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A Machine Learning Approach to a Multidetector
Array Response Function for Nuclear Search
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Abstract— During nuclear search operations, the localization of
radioactive sources can be a time-consuming process that requires
mapping relative radiation intensity in a large area to determine
the position of a source. This article introduces the use of
machine learning, specifically a temporal convolutional network
(TCN), to estimate the direction between a detector array and
a static 137Cs source. This application of machine learning
provides a directional vector in 4π with a 90% confidence of
5.6◦ and a 99% confidence within 11.2◦. With the use of low-cost
NaI(Tl) detectors, the effects of self-shielding within the array
creates gamma-ray shadows depending on the orientation to the
source. Using the convolved detector array response function,
we apply supervised machine learning with a neural network
to predict a unit vector that points toward the observed source.
The directional vector is expected to reduce search times once
implemented in future work.

Index Terms— 3-D sensors, detector arrays, neural networks.

I. INTRODUCTION

AS RADIATION detector technology continues to
develop, sensor packages continue to shrink in size.

This evolution, combined with advances in battery power,
autonomous vehicle capabilities, and embedded processor
power, has created opportunities to improve methods to esti-
mate radiation source location. Recent work in this field has
combined data from other sensors, such as Light Detection
and Ranging (LIDAR) and Global Positioning System (GPS),
in a capability called Scene Data Fusion (SDF) [1]. The
combination of information using SDF creates new challenges
in managing large volumes of data. This article introduces the
use of a machine learning algorithm, specifically an artificial
neural network (ANN), to perform calculations necessary to
estimate a unit vector pointing toward an expected radiation
source. This work uses a single static 137Cs source to train
an ANN; in subsequent work, the ANN will be further
refined for multiple sources and dynamic environments using
a technique called transfer learning [2]. Ultimately this work
will be incorporated onto a tracked robotic platform whose
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task is to semi-autonomously traverse a potentially hazardous
environment and map the radiation field and localize point
sources of radiation.

A. Detector Array Directional Response

It has been previously demonstrated that an array of three to
four detectors can be used to provide a general direction to a
radiation source. These works compare different detector count
rates in the array to estimate a direction using a maximum
likelihood estimate (MLE) algorithm [3], [4]. Other efforts
have relied on multiple passes in an environment to map the
radiation field and identify areas likely to have a radiation
source [5], [6]. Compton imaging is another technique that can
provide a directional response [7], [8]. However, this response
is based on individual event analysis, rather than integrating
counts as done in this study. Directional detection systems
whose localization is not based on mapping the radiation field
can take advantage of dynamic reconstruction to improve their
directionality performance [9]. It is not clear if Britt’s work [4]
leverages dynamic reconstruction for the static detector and
moving source test case where localization is reported to
achieve (14◦±20◦). This work will use Britt’s MLE algorithm
static detector and static source, with a mean absolute error
of (24.9◦ ± 0.5◦) in directionality prediction, as a benchmark
for comparison.

II. GENERAL APPROACH

A. Detector Array and Its Response

We have arranged five thallium-doped sodium iodide
[NaI(Tl)] detectors, four in the cardinal directions, with one
central detector recessed below the others (4+1). The use of
a central detector attempts to increase the vertical sensitivity
beyond that of a basic four-detector array. The outer detectors
are 2” × 4” × 4” NaI(Tl), and the center detector is a
3” × 3” NaI(Tl). The four detectors are Bicron 2 × 4M6/2
detectors, and the central detector is a Bicron 802-3W. Each
of the detectors have the photomultiplier tube integrated with
the crystal. Bridgeport Instruments eMorpho USB MCAs are
attached to each detector to acquire data from the array. Each
detector is gain matched prior to data collection and has
between 8% and 11% energy resolution at 662 keV.

Using an MCNP-PoliMi simulation [11] for a proof of
principle, Fig. 1 demonstrates 1e6 simulated particles that
originate from two different 137Cs point sources 45 cm from
the center of the array. The self-shielding within the detector
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Fig. 1. Simulated density of interactions within the 4+1 detector array shown
with the source in two different positions, indicated by the red arrow. In both
(a) and (b), the left image is a top-down view of the detector array while
the right image is viewing the array from the side. Image (b) has rotated the
detector array by approximately 45◦ while raising the source so that it is no
longer horizontal with the array.

array is demonstrated by the variation in density of photon
interactions causing more than 10 keV of energy deposition.
Image (a) demonstrates when a source is mostly exposed to
a single detector, while image (b) has the source raised such
that some of the photons have a clear path to the previously
shielded detectors.

This 4+1 detector arrangement creates a complicated array
response function where each detector has a unique response
strongly dependent on the source’s angular position in relation
to the array. Fig. 2 shows how a single detector’s absolute
efficiency changes as the source is moved about the array.
The two plots demonstrate the 662-keV photopeak relative
count rates from a 30 μCi 137Cs source held at many positions
in 4π about the array. The individual detector’s efficiency is
at a maximum when openly exposed to the source from the
(0◦, 0◦) direction (red arrow) and lower when “shadowed” by
the other detectors in the array. The remainder of this work
uses the entire energy deposition spectrum in order to estimate
the source direction, not just the photopeak count rate.

While Fig. 2 demonstrates a single detector, the strength
of the presented system is multiple detectors being taken into
account with each prediction. Fig. 3 maps how the source in a
static position is observed by each detector in the 4+1 array.
As the source is moved about the detector array, the composite
image of each detector’s energy deposition histogram provides
the information necessary to determine the source direction.

B. Machine Learning

1) ANNs for Directionality: ANNs have become an increas-
ingly popular way to solve challenging problems. It is common
for ANNs to be trained to provide either discrete response
(particle classification) or a regression response that can be fur-
ther manipulated to provide a meaningful continuous output.
The choice between classification and regression is problem-
dependent [12]. In the case of predicting directionality, a con-

tinuous output function is desired, thus we chose a regression
output. Additionally, there are many ways to structure an
ANN. Historically, long short-term memory (LSTM) [13] or
gated-recurrent units (GRU) [14] have been used on problems
with a temporal component. Recently, temporal convolutional
networks (TCNs) have demonstrated competitive performance
with a reduced training cost [15]. Through training, a TCN is
able to take into account previous observations when making
a prediction on the currently presented information [16].
As work on this project continues, the inclusion of temporal
information is expected to enhance the networks ability to
provide a direction vector toward the source while the detector
array is in motion.

Initial thoughts for applying machine learning were to have
a neural network observe real-time list mode data (nanosecond
timestamp resolution and 16-bit pulse height value), in the
form of a LSTM or GRU network. While this network
architecture provided reasonable results, the amount of data
and computation required for training and prediction were
daunting, which led to the use of the TCN architecture. Using
a TCN, we are able to present the network with a single sample
that provides the last 15 s of energy deposited in the form of
1 s histograms for each detector. Another way to describe the
network input; we provide a 2-D image each second and the
network remembers the previous 14 s worth of events. Each
detector’s histogram is displayed as a row of pixels, thus if
the energy deposited histogram has 100 bins, the images are
in the shape of 5 × 100 pixels. Therefore, one could consider
the network input as being a 15 s video with a 1 Hz refresh
rate. The value of 15 s allows for many unique ground truth
samples for each 60 s of experimental data collection. Testing
was only completed using the ground truth samples, while
the training data were randomly generated as discussed in the
experimental setup section of this article. It is anticipated that
this refresh rate will need to become dependent on the detector
count rate when sources are either not present, or far away.

The output of the network results in a Cartesian unit vector,
described by the x, y, and z points on a unit sphere. The
use of a Cartesian as opposed to spherical coordinate system
allows for seamless mapping across 4π . The use of spherical
coordinates (azimuthal θ and polar φ angles) as the ANN
output layer incorrectly trains the network as if there is a
significant physical difference between the azimuthal angles
of 1◦ and 359◦, along the prime meridian. This is remedied
by mapping spherical to Cartesian coordinates (x, y, and z)
within a range of [−1, 1] using (1)–(3). φ is defined as the
north and south poles being 90◦ and −90◦, respectively

x = cos(θ)cos(φ) (1)

y = sin(θ)cos(φ) (2)

z = sin(φ). (3)

2) Network Design: As depicted in Fig. 4, each of the
15 time-steps being evaluated are passed through identical
parallel networks comprised of two hidden dense layers with
rectified linear unit (ReLU) activation functions [17] using
the Keras library [18] for Python [19]. The first layer has
50 nodes while the second has ten nodes. At this stage,
only a single set of trained weights and biases are applied
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Fig. 2. Single detector’s relative full energy deposition angular response as a result of the 4+1 detector array. Three different source angular positions are
highlighted with three different color arrows/boxes. The oval plot is the complete 4π angular response plotted onto a sphere, which is then flattened in a way
to distort the surface in a way that maintains constant cell area regardless of latitudinal position, commonly described as a Mollweide projection [10].

Fig. 3. Demonstration of the array’s directional response as observed by the ANN. The red box on each Molleweide projection highlights where from
the source is being observed for each detector. Each detector’s complete energy deposition histogram is combined as a 2-D array to be passed to the neural
network.

to each time-step of the sample. Next, the TCN portion of
the network applies separate weights and biases for each time
step. Each node of the TCN also uses a ReLU activation
function. This allows for the network to create a weighted
convolution of previous information to inform the prediction
of the current time step. The TCN layer provides the network
prediction (output) through three linear regression nodes, each
one trained to provide the x , y, and z coordinates of the source
on a unit sphere.

III. EXPERIMENTAL PROCEDURES

The largest challenge facing most supervised machine learn-
ing problems is the collection of sufficient labeled data.
In order to provide the data, a 4π data collection apparatus
was constructed.

A. 4π Experiment Setup

The experiment test stand, shown in Fig. 5, has two axes of
rotation about the detector array. The first axis is the rotation

Fig. 4. Sequence of 15 frames being processed by the ANN. Each frame
is processed by identical networks before entering the time convolution. The
output of the network results in a regression along three axes, x , y, and z.

table that the detector array rests on; it is capable of rotating
360◦ in the horizontal plane. The second axis controls the
source arm; it has an axis of rotation perpendicular to the
rotational axis of the table. The source arm allows the 30 μCi
137Cs source to be placed anywhere along a 180◦ arc at a
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Fig. 5. This image demonstrates the experimental setup used to gather data in
all 4π about the detector array. Two axes are used to rotate the detector array
and articulate the source arm. The source is fixed to the red rotary arm at the
position marked “S.” Through an azimuthal rotation of the array and polar
rotation of the source, the source can be placed at any angular position on a
unit sphere about the detector array. The two rotational axes are controlled
through stepper motors and an Arduino that interacts with a python script.

constant 45 cm distance from the base/center of the rotation
table. Through the rotational motion of the detector table, and
the positioning of the source, we are able to place the source
at any fixed angular position in 4π about the detector array.
The two separate stepper motors are controlled by an Arduino
Uno. The microcontroller receives position instructions from a
Python script, which also records incoming list mode detector
data. The positioning of the source is determined using the
HEALPix [20] algorithm implemented by the healpy python
library [21]. The healpy variable nside is set to 12 for
generating the data collection source locations, which results in
1728 unique source positions for data collection. Each position
is represented by the cells shown on the surface of the sphere
in Fig. 2. The source was held at a positions described by the
unit vector pointing toward the center of those cells.

While the samples provided to the neural network are
histograms, the data recorded by the eMorpho MCAs is list-
mode. This method of data collection allows for additional
random sampling of prerecorded data to generate unique
1-s histograms, which may then be collated into the 15-s
training samples. The random sampling process provides a
large training dataset without compromising the performance
of the ANN. Validation and testing of the ANN strictly uses
ground truth data where no random sampling takes place.

Fig. 6. This series of images demonstrates the ability of the network to
correctly predict (y-axis) the sources true position (x-axis) in each of the
Cartesian coordinates. The vertical axis indicates the model’s position estimate
and the horizontal axis indicates the true position.

B. Assessment of Accuracy and Uncertainty

In order to determine accuracy, 172 800 unique ground truth
15-s sample were presented to the model, 100 samples from
each experimental source location. The network provided a
unit vector estimate (r̂) to the source location and this estimate
was compared to the true unit vector (R̂) to provide an absolute
angle displacement (��) using the following equation:

�� = cos−1
(
r̂ · R̂

)
. (4)

IV. RESULTS

Fig. 6 demonstrates the output of the ANN as a function
of the sources true position. The linear nature of the plots
demonstrate that the ANN predicts a sources true position
using Cartesian coordinates.

A histogram showing the azimuthal and polar errors is
shown in Fig. 7. With a Gaussian function fit to each dis-
tribution, it is shown that the ANN is able to predict within
3.5◦ in either direction with 95% accuracy (2σ ).

An alternative method of demonstrating the accuracy is
shown in the following angular displacement �� histogram
and cumulative distribution plots in Fig. 8. The cumulative
distribution enables an assessment on the overall accuracy of
the ANN. The presented network averages accuracy of 3.1◦,
with 90% of the predictions being within 5.6◦ and 99%
within 11.2◦. It is important to note that this accuracy is limited
by the resolution of the data gathered. With only 1728 different
positions, there are about 4.9◦ difference between neighboring
source positions.

However, the global response of angular displacement
shown in Fig. 8 fails to capture which directions the ANN
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Fig. 7. Histograms representing the angular displacement in strictly the
azimuthal and polar directions with a Gaussian distribution applied to provide
statistical information on accuracy.

Fig. 8. This plot demonstrates the histogram of angular displacement between
the predicted position and the true position as well as a cumulative distribution
of angular displacement.

Fig. 9. This plot demonstrates the average predicted angular displacement
from the sources true position.

struggles to accurately predict the direction. Fig. 9 aids in this
understanding by showing the regions in which the network
accuracy is challenged. The ANN’s prediction capabilities is
degraded about the equator and at the polar regions of the
array, as highlighted in Fig. 9. The larger displacement error
along the south pole likely results from the detectors resting on
a circular metal plate, which causes scatters prior to radiation
reaching the detector array.

V. DISCUSSION

It is thought that the northern regions of the arrays direc-
tionality response is degraded by the limited shadowing by
adjacent detectors. Along the equator, the limited performance
is due to the models reduced ability to predict the azimuthal
angle rather than the polar angle, this is demonstrated in Fig. 9.
This likely results from small changes in azimuthal angle
that do not result in significant changes in the shadowing
of adjacent detectors. As for the southern polar region, the
poor performance most certainly results from scattering that
occurs within the test stand. The detectors rest on an aluminum
plate that is supported by a steel plate. Additionally, there
is a stepper motor directly under the detector array. These
dense physical objects can cause gamma-rays to inadvertently
enter the detector array from angles other than the sources
true position, at a rate significantly higher than background.
Recalling that the intended use of this array is on a tracked
robotic platform, limited performance at the southern pole is
not of significant concern as this region of response would
only be used if the robot is directly over a point source.

During the early stages of this project, the intent was to
train the model with either a combination of experimental and
simulated data or solely simulated data. While the simulated
directional response produces full energy deposition plots that
look similar to those shown in Fig. 3, the simulated environ-
ment did not accurately include the detector housings, PMTs,
and MCA bases. The poor performance at the southern pole
emphasizes the importance to train our model with the most
realistic conditions possible, and further demonstrates why the
simulated environment struggled to effectively provide training
data.

VI. CONCLUSION AND FUTURE WORK

The presented neural network solution provides accurate
position predictions for a static source with an update every
second of observation. The next step in this campaign is to use
a virtual test bed (a simulated environment built on SCALE,
developed by Oak Ridge National Laboratory [22]). The
virtual test bed uses the arrays directional response to radiation
flux rather than tracking the energy deposition of individual
particles through the detector array. This may provide suffi-
cient simulated data that can be used for training. Additionally,
a higher activity source is to be used from a further distance
to mitigate the potential of the ANN developing its prediction
from solid-angle losses. Once a new experimental environment
is realized and training supplemented by simulation attained,
a robust training dataset is to be developed where the source is
moved through a virtual environment that includes the detector
array. Finally, once the ANN is able to predict the position
of a nonstatic source, the direction vector and timestamp
of prediction will feed into a SDF algorithm for source
localization.
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