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Abstract— Radiological source search is a challenging task
involving detection and identification of weak sources in a
constantly changing radiological background. As of now, many
radiological source detection algorithms have been proposed;
however, their computational complexity and, hence, reliance on
power intensive processing units inhibit low-power applications
of radiological source search systems. In this work, we introduce
the anomaly filter (AF) algorithm; a computationally light,
yet effective time-series source detection algorithm based on
exponential weighted moving average (EWMA) and Poisson
deviance statistics. Then, we demonstrate that the proposed
algorithm can be used in ensemble with other more computa-
tionally intensive source detection and identification algorithms to
achieve both increased detection performance and reduced power
consumption. The proposed AF algorithm and the ensemble
algorithms were thoroughly benchmarked against several existing
source detection and identification algorithms. The results show
that the AF algorithm outperforms existing conventional source
detection algorithms, and the ensemble approach improves the
overall performance of existing source detection and isotope
identification algorithms. Furthermore, the AF algorithm and the
non-negative matrix factorization approach-based source identi-
fication (NMF-ID) algorithm were combined and implemented
on a single-board microcontroller, and the power consumption
was measured. This ensemble algorithm reduced the power
consumption of the NMF-ID algorithm almost by a factor of 100,
while improving the detection performance of the overall system.

Index Terms— Anomaly detection, gamma-ray detection, low-
power electronics, non-negative matrix factorization (NMF),
radiation source search.

I. INTRODUCTION

RADIOLOGICAL source search, which encompasses the
detection, identification, and localization of unknown
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radiological materials, continues to be of importance for home-
land security [1], [2], [3]; emergency response [4]; environ-
mental monitoring [5], [6]; and contamination remediation [7].
In particular, the goal of radiological source detection and
identification is to find and characterize anomalies present in
time-integrated radiation spectral histograms, obtained from
mobile or stationary radiation detection systems. Thus, the
source detection and identification problem can be classified
as a multivariate time-series anomaly detection problem.

Time-series anomaly detection is a well-studied prob-
lem [8], yet there are several factors that make radiologi-
cal source search particularly challenging. First, radiological
backgrounds, which constantly evolve both spatially and tem-
porally, are often not known a priori, making it difficult to
differentiate anomalies arising from radiological sources from
the background fluctuation and Poisson noise. Furthermore,
operational constraints, such as the need to maintain low false
positive rates (FPRs), further limit the sensitivity of the overall
radiological source detection system.

As of now, to effectively deal with the aforementioned chal-
lenges, a variety of source detection and identification algo-
rithms have been developed. For example, some algorithms
estimate the background by means of dimensionality reduction
techniques, such as principal component analysis (PCA) [9],
[10] or non-negative matrix factorization (NMF) [11], [12].
Others make use of specific energy windows within which the
source and background count contributions are estimated using
the spectrum outside the windows [13]. Additionally, some
recent works utilize modern machine learning techniques, such
as deep neural networks (DNNs) [14], [15] and Gaussian
processes (GPs) [16].

These source detection and identification algorithms have
been successful to varying degrees; however, due to their
computational cost, some of these algorithms primarily rely on
processing units with high power consumption. This, in turn,
inhibits deployment of radiation source search systems in
circumstances where stable power sources are not readily
available.

Although the necessity of low-power implementation of
source detection and identification algorithms has become
apparent and recognized, to the best of our knowledge, the
literature on the topic is scarce. For example, Huang et al. [17]
implemented a convolutional spiking neural network-based
source detection algorithm on a field programmable gate
array (FPGA) and achieved the overall power consumption of
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75 mW [17]. However, the work lacks thorough benchmarking
of the implemented algorithm, and the approach may not be
easily applicable to other already existing algorithms. Hence,
a more general approach is needed.

In this work, to achieve low-power implementation of the
radiological source detection and identification algorithms,
we consider the use of an ensemble approach where a com-
putationally efficient algorithm is used in series with a com-
putationally heavy, yet more effective algorithm. In addition,
we demonstrate that the proposed ensemble approach can
improve the overall performance of various source detection
and identification algorithms. First, we introduce the anom-
aly filter (AF) algorithm—an effective, yet computationally
light radiological source detection algorithm based on the
exponential weighted moving average (EWMA) and Poisson
deviance statistics. Then, we compare the performance of
the AF algorithm with other existing source detection and
identification algorithms to demonstrate the effectiveness of
the AF algorithm. Furthermore, the performance gain of the
ensemble algorithms, where the AF algorithm is used in
conjunction with other existing algorithms, is explored through
thorough benchmarking. Finally, we implement the ensemble
of the AF algorithm and an NMF-based source identification
algorithm on an off-the-shelf single-board microcontroller to
demonstrate the low-power implementation of source detection
and identification algorithms.

The rest of this article is organized as follows. Sec-
tions II and III introduce the AF algorithm and the ensemble
approach for low-power implementation of source detection
and identification algorithms. In Section IV, the datasets
and existing source detection and identification algorithms,
which were used for performance benchmark and power mea-
surement, are introduced. The results of the benchmark and
low-power implementation power measurement are introduced
in Section V. Finally, in Section VI, we conclude the study,
presenting the direction of the future work.

II. ANOMALY FILTER

A. Binning Scheme and Integration Time Selection

The AF algorithm aims to detect anomalies (i.e., non-
background spectral features) from time-integrated energy
spectra, and therefore, it is of importance to choose an
appropriate integration time and binning scheme to optimize
the performance of the algorithm. The choice of the optimum
integration time depends primarily on the source-to-detector
distance, the detector (or source) moving speed, and the
detector dwell time. However, these parameters usually cannot
be determined a priori in many source search scenarios. Thus,
in this study, we use the integration time of 1 s for the AF
algorithm and other algorithms, which are introduced later in
this article.

An energy binning scheme is another important consid-
eration, which can affect the performance of the algorithm.
Too many energy bins result in fewer counts registered
in each bin. This, in turn, may cause overdispersion of
Poisson counts statistics, making it difficult to statistically
interpret the results. On the other hand, too few bins may

lead to non-negligible quantization error, and therefore, some
important spectral information may be lost. Also, due to
the radiation energy dependency of the detector resolution
[i.e., full-width at half maximum (FWHM)], the optimum
bin width may differ depending on the energy and detector
types.

For the AF algorithm and the other algorithms used for
benchmarking, the time integrated counts were histogrammed
with 128 energy bins ranging between 30 and 3000 keV. The
widths of the bins were set to be proportional to the square root
of the energy [(E)1/2] to ensure that the FWHM of the detector
resolution ranges over the same number of bins, independent
of the energy. This number of bins was empirically determined
to be the minimum number of bins required to ensure no
spectral information loss. Note that the number of bins was
chosen specifically for a medium resolution detector (i.e.,
NaI detector), and the optimum number of bins may vary
depending on the type of detector used.

B. Background Tracking

Reliable tracking of constantly varying radiation back-
grounds is crucial for all radiological source detection and
identification algorithms, as background fluctuations may elicit
false alarms, and thus, the overall performance of the source
detection algorithm may be compromised. Suppose that the
true time integrated mean background spectrum at time t is
given as a vector form, μt ∈ R

d
≥0, where d is the number of

bins used for the spectral histogram. Then, a time integrated
spectrum, xt ∈ Z

d
≥0, is subject to Poisson noise as follows:

xt,i ∼ Poisson(μt,i) ∀i = 1, . . . , d. (1)

However, as the true background μt is typically not known a
priori in most source search scenarios, most source detection
and identification algorithms use a variety of techniques to
estimate the true background spectrum μt . For the AF algo-
rithm, this is done by continuously updating the background
estimation using the EWMA. First, the time integrated spec-
trum xt is filtered to suppress the noise present in the spectrum.
Since the energy spectra obtained from detectors are subject
to Gaussian blur due to the limited energy resolution, it is
reasonable to use a Gaussian filter of size proportional to
(E)1/2 to reduce the variance while preserving the prominent
features (e.g., photopeaks). However, we have found that
using a simple boxcar filter is not only computationally more
efficient, but also just as good in noise suppression. Let xt,i be
the counts registered in the i th bin at time t . Then, the moving
average is applied as

x̄t,i = 1

w

i+(w−1)/2∑

k=i−(w−1)/2

xt,k (2)

where w is the width of the boxcar filter, which is often chosen
to be an odd number for the sake of symmetry.

Since the bin width is set to be proportional to
(E)1/2, the width of the filter does not need to vary to account
for the energy dependency of detector resolution. For the type
of the detector and the binning scheme considered in this
study, it was found that the choice of w = 3 adequately



2170 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 69, NO. 10, OCTOBER 2022

reduces the noise without much loss of spectral information.
However, the optimal filter size may vary depending on the
detection system setup.

With the found filtered spectra, the EWMA update rule for
the mean background estimation μ̂t ∈ R

d
≥0 is given as

μ̂t = (1 − α)μ̂t−1 + αx̄t−1/�x̄t−1�1 (3)

where μ̂t is the mean background spectrum estimation at time
t , α is the EWMA weight, and �·�1 is l1-norm. The initial
background spectrum estimation μ̂0 can be set using the mean
background spectrum measured for a prolonged time. Note
that μ̂t is normalized, such that

∥∥μ̂t

∥∥
1 = 1, and thus, it only

reflects the spectral shape, neglecting the gross counts. Then,
the estimated mean background spectrum is

μt ≈ �xt�1μ̂t . (4)

In spite of its simplicity, it has been demonstrated that the
EWMA performs as well or even better than more complex
background estimation methods, such as Kalman filter [18].

The EWMA weight parameter α determines how much
the estimated background reflects the most recently measured
spectrum. Therefore, it is a hyperparameter that needs to be
tuned differently depending on the background variability of
the source search scenario. For example, in this work, α =
0.02 was used as it was found to be effective in urban radi-
ological source search scenarios. However, even lower values
of α can be used in the case of static source detection systems.
Although the EMWA background estimation performs well for
slowly varying backgrounds, the estimation might fail when
the count contribution from the source increases slowly. For
example, when the source-to-detector distance is large, the
source contribution may be updated together with the slowly
changing background, yielding inaccurate background estima-
tion. To prevent this from happening, a preset background
update threshold, above which the background is not updated,
is set as a fraction of the anomaly metric threshold. In this
study, 80% of the anomaly metric threshold was used for
background update threshold.

C. Anomaly Metric

Once the background is estimated, the spectral discrepancy
between the filtered spectrum and the EWMA estimated mean
background found from (4) is first quantified using unit
Poisson deviance. Unit Poisson deviance spectrum measured
at time t , dt is obtained as

dt = 2(log P(x̄t ; x̄t)) − log P(x̄t ; μt)

≈ 2(log P(x̄t ; x̄t)) − log P(x̄t ; �x̄t�1μ̂t)

= 2(x̄t � log (x̄t 	 �x̄t�1μ̂t ) − (x̄t − �x̄t�1μ̂t )) (5)

where � and 	 are element-wise (Hadamard) product and
division, respectively. Poisson deviance is a goodness-of-fit
statistic often used for Poisson regression model selection.
Typically, two different models (hypotheses) are compared
to choose a model, which best fits the Poisson statistics of
the data. In the context of AF algorithm, Poisson deviance is
equivalent to likelihood ratio, where likelihoods of the null

Fig. 1. Example of an estimated background and measured spectrum with
an 80-μCi 133Ba source present in the environment (top) and the unit Poisson
deviances across all the spectral bins (bottom). The spectrum was integrated
for 1 s, and 128 bins were used. Note that the peak at 356 keV is attributed
to the 133Ba source.

hypothesis and the alternative hypothesis are compared. Here,
the null hypothesis means that the observed spectrum xt is a
realized sample from the background spectrum μt), and the
alternative hypothesis is that the observed xt is a sample from
xt itself. Fig. 1 shows an example of a unit Poisson deviance
spectrum, where the discrepancy between the EWMA esti-
mated counts and measured counts in each bin is quantified
using unit Poisson deviance. The measured spectrum contains
counts from a 133Ba source, which give rise to large unit
Poisson deviances in bins around the 133Ba photopeak energy
(356 keV). Note that the measured spectrum in Fig. 1 was
taken from the augmented dataset, which simulates gamma-ray
source search runs in urban environment with a vehicle borne
NaI(Tl) detector. More details of the dataset are described in
Section IV.

For hypothesis testing, the total deviance is used to measure
the discrepancy between two hypothesis

dtot =
n∑

i=1

di . (6)

Since the total deviance is a likelihood-ratio test, it provides
a statistically interpretable means of determining anomalous
spectra. According to Neyman–Pearson lemma, likelihood-
ratio test is the most powerful hypothesis test when the proba-
bility distribution functions (PDFs) of the two hypothesizes are
known [19]. However, note that the alternative hypothesis xt

does not account for some common attributes of the anomalies
arising from radiological sources.

For example, if a measured spectrum contains counts from
an unknown radiological source one wishes to find, the full
energy peak(s) are the most prominent anomalous features, and
thus, the Poisson unit deviances will be high in only a small
number of spectral bins. On the other hand, if an anomalous
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Fig. 2. Waterfall plots of the measured counts (top left), unit Poisson deviances (top middle), and weighted Poisson deviances (top right) from a simulated
180-s source search run with a 133Ba source injected at 75 s. The run was taken from the augmented dataset described in Section IV. Marked as an ROI is
the 133Ba photopeak at 356 keV. The time-series plots of the gross counts (bottom left), total deviances (bottom middle), and l2-norm of the weighted Poisson
deviance spectra (bottom right) are shown as well. Note that the weighted Poisson deviances can effectively suppress the noise arising from the background
fluctuation, while preserving the prominent features from the 133Ba source.

spectrum is registered due to background fluctuation and
Poisson noise, the unit Poisson deviances are likely to be
randomly distributed across spectral bins.

In addition, if high unit Poisson deviances arise from a
radiological source in the environment, it is likely that the high
deviances appear in the same bins in the next time-integrated
spectrum. However, if the high unit Poisson deviances are from
the background noise, they will rarely appear in those same
bins again in the next time-integrated spectrum.

Taking into account the aforementioned characteristics of
anomalies arising from extraneous radiological sources can
greatly improve the sensitivity of the AF algorithm. Thus,
instead of using total deviance as an anomaly metric, the
obtained unit deviances are further processed, so that the
algorithm is more robust to the background noise.

First, the unit Poisson deviances found from (5) are
weighted as follows:

d

t = dt � wt (7)

where wt is the weighting vector at time t . The weighting
vector wt is obtained as

wt = (1 − β)wt−1 + β
n

�dt�1
dt . (8)

In other words, the weighting vector is continuously updated
with a newly measured spectrum using EWMA. Note that the
weight is normalized, such that

∑n
i=1 wt,i = n, and the initial

weights w0,i can be initialized to ones. The hyperparameter β
determines how fast the weights change as a new spectrum is
registered, and depending on the expected source dwell time,
it can be chosen differently. For the benchmark described in
Section IV, β = 0.5 was used, as it was found to be suitable
for urban radiological source search scenarios. Since the
weight vector follows the most recent unit Poisson deviance
spectrum, the weighted deviance becomes increasingly large

when the deviance is continuously high in certain bins. Since
continuously high deviance values in certain bins are indicative
of non-background radiological sources present in the scene,
the deviance weighting scheme can greatly improve the overall
performance of the algorithm.

Once the weighted deviance vector is found with (7),
l2-norm of the weighted deviance vector is used as the anomaly
metric as follows:

AF(xt) = ∥∥d

t

∥∥
2. (9)

Total deviance is the sum of all unit deviances and,
therefore, is equivalent to l1-norm of the deviance vector.
Although the total deviance has favorable statistical inter-
pretation as a likelihood-ratio test, using l2-norm improves
the performance, since l2-norm yields a higher alarm met-
ric when unit Poisson deviance spectrum is sparsely high
in few bins.

To illustrate the impact of this approach, Fig. 2 compares the
use of the following three anomaly metrics: gross counts, total
Poisson deviance, and l2-norm of the weighted deviance (the
AF anomaly metric). Shown in the top row are anomaly metric
spectra of a source search run, where the different anomaly
metrics are computed for each time and energy bin. Marked
as region of interest (ROI) are count bins where the non-
background 133Ba source counts are registered. The plots in
the bottom row show how the three different anomaly metrics
change over the course of the source search run. The gross
counts do not reflect any spectral information; therefore, it fails
to yield a high anomaly metric when the 133Ba source appears
at around 75 s. The total Poisson deviance, on the other hand,
gives a relatively high alarm metric when the source is nearby,
but it is not robust to background fluctuations. As a result, it is
impossible to detect the source without frequent false alarms.
Finally, the l2-norm of the weighted deviance suppresses the
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high Poisson deviances arising from the background fluctua-
tions, yielding a distinctively high anomaly metric at 75 s.

Once the anomaly metric is found from (9), it is then com-
pared with a preset threshold TAF, and an alarm is registered
when AF(xt) ≥ TAF. The preset threshold can be empirically
determined from background measurements.

III. ENSEMBLE ALGORITHM

In this study, we investigate the use of the ensemble
algorithms where the AF algorithm is used together with
other existing source detection and identification algorithms.
The purpose of the ensemble approach is to improve the
performance of the existing algorithms while simultaneously
reducing the computational cost and, therefore, power con-
sumption, associated with their implementation.

A. Ensemble Algorithm

Suppose that TAF and Talg are the anomaly metric thresholds
of the AF algorithm and a source detection algorithm of
choice, respectively. First, an AF alarm metric AF(xt) is
obtained from a measured spectrum xt and compared with
the AF threshold. If AF(xt) ≥ TAF, the spectrum xt is further
processed by the source detection algorithm, and an alarm is
registered if alg(xt) ≥ Talg. In other words, measured spectra
are first “filtered” by the AF algorithm, with those spectra
exceeding the AF thresholds then further inspected by the
source detection algorithm.

Since the ensemble algorithm requires two different preset
thresholds, TAF and Talg, theoretically, an infinite number of
threshold combinations can yield the same overall FPR of
the ensemble algorithm. Therefore, it is important to tune the
thresholds on a training dataset, so that the desirable results
[i.e., better computational efficiency or highest true positive
rate (TPR)] can be achieved.

B. Low-Power Implementation and Performance Gain

Because of the low computational cost of the AF algo-
rithm, the computation burden of the ensemble algorithms
can be significantly lower than that of standalone source
detection and identification algorithm. Furthermore, as demon-
strated in Section V, this method not only reduces the
overall computational cost, but also improves the detection
performance.

Since the AF algorithm is computationally much more
efficient than many other source detection and identification
algorithms, the reduction in computational cost (the overall
power consumption) ultimately depends on the FPR of the
AF algorithm (i.e., the rate at which the more computa-
tionally intensive algorithm is called). However, setting the
FPR too low may negatively impact the overall performance
of the ensemble algorithm. Thus, the optimal threshold set-
tings must be carefully chosen depending on the intended
use of the algorithm. Heuristically, we have found good
overall algorithm performance with the FPR of the AF
between 10−2 and 10−1 s−1.

IV. BENCHMARK

To demonstrate the performance of the AF algorithm and
ensemble algorithms, a thorough benchmark was performed
against other existing source detection and identification algo-
rithms on two different datasets. In this section, we introduce
the dataset used to train and test the algorithms and the existing
source detection and identification algorithms used for the
benchmarks.

A. Datasets

The first dataset comes from the radiological source search
competition held in 2018 and is publicly available [20],
[21]. Hence, it will be referred to as the competition dataset
hereinafter. It contains Monte Carlo simulated list-mode
data, mimicking source search runs with a vehicle-borne
2-in × 4-in × 16-in NaI detector. The background data were
obtained from a simulated mid-sized U.S. street, populated
with objects (e.g., streets, buildings, trees, sidewalk, and
air) with different naturally occurring radiological material
(NORM) compositions. In addition, the total of six different
types of sources (highly enriched uranium (HEU), weapons-
grade plutonium (WGPu), 99mTc, 131I, 60Co, and a combination
of 99mTc and HEU) were injected in some of the runs with
or without shielding, at a random location along the street.
A more detailed description for the data generation process
is available in [22]. For benchmarking, the list-mode data
were time-integrated with the integration time of 1 s, and the
time corresponding to the spectrum yielding the largest alarm
metric was considered to be the time of closest approach to
a source. The algorithms were then evaluated using the same
scoring rubric used for the radiological source search com-
petition. The rubric accounts for detection, identification, and
source location prediction and yields a single score ranging
from 0 (worst) to 100 (best). More details on the rubric are
described in [23].

The second dataset, which will be referred to as the aug-
mented dataset hereinafter, consists of 4900 source search
runs and was prepared as follows; first, the background data
were taken from the background only runs of the competition
dataset. Then, each background run was modified by injecting
one of the 21 different sources with various activities. The
detector angular response of the injected source was obtained
using Geant4, and the source signal from a 2” × 4” × 16” NaI
detector was simulated accordingly. In all runs, the detector
moving speed of 5 m/s and the distance of closest approach
between the detector and a source of 10 m were assumed.
Table I shows the list of source types and activities used for
the dataset. The same dataset was also used for benchmarking
by Bilton et al. [14], in which a more detailed data generation
procedure is described. The algorithms were assessed on the
augmented dataset in terms of receiver operating characteristic
(ROC) curves and minimum detectable amount (MDA).

B. Algorithms

To benchmark the performance of the AF algorithm and
the ensemble approach, the following source detection and
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TABLE I

LIST OF RADIOLOGICAL ISOTOPES USED IN THE AUGMENTED DATASET

identification algorithms were implemented, trained, and tested
on the aforementioned dataset: gross counts Kσ , spectral
anomaly detection (SAD), nuisance-rejection spectral compar-
ison ratio anomaly detection (N-SCRAD) algorithm, censored
energy window (CEW), and NMF-based source identification
(NMF-ID) algorithm. The Kσ , SAD, N-SCRAD, and CEW
algorithms were implemented with the radiological anomaly
detection and identification (RADAI) Python library [24], and
the NMF-ID algorithm was implemented with the Berkeley
anomaly detection (BAD) Python library [25].

1) Gross Counts Kσ Algorithm: Gross counts Kσ algo-
rithm (Kσ ) is one of the rudimentary radiological anomaly
detection algorithms, which do not account for any spectral
information. The algorithm uses the z-score of the gross counts
from a spectrum x as an anomaly metric as follows:

Kσ(x) = �x�1 − μ

σ
(10)

where μ and σ are the mean and standard deviation
of the gross counts, respectively, and are found from
background-only training data. Then, the measured z-score
is compared with the preset threshold to identify anomalous
spectra.

2) Spectral Anomaly Detection: SAD projects measured
spectra onto a PCA-based orthonormal subspace and then
reconstructs the spectra using the orthonormal components.
Then, the anomaly metric is obtained by measuring the recon-
struction error [26], [27]. Suppose the orthonormal subspace
is denoted as U. Then, the anomaly metric on a measured
spectrum x is

SAD(x) = �x − UUᵀx�2. (11)

The orthonormal subspace U is often found using PCA on the
background only training data.

3) N-SCRAD Algorithm: The N-SCRAD algorithm uses
spectral comparison ratios (SCRs) defined for a set of coarse
spectral bins [18], [28], [29], [30], [31]. The SCR defined for
bin 1 and bin j at time index t , and α1 jt is defined as follows:

α1 jt = x1t − B̄1t

B̄ jt

x jt (12)

where x1t and x jt are the number of counts registered in
bin 1 and j at time t , and B̄1t and B̄ jt are reference counts
in bin 1 and j . Assuming that (B̄1t /B̄ jt )x jt is an unbiased
estimator of x1t , the SCR α1 jt follows a zero-mean normal
distribution. Therefore, the SCR spectrum αt , which consists
of N − 1 SCRs, is a zero-mean multivariate normal distri-
bution with a covariance matrix St . Hence, any non-noise

spectral change in the count spectra will cause the SCR
vector αt to deviate from the normal distribution, leading to a
larger Mahalanobis distance (α

ᵀ
t S−1

t αt)
(1/2). To discriminate

the deviation from benign sources and threat sources, the
SCR vector αt is projected onto the subspace spanned by
the SCRs of the nuisance sources, such as K-, U-, and
Th-related naturally occurring radioactive materials (NORMs).
The projection matrix P is given by

P = Ā(ĀᵀS−1
t Ā)−1(ĀᵀS−1

t ) (13)

where the matrix Ā has SCRs of the nuisances as columns.
The anomaly metric is then found as

N-SCRAD(αt ) = (α
ᵀ
t S−1

t (I − P)αt)
1
2 . (14)

The time-dependent reference count spectrum B̄t and covari-
ance matrix St can be estimated using Kalman filter or
EWMA. For more detailed description of the algorithm, read-
ers are encouraged to refer to [18], [28], [29], [30], and [31].
For this study, the N-SCRAD algorithm implemented in the
RADAI package was used, and it should be noted that this
version of implementation may differ from the original imple-
mentation described in the literature. First, the implemented
N-SCRAD algorithm uses a genetic optimization algorithm
for the binning scheme optimization. Furthermore, since the
nuisance spectra were not readily available, three background
basis vectors learned from the NMF-based source identifi-
cation algorithm were used as nuisances. For benchmarking,
15 bins were used, and the time-dependent parameters, B̄t and
St , were tracked using EWMA.

4) Censored Energy Window: CEW measures the estimated
signal-to-noise ratio (SNR) within selected energy windows
to identify anomalous spectra [13]. First, an indicator vector
ŵ = {0, 1}d , which defines the energy windows within which
the SNR is calculated, is obtained by solving the following
optimization problem:

ŵ = argmax
w

wᵀs√
wᵀb

(15)

where s is a source template, and b is a background only
training spectrum. The anomaly metric is then obtained by
calculating the SNR as follows:

CEW(x) = (w − θ̂
ᵀ
)x√

θ̂
ᵀ
x

. (16)

Here, θ̂ is a regression vector used to estimate the background
counts within the window defined by w. The regression vector
is typically learned from background only training data using
ridge regression.

5) NMF-ID Algorithm: NMF-ID is a source identifica-
tion algorithm based on the NMF dimensionality reduction
technique. The algorithm first decomposes a data matrix
with background only spectra, X ∈ R

n×d , into non-negative
components V ∈ R

n×k and weights A ∈ R
k×d , such that

X ≈ X̂ = AV [11], [12], [32]. Note that k � d , and therefore,
X̂ is a low-rank approximation of X. The decomposition is
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Fig. 3. ROC curves for the AF, the source identification algorithms, and ensemble algorithms (left). AF, the source detection algorithms, and ensemble
algorithms (right). The dotted lines represent the ROC curves for the ensemble algorithms where the AF algorithm was used in conjunction with various
detection and identification algorithms.

found by minimizing the following Poisson loss:

ln P(X|X̂) =
n∑

i=1

d∑

j=1

−x̂i j + xi j ln x̂i j − ln xi j ! (17)

Once the non-negative components for background are
found, the component matrix V is augmented with a source
template s, yielding Vs = [Vᵀ|s]ᵀ. Then, a given test spectrum
is fit to both V and Vs , yielding fit spectra x̂ and x̂s. Finally,
the fit spectra are used to find the anomaly metric as follows:

NMF-ID(x) = −2(ln P(x|x̂) − ln P(x|x̂s)) (18)

where P(x|x̂) is a Poisson likelihood, and therefore, (18) is a
likelihood-ratio test. The found anomaly metric is compared
with a preset threshold to determine anomalous spectra.

V. RESULTS

In this section, first, we compare the performance of AF and
ensemble algorithms on the datasets introduced in Section IV
using ROC curves, MDA, and data competition scores. Then,
the power measurement results from the ensemble algorithm
implementations on NVIDIA Jetson Nano [33] and Particle
Photon microcontroller [34] to demonstrate the low-power
implementation capability of the ensemble approach.

A. ROC Curves

To compare the performance of the source detection and
identification algorithms, all algorithms were trained and tested
on the augmented dataset, and the ROC curves were produced,
as illustrated in Fig. 3. For the anomaly detection algorithms
(AF, CEW, N-SCRAD, Kσ , and SAD), the ROC curves were

obtained by evaluating the TPR while varying the thresholds of
the trained algorithms. For the source identification algorithms
(NMF-ID and CEW), the results from 21 different models,
each of which was trained on a single source, were aggregated
to yield the overall FPR and TPR. In addition, each source
detection and identification algorithm was used in ensemble
with the AF algorithm, and the ROC curves were drawn
with dotted lines to compare the performance of the ensemble
algorithms with the standalone algorithms. As stated before,
for ensemble algorithms, an infinite number of threshold
combinations can yield the same FPR. Therefore, for a given
FPR, the threshold combination resulting in the best TPR was
chosen to draw the ROC curves.

As can be seen in Fig. 3, the NMF-ID algorithm performs
the best, among the source identification algorithms, followed
by the CEW algorithms. For the source detection algorithms,
the AF algorithm achieved the best results, followed by the
N-SCRAD, SAD, SPRT, and Kσ algorithms. Generally speak-
ing, identification algorithms perform better than detection
algorithms, as they are trained for specific radioisotopes used
in the simulation. In addition, all ensemble combinations
surpassed the performance of standalone algorithms, indicating
the effectiveness of the ensemble approach.

B. MDA95 Comparison

Although the ROC curves can well characterize the algo-
rithm performance as a function of FPR, it is often helpful
to use more physically interpretable metrics to compare them.
Thus, in this study, we also use MDA95 to compare the per-
formance of different detection, identification, and ensemble
algorithms. For the sake of brevity, we only estimate MDA95
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Fig. 4. Probability of detection curves for 133Ba (top) and 60Co (bottom). The 95% probability of detection line is drawn in red. Note that the curves for
ensemble algorithms are drawn in dotted lines. Figures on the left are for source identification algorithms, whereas figures on the right are for source detection
algorithms.

for 133Ba and 60Co sources used in the augmented dataset.
The estimation of MDA95 was done as follows: first, using
the background only dataset, the algorithm thresholds were set
to yield the same FPR of 1/8 h−1. Then, the source injected
augmented dataset was used to get the probability of detection
PD at different source activities, and the obtained probability
of detection was fit to a sigmoid function

PD(x) = 1

1 + e
−(x−μ)

ω

. (19)

Once the fit function is obtained, MDA95 was obtained by
setting PD(x) = 0.95 and solving (19) for x .

Fig. 4 illustrates the fit probability of detection curves, and
Table II shows the MDA95 found for detection, identification,
and ensemble algorithms. Generally speaking, as demonstrated
with the ROC curves, identification algorithms outperform the
source detection algorithms, while the AF algorithm performs
the best among the source detection algorithms. Furthermore,
all ensemble algorithms achieved lower MDA95 than the stand-
alone algorithms, demonstrating the performance improvement
of the ensemble approach.

C. Data Competition Score

To benchmark the source identification algorithms consid-
ered in this study, the algorithms were trained and tested on
the competition dataset, and scored using the same scoring
rubric used in the data competition. Since the scoring rubric
is based on identification of the radiological sources, only the
identification algorithms and the ensemble algorithms were
used and compared. Fig. 5 shows the best scores obtained from
a single identification algorithm, as well as the scores achieved

TABLE II

MDA95 FOR BARIUM-133 AND COBALT-60

by ensemble algorithms. The score is ultimately dependent on
the FPR settings of the algorithms, and therefore, in Fig. 5, the
score of the ensemble algorithms is shown as contour plots.
Note that the best score the ensemble algorithms can achieve is
higher than the scores achieved with the standalone algorithms.

D. Low-Power Implementation

To demonstrate the power reduction capability of the
ensemble approach, the AF and NMF-ID algorithms were
implemented on both the Nvidia Jetson Nano single-board
computer and the Particle Photon microcontroller, and the
power consumption was measured. The NMF-ID algorithm
was chosen for this measurement, as it exhibits the best
performance among all algorithms we used for benchmark.
However, it should be noted that the ensemble approach



2176 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 69, NO. 10, OCTOBER 2022

Fig. 5. Data competition score of AF + NMF-ID (left) and AF + CEW (right) ensemble algorithms as a function of AF and algorithm FPRs. The best score
achieved from each ensemble algorithm is marked with a red “X.” The red contour lines represent the best scores achieved from the standalone algorithms.

Fig. 6. Overall TPR of the AF + NMF-ID ensemble algorithm on the
augmented dataset as a function of AF and NMF-ID FPR settings. The contour
lines drawn in black represent the overall FPR of the ensemble algorithm. Note
that even for the same overall FPR, the overall TPR varies depending on the
individual algorithm FPR settings.

described in this article can be generally applied to any other
source detection and identification algorithms.

As the overall computational burden of the ensemble algo-
rithm is a function of the AF algorithm FPR (i.e., NMF-ID
calling rate), it is crucial to first characterize the overall perfor-
mance of the ensemble algorithm as a function of individual
algorithm threshold settings. Fig. 6 shows the overall TPR and
FPR of the ensemble algorithm on the augmented dataset as
a function of AF and NMF-ID FPR settings. For the power
measurement, the AF and NMF-ID FPRs were set to 1 ×
10−2 and 8 × 10−4 s−1, as the FPR setting yields the best
TPR for the overall FPR of 1/8 h−1. To mimic the real-world

TABLE III

POWER CONSUMPTION OF THE AF, NMF-ID, AND ENSEMBLE
ALGORITHM ON THE NVIDIA JETSON NANO

measurement scenario, the 1-s time integrated spectrum was
read every second and processed by algorithms in real time.

Table III shows the results of the power consumption
measurements on the Nvidia Jetson Nano with its Quad-core
ARM Cortex-A57 MPCore processor. Note that the dummy
algorithm only reads the data and does not process it and,
therefore, represents the power required to run the necessary
electronics for the system. Therefore, the “algorithm power
consumption” in Table III represents the additional amount
of power required to run the algorithms only. The power
measurement results suggest that while using the AF algorithm
alone does not require much power (0.43 mW), running
the NMF-ID algorithm is computationally taxing and much
more power consuming (434.79 mW). On the other hand,
the ensemble approach could reduce the algorithm power
consumption by two orders of magnitude (3.11 mW), while
improving the overall performance.

Although the ensemble approach can significantly reduce
the power consumption, the overall power consumption is
not only determined by algorithms used, but also computing
platforms and processors on which the algorithms run. Hence,
to study the impact of changing the computing platform,
another power consumption measurement was done by run-
ning the ensemble algorithm (AF + NMF-ID) on a Particle
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TABLE IV

POWER CONSUMPTION OF THE AF, NMF-ID, AND ENSEMBLE ALGO-
RITHM ON THE PARTICLE PHOTON MICROCONTROLLER

Photon microcontroller. The measurement was performed on
the competition dataset with the individual algorithm FPR
settings being 9.1 × 10−2 and 2.3 × 10−2 s−1 for AF and
NMF-ID algorithms, respectively. Note that the FPR settings
were chosen to yield the best ensemble algorithm competition
score, as illustrated in Fig. 5. Table IV shows the results
of the measurement. Note that the base power consumption
(i.e., dummy algorithm power consumption) of Particle Photon
(46.5 mW) is much lower than that of NVIDIA Jetson Nano
(225.70 mW). Also, while the NMF-ID power consumption
could not be measured due to the computational cost of the
NMF-ID algorithm, the ensemble algorithm could achieve the
power consumption as low as 52.7 mW. Note that, theoret-
ically, the power consumption could be even more reduced
if the AF FPR is set lower, at the expense of slightly lower
competition score.

VI. CONCLUSION

Accurate and rapid detection of abnormal radiological
sources in a constantly fluctuating background is a difficult
problem, and although a variety of algorithms have been pro-
posed for the challenge, many of them are computationally so
expensive that they cannot be easily deployed in power-limited
detection scenarios.

In this study, we investigated the use of ensemble algorithms
to achieve low-power implementation of radiological source
detection and identification algorithms. First, we introduced
the AF algorithm: a computationally light, yet effective source
detection algorithm based on the EWMA and Poisson deviance
statistics. Then, we proposed an ensemble approach where the
AF algorithm is first used to filter some potentially anomalous
spectra, and those filtered spectra are further processed by
other existing source detection and identification algorithms to
reduce the computational cost and, hence, power consumption
of the overall algorithm.

We carried out two power measurement experiments on
commercial off-the-shelf computing platforms where the AF
algorithm was used together with NMF-ID algorithm to
demonstrate the power consumption reduction capability of
the ensemble approach. The results suggest that the power
consumption of the AF algorithm alone is very low, and there-
fore, the overall power consumption ultimately depends on the
FPR of the AF algorithm. In our experiments with Nvidia
Jetson Nano, we have found that the ensemble approach

can significantly reduce the algorithm power consumption up
to a factor of 100, while improving the sensitivity of the
algorithms.

Through thorough benchmark with two different datasets
and various algorithms, we have shown that the proposed AF
algorithm can be used as a powerful standalone anomaly detec-
tion algorithm. Moreover, the proposed ensemble algorithm
can not only achieve low-power implementation, but also attain
improved detection performance, as demonstrated in Figs. 3–5.

We emphasize that the ensemble approach described in this
study can be generically applied to any source detection or
identification algorithms. In addition, the proposed approach
to low-power implementation can be easily implemented
on many off-the-shelf computing platforms, providing great
flexibility in algorithm implementation. Moreover, comparing
the Tables III and IV suggests that the overall power
consumption can be further lowered once the ensemble
algorithm is implemented on more power efficient computing
platforms, such as FPGAs.
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