other programing
languages, we are able to define a data dependence between
cells, if the function assigned to one cell makes use of the value
of another cell. To define these dependencies, we introduce the
function ρ : L 	→ 2C ELLS (Π) returning the set of referenced
cells for a given formula from L.

Definition 3 (The function ρ (from [9])): Let e ∈ L be an ex-
pression. We define ρ recursively as follows:

1) If e is a constant, then ρ(e) = ∅.
2) If e is a cell c, then ρ(e) = {c}.
3) If e = (e1), then ρ(e) = ρ(e1).
4) If e = e1 o e2 , then ρ(e) = ρ(e1) ∪ ρ(e2).
5) If e = f(e1 , . . . ,en), then ρ(e) =

⋃n
i=1 ρ(ei).

From the definition of ρ, direct data dependencies can be
easily defined.

Definition 4 (Direct Data Dependency (from [9])): A cell c
is direct data dependent on another cell c′ if and only if the cell
c′ is referenced in �(c):

dd(c′, c) ⇔ c′ ∈ ρ(�(c)).

It is useful to distinguish different types of cells. There are
cells that do not reference other cells but that are referenced
by others. Such cells work as input to further computations.
Moreover, there are cells, which reference other cells but which
are never referenced by other cells. Such cells are outputs for a
given spreadsheet Π.

Definition 5 (Input Cell (from [9])): An input cell c is a cell
that does not reference another cell c′, i.e., there exists no cell
c′ with a direct data dependency to c. The set of input cells is
computed as follows:

Input(Π) = {c|(�c′ : dd(c′, c) ∧ ∃c′′ : dd(c, c′′))}.

Definition 6 (Output Cell (From [9])): An output cell is a
cell that references other cells but is not referenced by other
cells. The set of output cells is computed as follows:

Output(Π) = {c|(�c′ : dd(c, c′) ∧ ∃c′′ : dd(c′′, c))}.

It is often the case that spreadsheets contain cells that serve
only as labels. Such cells are not referenced by other cells, and
thus, do not contribute to any computations. Hence, we are able
to exclude these cells from the set of input cells. From here on,
we also assume that such cells are removed from CELLS(Π).

Using the already introduced definitions, we are accordingly
to [9] able to state the spreadsheet debugging problem formally.
For this purpose, we first introduce the notation of environments.
Environments are used to store expected values for cells. Note
that there might be cells for which no value is defined.

Definition 7 (Environment (from [9])): An environment is a
set of pairs (c, v) where c is a cell and v its value. There is at
most one pair for each cell in an environment.

Environments form the basis for defining test cases formally.
Definition 8 (Test case (from [9])): A test case for a spread-

sheet Π is a tuple (I,O) where I is the input environment
specifying the values of all input cells used in Π, and O the
environment defining expected values for some formula cells
of Π.

This definition slightly differs from our previous defini-
tion [20] as expected values can now be indicated for arbitrary
formulas instead of output cells only. There is no need to specify
values for all output cells.

Example 1: A test case for our running example from
Fig. 1 is I = {B2 = 0, B3 = 2, B4 = 10, C3 = 0, C4 =
10, 000,D3 = −4,D4 = 5} and O = {B6 = 100, C6 =
200, 100,D6 = 200, 150, E2 = 0}.

Following the usual definitions from testing, we say that a test
case fails if there exists at least one output cell whose calculated
value differs from its expected value; otherwise, the test case
passes. If a test case fails, we have a debugging problem, i.e.,
we need to identify the reasons for the deviation between the
expected value and the computed value.

Definition 9 (Spreadsheet Debugging Problem (from [9])):
Let Π ∈ L be a spreadsheet and T a failing test case of Π, then
(Π, T) is a debugging problem.

Fault localization techniques such as MBSD provide solutions
to the spreadsheet debugging problem by explaining why the
spreadsheet has failed on test case T .

IV. MODEL-BASED SPREADSHEET DEBUGGING

Given a spreadsheet debugging problem (Π, T), we are in-
terested in finding the root cause for the failing test case T .
Accordingly to Reiter [21], such a problem can be solved us-
ing a model that describes the components of a system, their
behavior, and their interconnections, and observations. In the
context of spreadsheet debugging, the model is a representa-
tion of the cells and their behavior, and the observations are
representations of the failing test case. Usually, a (correct) for-
mal model of a faulty system is not available. In particular in
the spreadsheet domain, such formal models are hardly found.
Therefore, the model in MBSD is built directly from the faulty
system (or spreadsheet). Consequently, the model maps the real
behavior instead of the expected behavior, which is encoded in
the observations.

Let us assume that M is the model of Π, CELLS the cells
of Π, i.e., CELLS = CELLS(Π), and OBS the logical rep-
resentation of the test case T . T can either be retrieved from
a formal specification or from the user. Since a formal speci-
fication is rarely available in the domain of spreadsheets, the
information stored in OBS is usually given by the user. In our
running example, we argue that a person who is familiar with
velocity knows what to expect approximately. The user needs
not to indicate the exact expected value. An approximate value
or even the information that the computed value is wrong is
sufficient.

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 43

Algorithm 1: ConDiag(M,CELLS, n) ([24], Modified).

Input: A constraint model M , the set of CELLS and the
upper bound of the diagnosis cardinality n
Output: All minimal diagnoses up to the predefined
cardinality n

1: DS = {}
2: for i = 1 to n do

3: CM = M ∪
{(

|C ELLS |∑
j=1

AB[j]

)
== i

}

4: S = P (CSolver(CM))
5: DS = DS ∪ S.
6: M = M ∪⋃s∈S ¬(s)
7: end for
8: return DS

M consists of the behavior of the individual cells. The be-
havior of a cell c ∈ CELLS is given in the form ¬AB(c) →
Behav(c) where AB stands for abnormal—either the formula
of cell c is abnormal (AB(c)) or the formula of c is correct—
and Behav(c) is a placeholder for the behavior of the cell:
The cell’s formula can be indicated in two ways either exact
(VBM, see Section IV-A) or abstract (DBM, see Sections IV-B
and IV-C). (M,CELLS,OBS) is the corresponding diagnosis
problem for a spreadsheet debugging problem (Π, T): If (Π, T)
is a spreadsheet debugging problem, then the logical sentence
M ∪ OBS ∪ {¬AB(c)|c ∈ CELLS} is not satisfiable2, i.e.,
the model M (i.e., the real behavior) and the observations OBS
(i.e., the expected behavior) are in contradiction.

Example 2: Assume we have the following sets of con-
straints as model of the real behavior M and the expected be-
havior OBS, i.e., there is a contradiction in the constraints: M =
{AB(cA1) ∨ A1 = A2 + 1} and OBS = {A1 = 1, A2 = 2}.
The logical sentence M ∪ OBS ∪ ¬AB(cA1) is not satisfiable:

M ∪ OBS ∪ ¬AB(cA1). ↔
{AB(cA1) ∨ A1 = A2 + 1} ∪ {A1 = 1, A2 = 2}

∪¬AB(cA1). ↔
{false ∨ A1 = A2 + 1} ∪ {A1 = 1, A2 = 2} ↔

{false ∨ 1 = 2 + 1} ↔
{false ∨ false} ↔

false.

The basic idea of MBSD is to find settings for the AB predi-
cates which remove this contradiction. These settings are called
diagnoses. Formally, a diagnosis is defined as follows:

Definition 10 (Diagnosis (from [21])): Given a diagnosis
problem (M,CELLS,OBS) then Δ ⊆ CELLS is a diag-
nosis, if and only if M ∪ OBS ∪ {¬AB(C)|C ∈ CELLS \
Δ} ∪ {AB(C)|C ∈ Δ} is satisfiable. A diagnosis Δ is said to
be minimal if and only if no proper subset of Δ is a diagnosis.

2A set of constraints C = {c1 , . . . , cn } is consistent or satisfiable, if all
constraints of this set are satisfiable (c1 ∧ · · · ∧ cn �= ⊥).

We use constraint or SMT solvers for computing the diag-
noses. Therefore, we convert the spreadsheet diagnosis problem
into its corresponding CSP. A CSP [22] is a tuple (V,D,C)
where V is a set of variables with a corresponding domain
from D, and C is a set of constraints. Each constraint has a set
of variables (i.e., its scope) and specifies the relation between
these variables. A CSP solution assigns values to variables such
that all constraints are fulfilled. For more information about con-
straint solving in the context of software debugging, we refer
the interested reader to Wotawa et al. [23].

Algorithm 1 illustrates the usage of a constraint solver to
compute diagnoses up to a predefined cardinality (e.g., all sin-
gle, double, and triple faults). This algorithm is a modified
version of the Algorithm ConDiag [24]. It takes a constraint
representation M of the spreadsheet program Π, the set of
cells CELLS(= CELLS(Π)), and the maximum fault car-
dinality n as inputs. In M , the abnormal predicates AB are
represented as an array: for each cell c ∈ CELLS, there is an
index i ∈ {1, . . . , |CELLS|} for which AB[i] represents the
predicate AB(c) in the constraint representation. In Line 3, a
constraint which ensures that only diagnoses of size i are re-
ported is added to the set of constraints. The resulting constraint
representation CM is given to a constraint solver, which returns
a set of possible values for the AB array elements (Line 4).
We add this AB array to the set of diagnoses DS (Line 5). In
addition, we add the negations of the found solutions as block-
ing clauses to the model (Line 6). These blocking clauses are
necessary to prevent the solver from reporting supersets of the
already found diagnoses. This ensures that the solver always
computes minimal diagnoses.

We discuss three different types of constraint representations
(models) and how to obtain them from spreadsheets in the fol-
lowing sections. All models are automatically derived from the
spreadsheets—there is no need for user interaction. Since the
spreadsheets from which the models are derived are usually
faulty, the models also contain the fault(s). The faults can be au-
tomatically identified from the models using an MBD algorithm
like ConDiag.

A. Value-Based Models

Abreu et al. [9]–[11] proposed VBMs for spreadsheet debug-
ging. In order to be self-contained, we briefly explain the conver-
sion of spreadsheets into VBMs (following the definitions given
in [9]–[11], and [20]) in this section and demonstrate what the
VBM for the running example looks like.

A value-based constraint system contains:
1) the input cells and their values,
2) the output cells and their expected values,
3) all formulas concatenated with their abnormal variable.
The constraint representation handles the formulas as equa-

tions instead of assignments. Equations make it possible to draw
conclusions on the input from the output of a formula. The func-
tion ΓV maps spreadsheets to a set of equations.

Definition 11 (The function ΓV (Π) (modified version of the
ConvertSpreadsheet Algorithm from [9])): Let Π be a spread-
sheet comprising the cells {c1 , . . . , ck}. The conversion of Π

44 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

into a set of equations is defined as follows:

ΓV (Π) =
⋃

i={1,...,k}
{ABind(ci) ∨ ci == ΓV (�(ci))}

where ind(ci) maps a cell to a unique index and ΓV for expres-
sions e ∈ L is recursively defined as follows (modified version
of the CONVERTEXPRESSION Algorithm from [9]):

1) If e is a constant or a cell name c, then the constant is
given back as result, i.e., ΓV (e) = c.

2) If e is of the form (e1), then ΓV (e) = (ΓV (e1)).
3) If e is of the form e1 o e2 , then ΓV (e) =

ΓV (e1) o∗ ΓV (e2) where o∗ is the corresponding con-
straint representation of operator o.

4) If e is of the form f(e1 , . . . ,en), then ΓV (e) =
f ∗(ΓV (e1), . . . ,ΓV (en)) where f ∗ is the corresponding
constraint representation of the function f .

The observations OBS are obtained from the test case (I,O)
and comprise the values of the input cells and the expected values
of the cells which are indicated in O. The conversion of a test
case (I,O) into the set of constraints OBS is straightforward:
For all (x, v) ∈ I and for all (x, v) ∈ O, add the equation x ==
v to the constraint representation. Formally, the conversion of a
test case T = (I,O) into a set of constraints OBS is defined as

OBSV (T) =
⋃

(x,v)∈{I∪O}
{x == v}.

When using the test case conversion described above and
the specified conversion function ΓV , we obtain the following
constraints for our running example from Fig. 1(b):

Input:

Input: Output:

B2 == 0 B6 == 100
B3 == 2 C6 == 200, 100
B4 == 10 D6 == 200, 150
C3 == 0 E2 == 0
C4 == 10, 000
D3 == −4
D4 == 5

Formula constraints:

AB(cellB 5) ∨ B5 == B2 ∗ B4 + B3 ∗ B4 ∗ B4/2

AB(cellB 6) ∨ B6 == B5

AB(cellC 2) ∨ C2 == B2 + B3 ∗ B4

AB(cellC 5) ∨ C5 == B2 ∗ C4 + C3 ∗ C4 ∗ C4/2

AB(cellC 6) ∨ C6 == B5 + C5

AB(cellD2) ∨ D2 == C2 + C3 ∗ C4

AB(cellD5) ∨ D5 == D2 ∗ D4 + D3 ∗ D4 ∗ D4/2

AB(cellD6) ∨ D6 == B5 + C5 + D5

AB(cellE 2) ∨ E2 == D2 + D3 ∗ D4.

The input and the output constraints are the set of obser-
vations OBS; the formula constraints are the model M . The

logical sentence M ∪ OBS ∪ {¬AB(c)|c ∈ CELLS} (i.e., as-
suming all formulas are correct) is not satisfiable because
the propagation of the input values in the model M leads
to different output values for C6 and D6. The model M
and the observations OBS are in contradiction. When calling
ConDiag(M ∪OBS,CELLS(Π), 1) for determining which
formulas might be faulty (i.e., abnormal), the algorithm returns
{{C5}} as solution.

B. Original DBMs

When using DBMs [19], only the information about whether
the computed values are correct is propagated. For example,
if we have the formula “A1+A2” stored in a cell A3, then the
value of A3 can only be correctly computed if 1) the values
of A1 and A2 are correct, and 2) A3’s formula is also correct.
We present the correctness of values for cells as Booleans in-
stead of integer or real values. All variables representing in-
put cells are initialized with true; all variables representing
correct result cells ({c|(c, v) ∈ O ∧ v = ν(c)}) are also initial-
ized with true. The variables representing erroneous result cells
({c|(c, v) ∈ O ∧ v �= ν(c)}) are initialized with false. Formally,
the conversion of a test case T = (I,O) into the set of con-
straints OBS is defined as follows:

OBSD (T) =
⋃

(x,v)∈I

{x == true}

∪
⋃

(x,v)∈O where [[x]]=v

{x == true}

∪
⋃

(x,v)∈O where [[x]] �=v

{x == false}.

In addition to the test case, we convert the content of the cells
to constraints by using the function ΓD .

Definition 12 (The Function ΓD (Π)): Let Π be a spread-
sheet comprising the cells {c1 , . . . , ck}. The conversion of Π
into a set of equations is defined as follows:

ΓD (Π) =
⋃

i={1,...,k}
{ABind(ci) ∨ ΓD (ci)}

where ind(ci) is the unique index for cell ci and ΓD on a cell
ci maps the cell’s dependencies to a rule-like representation.

The idea behind this conversion is as follows: Instead of using
the concrete formulas in the constraints, only the correctness
relation is modeled.

Definition 13 (The Function ΓD (ci)): If the input values of
a formula stored in cell ci are correct, then the formula stored
in cell ci must compute a correct value, i.e.,

ΓD (ci) =

⎛
⎝ ∧

c ′∈ρ(ci)

c′

⎞
⎠→ ci.

Details about this modeling for software written in an im-
perative language can be found in [19]. The dependency based
constraints for our running example are as follows:

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 45

TABLE I
SITUATIONS WHERE COINCIDENTAL CORRECTNESS MIGHT OCCUR

Category Functions / Operators Description

Conditional functions IF*
SUMIF
COUNTIF

The value computed by evaluating a conditional function might be correct even though the
referenced cells contain wrong values. This is the case when the erroneous value does not
contribute to the value computed by the formula because of the evaluation of the condition.
For example, in the formula �(C 1) = IF (A1 > 0; B 2; 0) the value of B2 only contributes
to the final result if A1 > 0 evaluates to true.

Abstraction functions MIN*
MAX*
COUNT* COUNTIF

The value computed by an abstraction function either uses only one value of the referenced
area (MIN, MAX) or does not use the values at all (COUNT, COUNTIF). Therefore erroneous
values are easily masked by abstraction functions.

Rounding functions ROUND
ROUNDUP
ROUNDDOWN
FLOOR

If the erroneous value has only a small delta compared to the correct value, a rounding
function might mask the fault.

Absolute value ABS If a value is erroneous because it has the wrong sign, the fault gets masked by the absolute
value function.

Boolean functions AND
OR

When using Booleans, a fault can be easily masked. For example, given that
ν (A1) = f alse , the formula �(C 1) = AND(A1; B 2) evaluates to false, independent of
the (maybe erroneous) value of B2. The same scenario is valid for the OR function, where it is
sufficient that one of the referenced cells evaluates to true.

Operators PRODUCT*
SUMPRODUCT
POWER*

An erroneous value is masked when it is multiplied with 0. Similar, an erroneous value is
masked if it is used in the power function and the second value (i.e. either the base or the
exponent) is 0. If the base is 1, a erroneous exponent is also masked.

Relational Operators >
<
<>

Erroneous values used in relational operators are often masked. For example, given that
ν (A1) = 1 and ν (B 2) = 2 (instead of ν (B 2) = 3), the formula �(C 3) = A1 > B 2 will
evaluate to false and the fault is masked.

Irreversible functions SIN
COS
TAN

In particular, periodic functions can easily mask an erroneous value. In case of the
trigonometrical functions, an erroneous input is masked if it has an 2Π offset from the correct
value.

Functions and operators marked with * are taken from our previous work [20]. There are Functions that belong to several categories.

Input: Output:

B2 == true B6 == true
B3 == true C6 == false
B4 == true D6 == false
C3 == true E2 == true
C4 == true
D3 == true
D4 == true

Formula constraints:

AB(cellB 5) ∨ (B2 ∧ B3 ∧ B4 → B5)
AB(cellB 6) ∨ (B5 → B6)
AB(cellC 2) ∨ (B2 ∧ B3 ∧ B4 → C2)
AB(cellC 5) ∨ (B2 ∧ C3 ∧ C4 → C5)
AB(cellC 6) ∨ (B5 ∧ C5 → C6)
AB(cellD2) ∨ (C2 ∧ C3 ∧ C4 → D2)
AB(cellD5) ∨ (D2 ∧ D3 ∧ D4 → D5)
AB(cellD6) ∨ (B5 ∧ C5 ∧ D5 → D6)
AB(cellE 2) ∨ (D2 ∧ D3 ∧ D4 → E2).

Let the input and the output constraints be the set of observations
OBS and let the formula constraints be the model M . When call-
ing ConDiag(M ∪OBS,CELLS(Π),1), the algorithm returns
{{B5},{C5}} as a solution. This DBM computes more diag-
noses because of the implication. In the VBM, the cell B5 is
excluded from the set of possible diagnoses because it is used to
compute B6, which is known to compute the correct result. Un-
fortunately, this information gets lost when using the implication
because the implication allows conclusions only from the input

to the output but not vice versa. This issue will be solved with the
novel DBM (NDM) that is explained in the following section.

C. Novel Dependency-Based Models

In the NDM [20], we make use of the bi-implication (equiv-
alence) instead of the implication in order to eliminate the pre-
viously described weakness. The rationale here is that if a cell
value is correct also the contributing parts have to be correct.
The conversion of test cases is exactly the same as for the origi-
nal DBM. The mapping of spreadsheets to constraints changes.
We introduce the function ΓN , which is similar to ΓD .

Definition 14 (The Function ΓN (Π)): Let Π be a spread-
sheet comprising the cells {c1 , . . . , ck}. The conversion of Π
into a set of equations is defined as follows:

ΓN (Π) =
⋃

i={1,...,k}
{ABind(ci) ∨ ΓN (ci)}

where ind(ci) is the unique index for cell ci and ΓN on a cell
ci maps the cell’s dependencies to a rule-like representation.

Unfortunately, using bi-implications instead of ordinary im-
plications is not always correct. The bi-implication cannot be
used in case of coincidental correctness [25]. Coincidental cor-
rectness has to do with fault masking where an output value
is correct even when a faulty formula was involved in its
computation. For example, consider a conditional statement
“IF(A1, A2, A3)” where A2 is returned because A1 is true,
and the value of A3 is erroneous. In this case, the fault that is
propagated to A3 gets masked. When using a bi-implication,
we would misleadingly assume that A3 is correct too. We have
to treat formulas where coincidental correctness might happen

46 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

differently. Table I lists situations where coincidental correct-
ness might occur. This table has been manually created and
it is not complete because the size of the list depends on the
functions that are supported by the concrete spreadsheet envi-
ronment (e.g., Microsoft Excel, iWorks’ Number, OpenOffice’s
Calc). All formulas where coincidental correctness might hap-
pen still have to be modeled with the implication instead of the
bi-implication. For simplicity, we introduce a function CC on a
cell c that returns true if the equation used in c raises the problem
of coincidental correctness, and false, otherwise.

When taking care of what we have said about fault masking,
we are able to define ΓN for cells as follows:

Definition 15 (The Function ΓN (ci):

ΓN (ci) =

{
ΓD (ci), if CC(ci) = true,(∧

c ′∈ρ(ci) c′
)
↔ ci, otherwise.

For our running example, the constraints for the input and the
output are the same as in the original DBM. The constraints for
the formulas are the following:

AB(cellB 5) ∨ (B2 ∧ B3 ∧ B4 → B5)

AB(cellB 6) ∨ (B5 ↔ B6)

AB(cellC 2) ∨ (B2 ∧ B3 ∧ B4 ↔ C2)

AB(cellC 5) ∨ (B2 ∧ C3 ∧ C4 → C5)

AB(cellC 6) ∨ (B5 ∧ C5 → C6)

AB(cellD2) ∨ (C2 ∧ C3 ∧ C4 → D2)

AB(cellD5) ∨ (D2 ∧ D3 ∧ D4 ↔ D5)

AB(cellD6) ∨ (B5 ∧ C5 ∧ D5 → D6)

AB(cellE 2) ∨ (D2 ∧ D3 ∧ D4 ↔ E2).

Let the input and the output constraints be the set of observations
OBS and let the formula constraints be the model M . When call-
ing ConDiag(M ∪OBS,CELLS(Π),1), the algorithm returns
{{C5}} as a solution—similar as when using the VBM. Does
the NDM always result in the same number of diagnoses as
the VBM? The empirical evaluation in Section VI shows that
this is not the case. Therefore in the next section, we introduce
the diagnosis partitioning approach which improves MBSD by
combining the value-based and the DBMs.

With respect to the user input, this NDM differs from the
original modelDBM in the following aspect: If a user classifies
a cell value as correct, this information gets lost in the original
DBM, since the information cannot be propagated backward in
the model. Therefore, in the original modelDBM, the user only
has to indicate incorrect cell values. If the user does not indicate
cells whose values are correct, the diagnosis results of the NDM
are equal to the results of the original DBM. For the VBM, both
correct output values and expected values for incorrect output
cells are required. Indicating expected values might be more
challenging for end users than just determining that a value is
incorrect.

Algorithm 2: ConDiag (Π, (I,O), n).
Input: A spreadsheet Π, a failing test case (I,O), and the
upper bound of the diagnosis cardinality n
Output: All minimal diagnoses of high and low priority up
to the predefined cardinality n prioritized by their
cardinality

1: Let DM be a DBM of Π and (I,O).
2: DSDM = ConDiag(DM,CELLS(Π), n)
3: Let VM be the VBM of Π and (I,O) with abnormal

predicated for all cells in DSDM .
4: DSH = ∅
5: DSL = ∅
6: for Δ ∈ DSDM do
7: A = ∅
8: for all cells;c;of;Π do
9: if c ∈ Δ then

10: A = A ∪ {AB(c) = true}
11: else
12: A = A ∪ {AB(c) = false}
13: end if
14: end for
15: if CSolver(V M ∪ A) is consistent then
16: DSH = DSH ∪ {Δ}
17: else
18: DSL = DSL ∪ {Δ}
19: end if
20: end for
21: return (DSH ,DSL)

V. DIAGNOSIS PARTITIONING

Whereas the DBMs have a low computational complexity, the
VBM allows for computing the smaller number of diagnoses.
In this section, we present an approach for combining these
models. First, we compute the set of all diagnoses DSDM using
any of the DBMs. Afterward, we create the VBM, but instead
of adding the abnormal predicates AB to all cells, we add these
predicates only to those cells which are contained in any of
the previously computed diagnoses DSDM. Instead of comput-
ing all diagnoses in the VBM again, we set the AB predicate
values according to the diagnoses in DSDM and, then, ask the
solver for satisfiability only. If consistency cannot be ensured,
we would in principle remove this diagnosis from the set of
overall diagnoses. Unfortunately, removing such diagnoses is
not possible because there are cases where supersets of such
diagnoses are the real diagnoses. In order not to lose such cases,
we decided to classify such diagnoses as low priority diagnoses
(LPD). Diagnoses passing the consistency check are classified
as high priority diagnoses (HPD), which should be looked at
first. This means that the VBM is used as a filter or classifier for
the diagnoses computed by the DBMs.

In Algorithm 2, we summarize the diagnosis partitioning ap-
proach. In Line 1, we compute the dependency model of spread-
sheet Π and the given failing test case (I,O). From this model,
we compute the set of diagnoses DSDM. In Line 3, we compute

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 47

the VBM for Π and (I,O), where only the cells that are in
one of the diagnoses DSDM have abnormal predicates. Between
lines 6 and 20, we apply filtering. For this purpose, every diag-
nosis Δ ∈ DSDM is tested using the VBM. All elements of Δ
are set to behave incorrectly (Line 10) and all other cells behave
as expected (Line 12). The VBM together with these correct-
ness assumptions are given to the constraint solver, which—in
this case–checks consistency only. In case Δ does not lead to an
inconsistency, we add Δ to the set of HPD (Line 16). Otherwise,
the diagnosis is added to the set of LPD (Line 18). The sets of
high priority and LPD are returned in Line 21.

We now discuss the complexity of the whole approach. The
complexity of the conversion of a spreadsheet Π into a set of
constraints is O(|Π| ∗ |e|) where |e| equals to the number of
operands in the most complex formula of Π. This complexity
applies to both the value-based and the DBMs. As |Π| con-
sists of a finite set of cells and each formula consists of a fi-
nite set of subexpressions, the conversion obviously terminates.
Algorithm 1 (ConDiag) has a time complexity of O(2|Π |∗|e|) in
the worst case since 1) constraint solving is NP-complete and
2) we have |Π| ∗ |e| variables in the constraint model (there can
be a temporary variable for each operator in each formula cell
in Π). The loop enclosing the solver call (Lines 2–7) can be
neglected because in practice we are only interested in single,
double, and triple faults. Given that the solver terminates, the
algorithm terminates too. Therefore, the time complexity of Al-
gorithm 2 is also O(2|Π |∗|e|). In the worst case, the complexity
of the overall approach is exponential in the size of the cells be-
cause of the underlying complexity of diagnosis and constraint
solving. However, when restricting diagnosis computation to
single or double faults, the overall approach is feasible.

VI. EMPIRICAL EVALUATION

This section consists of two major parts: the empirical setup
(discussing the prototype implementation, the used platform,
and the evaluated spreadsheet corpus, see Section VI-A) and
the results (see Section VI-B) showing the following:

1) that the DBM (both with and without diagnosis partition-
ing) solves more spreadsheet diagnosis problems than the
VBM under given computational restrictions,

2) that the basic DBMs compute more diagnoses, but in a
fraction of the time required for the VBM,

3) that the DBMs with diagnosis partitioning have a 30%
lower median runtime than the median runtime of the
VBM,

4) that all models reduce the search space for most of the
investigated spreadsheets by more than 90%, and

5) that the model can also be used to diagnose double and
triple faults.

A. Empirical Setup

We developed a prototype in Java for performing the empiri-
cal evaluation. In contrast to previous work [20] where we used
Minion [16] for solving the constraints, this new prototype uses
Z3 [17] because Z3 allows us to model spreadsheets contain-
ing real numbers and Z3 performs better than Minion [12].

The evaluation has been performed on a computer with an
Intel Core i7-3639QM (2.40 GHz quad-core) processor and
8 GB RAM, using a 32-Bit Java VM 1.8.0 Update 20 within a
64-Bit Windows 7. The computation time is the average time
over 25 runs. Since we are interested in a real-time approach,
we set the timeout limit for Z3 to 5 min.

We evaluated the diagnosis models by means of spreadsheets
of the publicly available EUSES corpus [26]. This corpus con-
sists of spreadsheets from different domains, e.g., financial cal-
culations, and student homework. The number and location of
faults in this corpus is unknown. For evaluating the fault local-
ization capabilities of the different models, we need, however,
the location of the faults and additionally data which simu-
lates the user input (i.e., information about correct and incorrect
cell values). Therefore, we use a modified version of the cor-
pus [27] that comes with predefined faults and expected values
for output cells. This modified corpus contains only a subset of
spreadsheets from the original corpus; more precisely, it con-
tains only those spreadsheets which consist of more than five
formulas and whose input cells are nonempty. This smaller cor-
pus consists of 267 spreadsheets, the smallest containing six
formulas, the largest containing 604 formulas. On average, a
spreadsheet contains 105 formula cells. Faulty versions of the
spreadsheets were created by randomly selecting formulas and
applying mutation operators [28] on them. There are between
one and five faulty versions per spreadsheet, each faulty file con-
taining exactly a single fault. In total, there are 267 single-fault
spreadsheets. A detailed list of the types of faults that where
inserted can be found in [27]. The corpus can be downloaded
from http://spreadsheets.ist.tugraz.at. This website additionally
offers a qualitative and quantitative description of the corpus.
We refer the interested reader to this website for more details
about the characteristics of this corpus.

Since this corpus contains only spreadsheets with single
faults, we created spreadsheets with double and triple faults
by combining the faults. We created as many double and
triple fault combinations as possible, but we could not cre-
ate double and triple faults for every type of spreadsheet
because the modified EUSES corpus contains many spread-
sheets with a single faulty version. In cases where there ex-
isted several faulty versions of the spreadsheet, we created
all possible combinations, i.e., for a spreadsheet with n sin-
gle fault versions, we created

(
n
2

)
spreadsheets with double

faults and
(
n
3

)
spreadsheets with triple faults. In total, we

created 122 spreadsheets with double faults and 95 spread-
sheets with triple faults. These newly created faulty versions
can be downloaded from http://spreadsheets.ist.tugraz.at/wp-
content/uploads/benchmarks/EUSES-double-triple-faults.zip.

B. Results

First, we indicate how many spreadsheets have to be excluded
from the evaluation because Z3 results in a timeout or runs out of
memory for at least one of the models. Afterward, we compare
the required runtime for solving the models of the remaining
spreadsheets. Finally, we compare the diagnostic accuracy when
using the different models.

48 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

TABLE II
ABSOLUTE AND RELATIVE NUMBER OF SPREADSHEETS WHERE Z3 HAD A

TIMEOUT OR RAN OUT OF MEMORY WHEN USING THE VBM, THE ORIGINAL

DBM, THE NDM, AND THE DBMS WITH DIAGNOSIS PARTITIONING(*)

Single fault VBM DBM NDM DBM* NDM* Total

Timeouts
Absolute 16 7 7 8 8 16
Relative 6.0% 2.6% 2.6% 3.0% 3.0% 6.0%

Out of memory
Absolute 4 3 3 4 3 5
Relative 1.5% 1.1% 1.1% 1.5% 1.1% 1.9%

Multiple fault VBM DBM NDM DBM* NDM* Total

Timeouts
Absolute 7 3 3 5 4 7
Relative 3.2% 1.4% 1.4% 2.3% 1.8% 3.2%

TABLE III
RUNTIME COMPARISON OF THE VBM, THE ORIGINAL DBM, THE NDM, AND

THE DBMS WITH DIAGNOSIS PARTITIONING(*)

VBM DBM NDM DBM* NDM*

Accumulated [s] 329.54 94.33 44.37 337.44 234.98
Average [s] 1.34 0.38 0.18 1.37 0.96
Median 0.024 0.002 0.002 0.016 0.017
Standard deviation 8.33 2.65 1.08 9.29 6.17

1) Timeouts and Out-of-Memory: Z3 could not handle all
spreadsheet diagnosis problems because of occurring timeouts
and out-of-memory exceptions. Table II indicates the absolute
and relative numbers of the affected spreadsheets for the differ-
ent types of models, where the rightmost column named “Total”
indicates the total number of spreadsheets that have to be ex-
cluded from the evaluation because of either a timeout or an out-
of-memory exception, i.e., this column states how many spread-
sheets were excluded from the following evaluation. The DBMs
have the lowest number of timeouts and out-of-memory prob-
lems, followed by the DBMs that use diagnosis partitioning. The
VBMs have twice as many timeouts as the other models. There
were no out-of-memory exceptions for the spreadsheets with
double and triple faults. We excluded all spreadsheets where Z3
either had a timeout or ran out of memory from the following
evaluation.

The DBMs (DBM and NDM) have fewer timeouts than the
VBM because the variables used in the constraint models are
Boolean instead of Integer and Real. This reduces the complex-
ity of the solving process. The DBMs with diagnosis partitioning
(DBM* and NDM*) have still fewer timeouts than the VBM be-
cause the number of variables in the constraint model is reduced
in the model—there are only abnormal variables AB for the
formulas that are already suspected to be a diagnosis. Having
fewer abnormal predicates means that there is less reification
required, which is an expensive task when solving constraints,
because it prevents value propagation.

2) Runtime: In Table III, we show the accumulated and aver-
age runtime for the different types of models. The DBMs without
diagnosis partitioning have the lowest runtime. The DBMs with

diagnosis partitioning and the VBM have nearly the same aver-
age runtime. However, the median of the DBMs with diagnosis
partitioning is lower than the median of the VBM. This is an
indicator that the high average runtime of the DBMs is caused
by outliers. The DBMs without diagnosis partitioning (DBM
and NDM) can be significantly solved faster than VBM because
of the restriction of the domain. Instead of using Integer or Real
numbers, only Boolean values are used. This reduces the com-
plexity to two possible instantiations per cell: the output value
could be either correct or incorrect. When using VBMs, the cell
values have an infinite number of possible instantiations. When
using the diagnosis partitioning for the dependency based val-
ues, the runtime increases again, but the median solving time is
smaller than the median solving time of the VBM.

In Fig. 2, we compare the runtime of the models pairwise. In-
stead of showing all pairwise combinations, we show the most
interesting ones. Please note that the scale is logarithmic. There-
fore, data points shown on the top-right corner of the figures have
a higher impact on the average runtime than other data points.
This figure shows that both DBMs require approximately the
same amount of solving time (DBM versus NDM). There is
no superior model. The same holds for the DBMs with diag-
nosis partitioning (DBM* versus NDM*). When comparing the
DBMs with diagnosis partitioning to the models without diag-
nosis partitioning (DBM versus DBM*/NDM versus NDM*),
we see that the models with diagnosis partitioning always re-
quire more runtime. This is not surprising, since the diagnosis
partitioning process starts after the diagnoses have been com-
puted for the base models (DBM/NDM). When comparing the
DBMs with diagnosis partitioning to the VBM (DBM* versus
VBM/NDM* versus VBM), we see that for the majority of the
spreadsheets, the DBMs with diagnosis partitioning compute
the diagnoses faster than the VBM.

Since we want to use model-based debugging as a real-time
approach, we are particularly interested in the number of diag-
nosis problems that could be solved within 1 s. Table IV lists
the number of diagnosis problems that could be solved within
1 s. From the 267 diagnosis problems, 235 (88.0%) are solved
within 1 s when using VBM, DBM* or NDM*; 237 (88.8%)
are solved when using DBM or NDM.

Fig. 3 illustrates the number of diagnosis problems that can
be solved within a certain amount of time. The DBMs without
diagnosis partitioning (DBM and NDM) are able to solve a
larger number of spreadsheet than VBM, DBM*, and NDM*
within a certain amount of time. DBM* and NDM* perform
slightly better than VBM. However, the advantage of the DBMs
with diagnosis partitioning is that we can immediately present
the results of DBM or NDM to the user. While the user inspects
the diagnoses, we can refine them by applying the diagnosis
partitioning approach (*).

3) Diagnostic Accuracy: Both the value-based and the
DBMs (with and without diagnosis partitioning) can be used
to debug spreadsheets which contain more than one fault. For
evaluating the diagnostic accuracy of the different models, we,
however, rely only on the single-fault corpus for the following
reason: ConDiag reports only minimal diagnoses; a diagnosis
is minimal if no proper subset of it is a valid diagnosis. By

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 49

Fig. 2. Pairwise runtime comparison of the VBM, the original DBM with and without diagnosis partitioning (DBM*/DBM), and the NDM with and without
diagnosis partitioning (NDM*/NDM). Each (blue) data point represents the runtime (in milliseconds) for one spreadsheet. Data points on the dashed (red) line
indicate that the compared models have the same runtime for this spreadsheet. Data points below this line indicate that the model on the y-axis has a lower runtime
than the model given on the x-axis.

definition, all supersets of a diagnosis are also diagnoses. When
evaluating spreadsheets containing multiple faults we have two
options: 1) either we only count the number of minimal diag-
noses, or 2) we also count the number of all supersets of the
minimal diagnoses. Option 1 would result in fewer diagnoses

for the DBMs than the VBM because the VBM could compute
combinations of pairs that are already reported as single-fault
diagnoses in the DBMs. Option 2 would result in a huge num-
ber of diagnoses for all types of models (the value-based model
would compute the smallest number of diagnoses, followed by

50 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

TABLE IV
ABSOLUTE NUMBER OF DIAGNOSIS PROBLEMS THAT COULD BE SOLVED IN

REAL TIME (I.E., IN LESS THAN 1 S)

VBM DBM NDM DBM* NDM*

real time 235 237 237 235 235
nonreal time 11 9 9 11 11

Fig. 3. Number of spreadsheets whose diagnosis problem could be solved
within the indicated time.

TABLE V
ANSFD USING THE VBM, THE ORIGINAL DBM, THE NDM, AND THE DBMS

WITH DIAGNOSIS PARTITIONING (DBM* AND NDM*)

VBM DBM NDM DBM* NDM*

6400 6555 6413 6400 HPD 6399 HPD
155 LPD 14 LPD

the NDM). For both options, the presented data would not be
meaningful. Therefore, the following evaluation is restricted to
the single-fault corpus.

Table V reports the accumulated number of single fault diag-
noses (ANSFD) for the different models. We measure ANSFD as
follows:

Ansfd =
∑

S∈corpus

|{Δ ∈ ConDiag(S, CELLS(S), 1)}|

i.e., we sum up the number of single-fault diagnoses for all
spreadsheets that we investigate. For the DBMs with diagnosis
partitioning (DBM* and NDM*), the diagnoses are divided into
HPD and LPD. The true fault is always reported as a diagnosis
for all types of models. The DBMs with diagnosis partitioning
have approximately the same number of LPD as the VBM has
in total. The DBMs without diagnosis partitioning have 2.4%
and 0.2% more diagnoses than the VBM.

The NDM allows by means of the bi-implication to exclude
more diagnoses. It computes nearly the same number of diag-
noses as the VBM because both models rely on the same amount
of information (i.e., cells with correct and incorrect values). In
the original DBM, the information of correct cell values cannot
be propagated which results in more diagnoses.

Fig. 4. REDUCTION of the search space for the VBM, the original DBM, and
the NDM without diagnosis partitioning. The results for DBM* and NDM* are
the same as for VBM.

We compare the diagnostic accuracy of the different models
by means of the average achieved REDUCTION:

Reduction =
(

1 − |Diagnoses|
|Formula cells|

)
∗ 100%.

The REDUCTION metric indicates reduction of the search space
when using MBD in percentage of the total number of formula
cells. This simplified formula applies for single-fault diagnoses.
In case of higher order diagnoses, the formula is

Reduction =

⎛
⎝1 −

∣∣∣⋃Diagnoses

∣∣∣
|Formula cells|

⎞
⎠ ∗ 100%.

Fig. 4 illustrates to what extent the search space could be
reduced for the basic models (without diagnosis partitioning).
The reduction for the DBMs with diagnosis partitioning is not
given because the results are the same as those of the VBM.
The figure shows that for more than 50% of the spreadsheets,
the search space is reduced by more than 90%. For 13% of
the spreadsheet, no reduction or only a small reduction can be
achieved because of the structure of these spreadsheets: They
have only a single faulty output cell and no correct output values
indicated. This small amount of information makes it difficult
to reduce the search space automatically.

4) Multiple Faults: Having investigated the diagnostic ac-
curacy of the models for single faults, we now investigate for
how many spreadsheets with double and triple faults, a sub-
set of the true fault is already reported as a single fault. The
structure of the fault and the observations influence whether a
fault is reported as a single, double, or triple fault. For example,
in case of two subsequent faults (e.g., A1 = 1; A2 = A1 ∗ 3;
B2 = A2; with A2 and B2 being faulty) MBSD would point
to at least one of these faults. Per definition all supersets of a
diagnosis are also diagnoses. If either A2 or B2 is reported as a
diagnosis, the superset {A2, B2} is therefore also a diagnosis.
As previously discussed, we only report minimal diagnoses and
Fig. 5 shows that for approximately 50% of the spreadsheets
with double faults, the fault is already reported as a single-fault
diagnosis and that for more than 30% of the spreadsheets with
triple faults, the fault is reported as a single fault. These results
confirm our argumentation from Section VI-B3 that we can-
not compare the diagnostic accuracy of the different models in
case of multiple faults because subsets of the true fault can be
reported as a diagnosis.

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 51

Fig. 5. Percentage of spreadsheets with double and triple faults where a subset
of the true diagnosis is reported as a single, double, or triple fault.

Furthermore, Fig. 5 shows that in rare cases a LPD is a subset
of the real fault from which we conclude that the LPD cannot
be discarded. Three faults are reported as LPD (one double fault
and two triple faults). If we would have discarded the LPD,
our approach would not be able to report the correct diagnoses.
However, this evaluation shows that users should focus on the
HPD. They should only look at the LPD if they have not found
the fault in the HPD.

Even though, we cannot compare the different models in case
of multiple faults, all models can be used to locate multiple
faults in practice. There are two possible scenarios for local-
izing n faults: 1) A real subset of the diagnosis is reported as
diagnosis (either as a single fault diagnosis or as any other real
subset). 2) The diagnosis is reported as a whole. In both sce-
narios, the users investigate the reported single-fault diagnoses
first. In the first scenario, they would identify that one of the
reported formulas is faulty. After correcting this formula, the
users can rerun the fault localization process for n − 1 faults.
In the second scenario, they are not able to identify any faulty
formula. Therefore, they investigate all double-fault diagnoses
and so on until the real diagnosis is reported.

C. Threats to Validity

Like in other empirical evaluations, the obtained results de-
pend on the underlying corpus used to carry out the experiments.
In our case, we rely on the well-known EUSES spreadsheet cor-
pus, which represents a wide area of different spreadsheets,
ranging from financial reports over databases to students home-
work. The EUSES corpus has been often used in the spreadsheet
domain for evaluation purposes. Although, the corpus can be
considered as representative for spreadsheets, the faults intro-
duced in the spreadsheets are artificial ones. Hence, the faults
may not represent real faults occurring in daily used spread-
sheets. However, the faults have not been introduced for a partic-
ular purpose, and thus, the obtained results cannot be considered
as biased toward a certain direction.

Another thread to validity relies in the underlying method
of comparison of the different debugging methods. For all dif-
ferent diagnosis approaches, we used the same setup for the
experiments. Hence, the obtained results can be considered as
fair as possible. This does hold for both the measured runtime
for computing diagnoses as well as for the presented reduction.

In the evaluation, we particularly focused on spreadsheets con-
taining single faults because the number of diagnoses can be
better compared as explained in Section VI-B3. The diagnostic
behavior of spreadsheets with multiple faults might be differ-
ent, since faults might mask each other or the diagnoses might
contain only some of the faulty cells.

VII. CONCLUSION

Locating faulty formulas in spreadsheets can be extremely
time consuming and exhausting especially when considering
larger spreadsheets or spreadsheets written by others. In this
paper, we address the challenge of fault localization support
in spreadsheets by means of MBSD. We build upon previous
work [20] where we have proposed an NDM. The advantage of
DBMs lies in their lower computation times compared to VBMs.
Unfortunately, DBMs compute more diagnoses than their value-
based counterparts. The NDM proposed in [20] addresses this
issue: By using the bi-implication instead of the implication,
whenever possible, the number of diagnoses can be reduced.
Originally, DBMs use implications instead of bi-implications
because faults might have been masked otherwise (coincidental
correctness). In case of fault masking, MBSD could not detect
the faults when the bi-implication is used instead of an implica-
tion. In the NDM, the effect of fault masking is considered: The
bi-implication is only used for modeling the behavior of those
cells where fault masking cannot happen.

In this paper, we improve our previous work with the follow-
ing three main contributions:

1) We improve the NDM by providing a comprehensive list
of possible fault masking operations and functions (see
Table I).

2) We combine VBMs and DBMs by using the VBM as a
filter for the computed diagnoses (diagnosis partitioning).
Instead of using the results obtained from the less compu-
tational demanding DBMs directly for focusing on certain
cells, the diagnosis partitioning approach uses the VBM
to check whether a diagnosis obtained from the DBMs
is satisfiable when concrete values are used or not. The
diagnosis partitioning approach classifies the diagnoses
into two sets: the set of HPD and the set of LPD. HPD are
diagnoses that are satisfiable even when considering the
more accurate VBM.

3) We provide a comprehensive empirical evaluation com-
paring the different models. This evaluation shows that
the DBMs solves more spreadsheet diagnosis problems
than the VBMs. The DBMs without diagnosis partition-
ing require only a fraction of the time which the VBM
requires. The diagnosis partitioning approach requires
more runtime than the basic DBMs, but less time than
the VBM—the median runtime is 30% lower—while still
offering the same diagnostic accuracy. Besides the lower
median runtime, the DBMs without diagnosis partition-
ing offer an additional advantage: First results can be
early reported to the user. While the VBM still com-
putes its diagnoses, these models provide early feedback
to the user. The provided diagnoses are refined afterward.

52 IEEE TRANSACTIONS ON RELIABILITY, VOL. 66, NO. 1, MARCH 2017

Hence, the diagnosis partitioning technique is a promis-
ing candidate for being used in tools for spreadsheet fault
localization.

Future research will include user studies and also comparisons
with other fault localization approaches. Moreover, we plan to
adapt the NDMs for other programing languages like impera-
tive or object-oriented languages. The challenge of the adaption
lies in the identification of all cases where fault masking could
happen in object-oriented programs. Lyle and Weiser proposed
to use program dicing [67] for narrowing down the search space
when locating faults. In program dicing, the slice of a correct
variable (i.e., a variable where the computed value equals the
expected value) is subtracted from the slice of an incorrect vari-
able. The programer focuses only on those statements that are
in this difference set. The problem of program dicing is that
the slice of the correct variable could also contain the fault.
In such a case, the difference set would not contain the faulty
statement. When restricting the dicing approach to allow only
slices of variables where no fault masking could happen, this
problem could be eliminated. Another interesting research topic
is the combination of MBSD with spreadsheet smells. Since
MBSD and smells are orthogonal spreadsheet quality assurance
techniques, they might complement each other.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their comments and valuable suggestions for improving the
paper.

REFERENCES

[1] A. J. Ko et al., “The state of the art in end-user software engineering,”
ACM Comput. Surv., vol. 43, no. 3, 2011, Art. no. 21.

[2] D. Chadwick, B. Knight, and K. Rajalingham, “Quality control in spread-
sheets: A visual approach using color codings to reduce errors in formu-
lae,” Softw. Qual. J., vol. 9, no. 2, pp. 133–143, 2001.

[3] C. M. Reinhart and K. S. Rogoff, “Growth in a time of debt,” Amer. Econ.
Rev., vol. 100, no. 2, pp. 573–578, 2010.

[4] T. Herndon, M. Ash, and R. Pollin, “Does high public debt consistently
stifle economic growth? A critique of Reinhart and Rogoff,” Cambridge
J. Econ., 2013. doi: 10.1093/cje/bet075.

[5] “Report of JPMorgan chase & co. management task force regard-
ing 2012 cio losses,” Jan. 2013. [Online]. Available: http://files.
shareholder.com/downloads/ONE/2261602328x0x628656/4cb574a0-
0bf5-4728-9582-625e4519b5ab/Task_Force_Report.pdf

[6] R. R. Panko, “Thinking is bad: Implications of human error research for
spreadsheet research and practice,” 2008.

[7] L. Console, G. Friedrich, and D. T. Dupré, “Model-based diagnosis meets
error diagnosis in logic programs,” in Proc. Int. Joint Conf. Artif. Intell.,
1993, pp. 1494–1501.

[8] D. Jannach and T. Schmitz, “Model-based diagnosis of spreadsheet
programs-A constraint-based debugging approach,” Autom. Softw. Eng.,
vol. 23, no. 1, pp. 105–144, 2014.

[9] R. Abreu, B. Hofer, A. Perez, and F. Wotawa, “Using constraints to di-
agnose faulty spreadsheets,” Softw. Qual. J., vol. 23, no. 2, pp. 297–322,
2014. [Online]. Available: http://dx.doi.org/10.1007/s11219-014-9236-4

[10] R. Abreu, A. Riboira, and F. Wotawa, “Constraint-based debug-
ging of spreadsheets,” in Proc. Ibero-Amer. Conf. Softw. Eng., 2012,
pp. 1–14.

[11] R. Abreu, A. Riboira, and F. Wotawa, “Debugging of spreadsheets: A CSP-
based approach,” in Proc. 3rd IEEE Int. Workshop Program Debugging
Softw. Rel. Eng. Workshops, 2012, pp. 159–164.

[12] S. Außerlechner et al., “The right choice matters! SMT solving substan-
tially improves model-based debugging of spreadsheets,” in Proc. 13th
Int. Conf. Qual. Softw., 2013, pp. 139–148.

[13] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring
classsheet models from spreadsheets,” in Proc. IEEE Symp. Vis. Lang.
Human-Centric Comput., 2010, pp. 93–100.

[14] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to relational
databases and back,” in Proc. ACM SIGPLAN Workshop Partial Eval.
Program Manipulation, 2009, pp. 179–188.

[15] J. Cunha, J. Fernandes, P. Joao, J. Mendes, and J. Saraiva, “A bidirectional
model-driven spreadsheet environment,” in Proc. 34th Int. Conf. Softw.
Eng., 2012, pp. 1443–1444.

[16] I. P. Gent, C. Jefferson, and I. Miguel, “Minion: A fast, scalable, constraint
solver,” in Proc. 17th Eur. Conf. Artif. Intell., 2006, pp. 98–102. [Online].
Available: http://dl.acm.org/citation.cfm?id=1567016.1567043

[17] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
14th Int. Conf. Tools Algorithms Constr. Anal. Syst., 2008, pp. 337–340.

[18] G. Friedrich, M. Stumptner, and F. Wotawa, “Model-based diagnosis of
hardware designs,” Artif. Intell., vol. 111, no. 2, pp. 3–39, Jul. 1999.

[19] F. Wotawa, “On the relationship between model-based debugging and
program slicing,” Artif. Intell., vol. 135, pp. 125–143, Feb. 2002.

[20] B. Hofer and F. Wotawa, “Why does my spreadsheet compute wrong
values?” in Proc. 25th IEEE Int. Symp. Softw. Rel. Eng., 2014,
pp. 112–121. [Online]. Available: http://dx.doi.org/10.1109/ISSRE.
2014.23

[21] R. Reiter, “A theory of diagnosis from first principles,” Artif. Intell.,
vol. 32, no. 1, pp. 57–95, 1987.

[22] R. Dechter, Constraint Processing. San Mateo, CA, USA: Morgan
Kaufmann, 2003.

[23] F. Wotawa, M. Nica, and I. Moraru, “Automated debugging based on
a constraint model of the program and a test case,” J. Logic Algebraic
Program., vol. 81, no. 4, pp. 390–407, 2012.

[24] I. Nica and F. Wotawa, “Condiag-computing minimal diagnoses using a
constraint solver,” in Proc. 23rd Int. Workshop Princ. Diagn., 2012.

[25] X. Wang, S.-C. Cheung, W. K. Chan, and Z. Zhang, “Taming coincidental
correctness: Coverage refinement with context patterns to improve fault
localization,” in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 45–55.

[26] M. Fisher and G. Rothermel, “The EUSES spreadsheet corpus: A shared
resource for supporting experimentation with spreadsheet dependabil-
ity mechanisms,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5,
2005.

[27] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E. Getzner, “On the
empirical evaluation of fault localization techniques for spreadsheets,”
in Proc. 16th Int. Conf. Fundamental Approaches Softw. Eng., 2013,
pp. 68–82.

[28] R. Abraham and M. Erwig, “Mutation operators for spreadsheets,” IEEE
Trans. Softw. Eng., vol. 35, no. 1, pp. 94–108, Jan./Feb. 2009.

[29] R. Greiner, B. A. Smith, and R. W. Wilkerson, “A correction to the al-
gorithm in Reiter’s theory of diagnosis,” Artif. Intell., vol. 41, no. 1,
pp. 79–88, 1989.

[30] M. Weiser, “Programmers use slices when debugging,” Commun. ACM,
vol. 25, no. 7, pp. 446–452, Jul. 1982.

[31] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol. 10, no. 4,
pp. 352–357, Jul. 1984.

[32] E. Shapiro, Algorithmic Program Debugging. Cambridge, MA, USA: MIT
Press, 1983.

[33] G. W. Bond, “Logic programs for consistency-based diagnosis,” Ph.D.
dissertationFaculty Eng., Carleton Univ., Ottawa, ON, Canada, 1994.

[34] B. Peischl and F. Wotawa, “Automated source level error localization in
hardware designs,” IEEE Des. Test Comput., vol. 23, no. 1, pp. 8–19,
Jan./Feb. 2006.

[35] M. Stumptner and F. Wotawa, “Debugging functional programs,” in Proc.
Int. Joint Conf. Artif. Intell., 1999, pp. 1074–1079.

[36] W. Mayer and M. Stumptner, “Model-based debugging-state of the art and
future challenges,” Electron. Notes Theor. Comput. Sci., vol. 174, no. 4,
pp. 61–82, May 2007. [Online]. Available: http://dx.doi.org/10.1016/
j.entcs.2006.12.030

[37] W. Mayer and M. Stumptner, “Evaluating models for model-based de-
bugging,” in Proc. 23rd IEEE/ACM Int. Conf. Autom. Softw. Eng.,
2008, pp. 128–137. [Online]. Available: http://dx.doi.org/10.1109/ASE.
2008.23

[38] W. Mayer, “Static and hybrid analysis in model-based debugging,”
Ph.D. dissertation, , Sch. Comput. Inf. Sci., Univ. South Australia,
Adelaide, Australia, 2007. [Online]. Available: http://books.google.at/
books?id=P0aQNQAACAAJ

[39] W. Mayer, M. Stumptner, D. Wieland, and F. Wotawa, “Can AI help
to improve debugging substantially? Debugging experiences with value-
based models,” in Proc. Eur. Conf. Artif. Intell., 2002, pp. 417–421.

HOFER et al.: COMBINING MODELS FOR IMPROVED FAULT LOCALIZATION IN SPREADSHEETS 53

[40] C. Mateis, M. Stumptner, and F. Wotawa, “Locating bugs in java
programs-first results of the java diagnosis experiment project,” in
Proc. 13th Int. Conf. Ind. Eng. Appl. Artif. Intell. Expert Syst., 2000,
pp. 174–183.

[41] C. Mateis, M. Stumptner, D. Wieland, and F. Wotawa, “Model-based de-
bugging of Java programs,” in Proc. 4th Int. Workshop Autom. Debugging,
2000. [Online]. Available: http://arxiv.org/abs/cs.SE/0011027

[42] F. Wotawa and M. Nica, “On the compilation of programs into their equiv-
alent constraint representation,” Informatica (Slovenia), vol. 32, no. 4,
pp. 359–371, 2008.

[43] F. Wotawa, J. Weber, M. Nica, and R. Ceballos, “On the complexity of
program debugging using constraints for modeling the program’s syntax
and semantics,” in Proc. 13th Conf. Spanish Assoc. Artif. Intell., 2009,
pp. 22–31.

[44] D. Jannach and U. Engler, “Toward model-based debugging of spread-
sheet programs,” in Proc. 9th Joint Conf. Knowl.-Based Softw. Eng., 2010,
pp. 252–264.

[45] Y. Ayalew and R. Mittermeir, “Spreadsheet debugging,” Comput. Res.
Repository, 2008. [Online]. Available: http://arxiv.org/abs/0801.4280

[46] J. Ruthruff et al., “End-user software visualizations for fault localization,”
in Proc. ACM Symp. Softw. Vis., 2003, pp. 123–132. [Online]. Available:
http://doi.acm.org/10.1145/774833.774851

[47] R. Abraham and M. Erwig, “Goal-directed debugging of spreadsheets,” in
Proc. IEEE Symp. Visual Lang. Hum.-Centric Comput., 2005, pp. 37–44.

[48] R. Abraham and M. Erwig, “GoalDebug: A spreadsheet debugger for end
users,” in Proc. 29th Int. Conf. Softw. Eng., 2007, pp. 251–260.

[49] R. Abraham and M. Erwig, “Ucheck: A spreadsheet type checker for end
users,” J. Visual Lang. Comput., vol. 18, pp. 71–95, Feb. 2007.

[50] M. J. Coblenz, A. J. Ko, and B. A. Myers, “Using objects of measurement
to detect spreadsheet errors,” in Proc. IEEE Symp. Visual Lang. Hum.-
Centric Comput., 2005, pp. 314–316.

[51] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G. Green,
and G. Rothermel, “WYSIWYT testing in the spreadsheet paradigm:
An empirical evaluation,” in Proc. 22nd Int. Conf. Softw. Eng., 2000,
pp. 230–239.

[52] M. Fisher, M. Cao, G. Rothermel, C. R. Cook, and M. M. Burnett, “Au-
tomated test case generation for spreadsheets,” in Proc. 24th Int. Conf.
Softw. Eng., 2002, pp. 141–151.

[53] R. Abraham and M. Erwig, “Autotest: A tool for automatic test case
generation in spreadsheets,” in Proc. IEEE Symp. Visual Lang. Hum.-
Centric Comput., 2006, pp. 43–50.

[54] R, Abreu, J. Cunha, J. Fernandes, P. Martins, A. Perez, and J. Saraiva,
“Smelling faults in spreadsheets,” in Proc. 30th IEEE Int. Conf. Softw.
Maint. Evol., 2014 pp. 111–120.

[55] M. M. Burnett, C. R. Cook, O. Pendse, G. Rothermel, J. Summet, and
C. S. Wallace, “End-user software engineering with assertions in the
spreadsheet paradigm,” in Proc. 25th Int. Conf. Softw. Eng., 2003,
pp. 93–105.

[56] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDsheet: A frame-
work for model-driven spreadsheet engineering,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 1395–1398.

[57] J. Cunha, J. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a catalog of
spreadsheet smells,” in Proc. 12th Int. Conf. Comput. Sci. Appl., 2012,
pp. 202–216.

[58] R. Mittermeir and M. Clermont, “Finding high-level structures in spread-
sheet programs,” in Proc. 9th Working Conf. Reverse Eng., 2002,
pp. 221–232.

[59] A. Bregar, “Complexity metrics for spreadsheet models,” Comput. Res.
Repository, 2008. [Online]. Available: http://arxiv.org/abs/0802.3895

[60] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting code smells in
spreadsheet formulas,” in Proc. 28th IEEE Int. Conf. Softw. Main., 2012,
pp. 409–418.

[61] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in Proc. 34th Int. Conf. Softw.
Eng., 2012, pp. 441–451.

[62] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional
spreadsheet users by generating leveled dataflow diagrams,” in Proc. 33rd
Int. Conf. Softw. Eng., 2011, pp. 451–460.

[63] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen, “Data clone
detection and visualization in spreadsheets,” in Proc. 35th Int. Conf.
Softw. Eng., 2013, pp. 292–301. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2486827

[64] F. Hermans, M. Pinzger, and A. van Deursen, “Measuring spreadsheet for-
mula understandability,” Comput. Res. Repository, 2012. [Online]. Avail-
able: http://arxiv.org/abs/1209.3517

[65] F. Hermans, “Improving spreadsheet test practices,” Proc. Conf. Center
Adv. Stud. Collaborat. Res., 2013, pp. 56–69.

[66] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa, “Avoiding, finding and
fixing spreadsheet errors–A survey of automated approaches for spread-
sheet QA,” J. Syst. Softw., vol. 94, pp. 129–150, 2014.

[67] J. Lyle and M. Weiser, “Automatic program bug location by program
slicing,” in Proc. 2nd Int. Conf. Comput. Appl., Jun. 1987, pp. 877–882.

[68] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and I. Kwan,
“End-user debugging strategies: A sensemaking perspective,” ACM Trans.
Comput.-Hum. Interact., vol. 19, no. 2, pp. 5:1–5:28, 2012.

[69] P.-L. Poon, F.-C. Kuo, H. Liu, and T. Y. Chen, “How can non-technical
end users effectively test their spreadsheets?” IT People, vol. 27, no. 4,
pp. 440–462, 2014.

[70] T. Y. Chen, S. C. Cheung, and S. Yiu, “Metamorphic testing: A new
approach for generating next text cases,” Dept. Comput. Sci., Hong
Kong Univ. Sci. Technol., Hong Kong, Tech. Rep. HKUST-CS98-01,
1998.

Birgit Hofer received the Ph.D. degree in computer science in 2013 and the
Master’s degree in software engineering and economics in 2009 from the Graz
University of Technology, Graz, Austria.

She currently works as a Researcher at Graz University of Technology. Her
main research interest comprises the automatic localization and correction of
faults in imperative and object-oriented software and spreadsheets. In particular,
she is interested in combinations of spectrum-based fault localization, model-
based debugging techniques, and genetic programming.

Andrea Höfler received the Graduate degree in computer science from the Graz
University of Technology, Graz, Austria, in 2015.

In the Master’s thesis “On the Usage of Value- and Dependency-based Models
for Spreadsheet Debugging with SMT Solvers,” she focused on model-based
fault localization for spreadsheets. Parts of the result of her Master’s thesis have
contributed to the work presented in this paper.

Franz Wotawa received the M.Sc. degree in computer science in 1994 and
the Ph.D. degree in 1996 from the Vienna University of Technology, Wien,
Austria.

He is currently a Professor of software engineering at the Graz University of
Technology, Graz, Austria and the Dean of the Computer Science Faculty. Since
the founding of the Institute for Software Technology in 2003 to the year 2009,
he was the Head of the institute. His research interests include model-based
and qualitative reasoning, theorem proving, mobile robots, verification and
validation, and software testing and debugging. Beside theoretical foundations,
he has always been interested in closing the gap between research and practice.
For these purposes, he founded Softnet Austria in 2006, which is a nonprofit
organization carrying out applied research projects together with companies.
During his career, he has written more than 280 papers for journals, books,
conferences, and workshops. He supervised 64 Master’s and 27 Ph.D. students.

Dr. Wotawa has been a member of a various number of program committees
and organized several workshops and special issues of journals. He is a member
of the Academia Europaea, the IEEE Computer Society, ACM, the Austrian
Computer Society (OCG), the Austrian Society for Artificial Intelligence, and
a Senior member of the AAAI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

