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Abstract— Room-temperature semiconductor radiation
detectors (RTSDs) such as CdTe are becoming popular in
computed tomography (CT) imaging. These detectors are
often pixelated, requiring cumbersome postinteraction 3-D
event reconstruction, which can benefit from detailed material
characterization at the micron level. Transport properties and
material defects with respect to electrons and holes are to
be characterized, which is a labor-intensive process. Current
state-of-the-art characterization is done either as a whole or at
most pixel-by-pixel over the detector material. In this article,
we propose a novel learning-based physical model to infer
material properties at the microscopic level for RTSD. Our
approach uses a novel physics-inspired learning model based on
physical transport of charges with trapping centers for electrons
and holes in the detector. The proposed model learns these
material properties from known or measured input charges
to the detector along with known or measured output signals
and distributed charges in the bulk of the RTSD. The actual
physical detector is divided into voxels in space and takes into
account different material properties (such as drift, trapping,
detrapping, and recombination) in each voxel as learnable model
parameters. The model is based on a physics-inspired recurrent
neural network model instead of traditional convolutional or
fully connected networks. The advantage of our approach is the
one-to-one relationship between the actual physical parameters
of the voxels and learnable weights in the model, far fewer
trainable parameters compared to traditional neural network
approaches and less training time. The performance of our
model has been evaluated on cadmium zinc telluride (CdZnTe),
with voxels of three sizes, 25, 50, and 100 µm, for single
charge input as well as multiple charge inputs at different
voxel positions. Our learning-based model provides material
properties with higher spatial resolution and performs well in
all scenarios and matches the actual physical parameters better
than state-of-the-art classical approaches.

Index Terms— Charge transport, defects, detrapping, learning-
based model, material characterization, room temperature semi-
conductor detector, Schokley–Ramo theorem, trapping, trapping
centers.
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I. INTRODUCTION

ROOM-TEMPERATURE semiconductor radiation detec-
tor (RTSDs) are used for diverse applications in X-ray

and γ-ray detection systems such as homeland security and
computed tomography (CT) medical systems [1]–[3]. The
desired characteristics of RTSD are high quality crystal with
uniform and optimized charge transport properties—with no
polarization effect, excellent fabrication quality, high break-
down voltage, high charge transport speeds, and high energy
resolution. RTSDs have high stopping power due to high
density, high atomic number and can operate at high voltages
due to their high resistivity and contact engineering, which has
led to their wide applicability compared to detectors such as Si
and high purity germanium (HPGe). Recently, RTSD manufac-
turers have developed high-flux material [4], which promise
to address the space charge polarization issues. RTSDs are
often used as compact radiation detection units with highly
segmented pixelated anode patterns. Pixelated cadmium zinc
telluride (CdZnTe) detectors have been used in pulse mode at
high-fluxes [5], [6]. Recently, the high performance of CdZnTe
has been shown at room-temperatures.

Despite recent advances in RTSD’s properties, the repeata-
bility of its properties across multiple detectors and within
a detector is unknown. Previous measurements with large-
area CdZnTe and CdTe detectors have demonstrated spatial
variations in the detector response due to crystalline defects
such as tellurium inclusions, and local variations in the electric
field [7]. Thus, for large detection areas, a high degree of
uniformity in the material properties is required before wide-
spread use of CdZnTe detectors [8], [9] takes place. Detailed
characterization of these detectors in terms of material and
electrical properties are of utmost importance to achieve such
high energy resolution below 1.0% at 662 keV and submil-
limeter position detection accuracy. However, detailed charac-
terization of each detector module is not only time consuming
but also requires a sophisticated experimental setup, multiple
setups, and skilled manpower. On the other hand, deployment
of such detector arrays requires precise characterization of
the individual detectors and knowledge of the defects within
the sensors spatially and temporally. Typically sensors with
defects are discarded, which significantly reduces manufactur-
ing yield, increases production cost and results in financial
loss.
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In order to solve this important problem, we utilize a
machine learning approach. Machine learning- and deep learn-
ing (DL)-based models have not only been popular in the last
few years but also have created a paradigm shift in fields
such as image processing, computational photography, natural
language processing, and others. More recently, there has
been a focus on applying machine learning to materials, drug
discovery, physics-based systems and others. To the best of our
knowledge, this is the first contribution to characterization
of radiation detectors using learning-based approaches.

DL [10], a subarea of machine learning, has been a popular
approach in the recent past, with convolutional neural networks
(CNNs) [11]–[13], recurrent neural networks (RNNs) [14],
[15] and generative adversarial networks (GANs) [16] being
the most popular architectures. Work such as [17]–[19] has
been done by one of the authors in the areas of DL. Typically,
no physics knowledge is incorporated into the design of these
models, but instead input–output data pairs are used to train
the model. Depending on the size and capacity of the model,
the data required to train it is typically very large. In many
instances such as image processing and natural language
processing, there are publicly available datasets which serve
as training and testing data for the DL models. However,
in the field of radiation detector characterization there is no
such publicly available dataset (to the best of the authors’
knowledge).

In this work, we propose a novel physics-inspired learning
model derived from the physical charge transport equations
for both electrons and holes in RTSD. The detector is spa-
tially discretized into voxels. The physical charge transport
equations are utilized to model each voxel. Compared to
a conventional CNN or RNN model, which typically has
millions of trainable parameters, our model has the same
number of trainable parameters as the number of unknowns in
the actual physical system. This results in the requirement for
minimal amount of training data as this amount is proportional
to the number of trainable weights. Conceptually, a lot of
prior knowledge about the described physical process was
used in designing the network, and therefore a smaller amount
of information needs to be learned when a physics-agnostic
network is used. Additionally, the learned weights are directly
interpretable as representing meaningful detector material
properties.

The proposed learning-based physical model aims to solve
the following problems currently plaguing the characterization
of radiation detectors with a reasonable detection area for
wide scale implementation in medical imaging and security
applications.

1) Fine characterization of detector material properties with
spatial and temporal uniformity in a fast and efficient
way.

2) Determination of detector material properties as per
industry standards.

3) Micron-level defect identification and charact-
erization.

4) Application of corrections to the detector at
micron-level.

The main contributions of this article are:

1) Demonstration of learning-based physical model frame-
work of RTSD at a microscopic scale.

2) Design and optimization of a weighted loss function for
training the model.

3) Development of models with various voxel sizes
(100, 200, and 400) with single and multiple electron–
hole injections to the model.

The article is organized as follows. Section II describes
the related work. Section III deals in detail with the classi-
cal approach for RTSD modeling. Section IV introduces the
scalable to micron-size voxel-based learning model and the
loss function for training the model. Section V highlights
the experimental studies done while Sections VI and VII
cover the discussions and conclusions, respectively.

II. RELATED WORK

One of the biggest challenges for CdZnTe is their perfor-
mance under high photon fluxes (106 mm−2 s−1). The detector
is more prone to polarization effects in which the electrical
field is modified in the detector due to the build-up of trapped
charge in the crystal [6]. Recently developed high flux capable
CdZnTe [4] has been characterized in high-flux scenarios [20]
and charge transport properties, using pulse shape analysis
of measured signals. The thermal ionization energies of the
electron and hole traps were measured using thermoelectric
emission spectroscopy and thermally stimulated conductivity
in [21]. In [22], trap identification and lifetime determination
have been done using a microwave cavity perturbation method
in detector grade CdZnTe and HgI2. In [23], CdZnTe samples
were radially irradiated by 5 MeV focused proton beam to
create electron–hole pairs and fill traps. Trapped charges were
released by thermal reemission. Electron and hole traps were
distinguished by excitation near the vicinity of the appro-
priate electrode. Surface imperfections including mechanical
damage or adsorbed chemical species, known to trap charges
or increase leakage current have been characterized using
pulsed laser microwave cavity perturbation method selectively
at the surface and in the bulk region of CdZnTe RTSD [24].
In [25], deep trap levels in CdZnTe were characterized by
simultaneous multiple peak analysis based on thermally stim-
ulated current (TSC) measurements. In [26], nine defect levels
and irradiation-induced variations of trap signatures for these
levels were observed on CdZnTe:Al using TSC measurements.
In [27], the average trapping and detrapping times for holes
were derived using the average hole trapping time τh as
measured in [28]–[32] using the statistical model of charge
collection efficiency based on known electron average trapping
time. Average hole detrapping time τdh is extracted by direct
comparison between measured and simulated using only sig-
nals from holes measured by the cathode electrode [33]–[37].
Xu et al. [38] studied the influence of deposition methods and
type of metal contacts on the defects (recombination/trapping)
at the metal/semiconductor interface. In [39], the effects of
deep-level defects on the carrier mobility in CZT crystals are
studied. Zaman et al. [40] showed 13 different trap levels in
Indium doped CZT crystal. Characterization of the uniformity
of high flux CdZnTe has been done in [7]. Clearly, in the
literature, the electron and hole trap properties measured using
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classical approaches provide an average behavior over the
material and require cumbersome multiple experiments and
high technical skills.

Integrating physics-based Modeling with Machine Learn-
ing is being done in different fields in the last couple of
years [41]. The overall objectives with such approaches are:
1) improve predictions beyond state-of-art physical models;
2) parameterization of model; 3) solving forward partial dif-
ferential equations (PDE); 4) develop inverse models; and
5) discover governing equations, and others. These models
are based on: 1) Physics-guided learning as expressed by
appropriate loss functions, performing auxiliary tasks, physics-
guided initialization; 2) Physics-guided design of network
architecture; 3) residual modeling; and 4) hybrid physics-DL
model. Neural network models have been successfully applied
to solving problems in physics governed by PDEs [42]–[45].
Development and implementation of physics constrained net-
work and related work have been done by one of the authors
in Vija et al. [46], Ritt et al. [47], and Sanders and Vija [48].

Classical state-of-the-art approaches provide us with mate-
rial properties in the bulk of the material over a coarse spatial
length scale. The variations and fluctuations in the material
properties which are typically in finer spatial length scales
are not obtained using the classical approaches. Our approach
follows the principle of physics-guided design architecture.
In this work, we propose a learning-based framework from
physical equations to provide the material properties of RTSD
with microscopic resolution below 100 μm, which is the first
such result to the best of our knowledge. We were inspired by
a physics-based learning model in the realm of light transport
using a scattering model [49]. However, it must be emphasized
that the physics of charge transport in RTSD (electrons and
holes) generated by high energy photons incident on the
detector is more complex than light transport modeled by
Hamilton and Mohseni [49].

III. CLASSICAL APPROACH FOR DETECTOR MODELING

In solid-state detectors, electrons and holes transport prop-
erties play a significant role in selecting detectors for any
application. Compensation techniques used to increase the
resistivity of RTSD (mostly known to be plagued by shallow
defect levels) introduce deep defect levels in the material [50].
The deeper defects act as longer trapping centers for charges,
degrading the performance of these devices. The trapping,
detrapping, and recombination are governed by Shockley-
Read–Hall Theory [51], [52]. Rodrigues and He [53] worked
on techniques to measure more detailed properties of these
materials using the charge transport equations driven by the
charge continuity equations with multiple electron and hole
defect levels—trapping centers—coupled with Poisson’s equa-
tion [54]–[59]. The macroscopic equations in [60] describe the
various phenomena occurring in the material when photons,
X-rays or energetic gamma rays interact with the material
usually by Photoelectric, Compton or Pair-Production type of
interaction, creating electron–hole pairs. Once the electron–
hole pairs are created the following phenomena occur: 1) drift
of charges (electrons and holes); 2) free charges getting

trapped and detrapped in defect levels within the material;
and 3) recombination of free charges, which is modeled as
the capture of free electrons followed by the capture of free
holes in the material [61].

Equation (1) shows the dynamic concentration of free
electrons ne in excess of equilibrium. There is an increase
of electron concentration at a spatial region due to charge
creation in the bulk, drift of charges to that region and
detrapping from trapped levels. On the other hand, there is
reduction of charges in the same region due to diffusion,
trapping, and recombination of charges. The model considers
that the charges trapped never saturate the trapping centers,
since excess carrier concentrations are small compared to the
number of available trapping and recombination centers and
the simplified equations can be used Prettyman [54]. In (1),
only one trapping level for electrons has been shown, while
in principle there can be several trapping levels, often referred
to as shallow and deep trapping defect levels, respectively

∂ne

∂ t
+ ∇ · (neμe∇φ) − ∇ · (De∇ne)

= − ne

τeT1
+ ñe1

τeD1
+ · · · + δe (1)

where μe is the mobility of the electrons, φ is the voltage, De

is the diffusion of electrons, ñe1, τeT1, and τeD1 are, respec-
tively, the concentration, trapping, and detrapping lifetime of
electrons in trapped level 1, δe is the source term.

The increase in concentration of electrons in trapped level 1
is dependent on its own concentration ñe1, the amount of free
electrons in excess of equilibrium ne, trapping and detrapping
lifetimes τeT1 and τeD1, respectively, as shown in the following
equation:

∂ ñe1

∂ t
= ne

τeT1
− ñe1

τeD1
. (2)

A similar equation applies to holes, as shown in (3) and (4)
for holes with two trapping centers. Equation (4) shows the
increase in holes trapped in trapping centers 1 and 2

∂nh

∂ t
+ ∇ · (nhμh∇φ) − ∇ · (Dh∇nh)

= − nh

τhT1
− nh

τhT2
+ ñh1

τhD1
+ ñh2

τhD2
+ · · · + δh (3)

∂ ñh1

∂ t
= nh

τhT1
− ñh1

τhD1
∂ ñh2

∂ t
= nh

τhT2
− ñh2

τhD2
(4)

where nh is the dynamic concentration of free holes in excess
of equilibrium. μh is the mobility of the holes, Dh is the
diffusion of holes. ñh1, τhT1, and τhD1 are, respectively, the
concentration, trapping, and detrapping lifetime of holes in
trapped level 1. Similarly, ñh2, τhT2, and τhD2 are, respectively,
the concentration, trapping, and detrapping lifetime of holes
in trapped level 2. δh is the source term.

The diffusion of the charges De,h for electrons e and holes
h, is governed by mobility of electrons and holes μe and μh,
respectively, along with the temperature of the material T and
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Fig. 1. (a) Energy level diagram of a RTSD showing one electron and two hole trapping centers, before photon interaction. (b) Electrons–holes in excess of
equilibrium generated at t = 0. (c) Transport of electrons and holes by operating electric field along with trapping, detrapping, and recombination for t > 0.

Fig. 2. (a): (i) Sensor pixelated anode pattern and (ii) Central region model illustrating pixelated anode design with uniform material and electrons–holes
drift in bulk. (b): (i) Electric field profiles for simulated materials A and B and (ii) Anode Signals C, CAT and NE simulated for materials A and B (for
electron–hole charge injected at Voxel 50). (a) Detector configuration. (b) Electric field and signal profiles.

Boltzmann’s constant k as shown in the following equation:

De,h = μe,h
kT

E, H
. (5)

In (5), the subscripts e, h in the diffusion De,h and mobility
μe,h refers to the corresponding diffusion and mobility for
electrons and holes, respectively. The denominator in (5), E , H
refers to the electric charge of electrons and holes, respectively.

The drift of charges is dependent on the electric field E ,
which is shown in (6), with the voltage satisfying the Poisson
equation as follows:

E = −∇φ (6)

∇2φ = −k
q

�
(ne + ñe1 + nh + ñh1 + · · · ). (7)

Here, � represents the permittivity of the RTSD material.
Fig. 1 shows the energy band diagram of an RTSD for one
electron and two hole trapping centers before and after a
high-energy photon interaction occurs within the detector.
Signals collected at the electrodes arise due to the move-
ment of charges [62]–[66]. The detector setup is shown in
Fig. 2(a)(i, ii) with the nine grid electrodes on the anode
side [north west (NW), N, north east (NE), W, C, E, south
west (SW), S, and South East (SE)] and one single large
cathode electrode (CAT). Fig. 2(b)(i) shows two cases of
the electric field—uniform and piecewise linear which are
plausible cases encountered in the detector, while Fig. 2(b)(ii)

shows the signals observed in the cathode electrode and three
adjacent anodes (center or collecting anode, north, and NE or
neighbors) for electron–hole pair injection at voxel position
50, where, in this case, the cathode was at position 0 and
the anode at position 100. The plots shown in Fig. 2(b) are
simulated data in MATLAB. At a quick glance, there is almost
no difference in the signals generated at the electrodes due to
the two electric fields, A and B as shown in Fig. 2(b)(ii).
However, with a close look at the electric field profiles in
Fig. 2(b)(i), we can see distinct differences between them. Our
learning-based approach can clearly distinguish between these
two electric field profiles as shown in Fig. 2(b)(i) from the
signals shown in Fig. 2(b)(ii), along with the charges, despite
not being visually observable in the signals at the electrodes.

The data for training the proposed learning model has been
generated using the classical equations, (1)–(7). A MATLAB
code has been developed to define the charge transport equa-
tions in the detector, by defining the trapping, detrapping
and recombination lifetimes of electrons and holes as constant
predefined parameters, with varying the electric field along the
material. This classical model has been created by spatially
discretizing the detector. For a charge input at different voxels
in this classical model, the signals are generated in the cathode
and pixelated anode. Additionally, the free and trapped charges
in different spatial pixel locations are computed. The signals
and free and trapped charges are computed for each time
step, with the total number of time steps defined a priori.
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The input–output data for training the learning-based model
consists of the input electron–hole pair injected in the material
at a known voxel position along with the signals, free and
trapped charges in different spatial voxels of the classical
model over different time steps in the simulation.

IV. LEARNING-BASED APPROACH FOR DETECTOR

MODELING

A learning-based model has been developed from (1)–(7)
for the detector material. As highlighted in Section III, this
is the first approach in the literature taken to model a
room temperature semiconductor detector with learning-based
principles using the physical equations. The current state-of-
art techniques only find out the bulk average properties of
the detectors which can be spatially determined with finer
resolution (microscopic sizes) in our novel approach.

A. Voxel Based Learning Model

In this work, we introduce a novel method to determine
the material properties such as μe,h, τeT1, τeD1, τhT1, τhD1

and recombination coefficients of free and trapped electrons
and holes at spatially discretized locations in the detector
material. In order to do so, we subdivide the detector material
into N voxels, with N being the number of subdivisions in
the material in any dimension 1-D, 2-D, or 3-D. In each of
the discretized volumes (termed as voxels) of the material,
material properties such as μe,h, τeT1,i , τeD1,i , τhT1,i , τhD1,i are
defined. We refer to these discretized properties as weights
spatially distributed inside the material. For instance, the
mobility μe is converted into N discrete values of wT rpt,e in
the material. Now, the relation between μe and μh can be sep-
arately modeled as unknown parameters. The relation between
the mobility of electrons μe and holes μh, (μh = 0.1μe),
is considered in the formulation. It must be emphasized here
that this relation is not always true. However, in this work,
for simplicity, this relation has been used. Similarly for other
material properties, N parameters of each of the properties
are being used in the model. This model, therefore, allows
the determination of the unknown parameters of the material
with higher precision. For each of these coefficients (referred
here as τ in general), we compute the number of charge
particles (electrons or holes) remaining in that particular level
as Nleft = N0e−t/τ , where N0 and Nleft are the number of
charged particles at a particular level at t = 0 and at time t ,
respectively. Thus, given the time t = t1, (example, t1 = 10 ns
for the 100 voxel model) and given τ , we can compute
the fraction of charges transitioning from an energy level to
another. We use these charges in our model. For a particular
material property τ , we can find out the fraction of charges
remaining in that energy level.

A voxelized representation of the detector in one dimension
is shown in Fig. 3. Linearly the material is divided into N
voxel segments with the electrodes at either end, anode on
the right, and cathode on the left. In this work, we consider
an anode grid with nine electrodes as shown in Fig. 2(a) [1].
However, in general, we can consider the electrodes (cath-
ode/anode) of any structure or configuration. With respect to

Fig. 3. Voxel discretization with electrodes at the ends.

Fig. 4. Operations in voxel i at time t .

the detector, the high-energy radiation (for example Gamma
rays or X-rays) can interact in any position of the detector.

The resultant physical model in turn is a discretized version
of the physical phenomena occurring in each voxel of the
detector over time. Thus, the model can be thought of as
being analogous to a network composed of long short term
memory (LSTM) or gated recurrent unit (GRU) cells [67].
However, the weights in an LSTM/GRU block [67] can be
tuned to the physical phenomena occurring inside the voxel
of the material. Typically, such a model would require more
weights. This will lead to not only training the model with
more weights but also requiring more training data and time.
In order to remove these limitations, we propose a model
which corresponds to the exact physics-based equations at
time t for voxel i in Fig. 4.

In Fig. 4, the operations taking place in voxel i at time t are
shown in detail. At any time t − 1, the charge in voxel i in
free state is qt−1,i

h for holes and qt−1,i
e for electrons. Under

the influence of Electric Field, holes drift at time t from
other voxels i + 1, . . . , i + k, . . . , N , to voxel i, with charges
qt,i+1

h,o , . . . , qt,i+k
h,o , . . . , qt,N

h,o , respectively. These charges are
added into the existing charge qt−1,i

h to form the total charge
due to holes in voxel i at time t , referred here as qt,i

h,int. The
subscript int refer to the total or integrated charge due to
sum of all holes in voxel i at time t . Some of the holes
recombine with the intrinsic electron concentration in the
bulk of the material with weight whRec,i , which in voxel i
at time t is referred as qt,i

h,Rec. The subscript Rec refers to
recombination. The presence of trapped hole centers in the
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Fig. 5. Computations in a sample configuration with five voxels in 1-D.

material traps some of the holes and detraps holes back as
excess hole concentration over bulk, as indicated, respectively,
by the trapping and detrapping weights whT, j,i and whD, j,i , for
hole trapping level j in voxel i . The total holes which are
available for transport in the valence band of voxel i at time t
is termed as mobile or free holes, qt,i

h,mob, and mob in the
subscript denotes the mobile holes. In Fig. 4, we show just
one level of trapping centers (for both electrons and holes).
However, in principle, depending on the material properties
there can be several trapping centers for both electrons and
holes. A fraction of holes (wh,i ) drift out of voxel i as (qt,i

h,o),
while the remaining holes are left behind in voxel i as (qt,i

h ) at
time t . Same operations are repeated for electrons, as shown
in the bottom half of Fig. 4. The stepwise computations for
holes in voxel i are shown in the following equations:

qt,i
h,int = qt−1,i

h +
(

qt,i+1
h,o + · · · + qt,i+k

h,o + · · · + qt,N
h,o

)
(8)

qt,i
h,Rec = whRec,i × qt,i

h,int (9)

qt,i
h,mob = qt,i

h,int × (
1 − whRec,i − whT, j,i

) + (
q̃h, j,i × whD, j,i

)
(10)

qt,i
h,o = wh,i × qt,i

h,mob. (11)

Fig. 5 shows the model with the detector discretized
into 5 voxels (for explanation purposes only). The high energy
rays are incident on Voxel V 3 creating electron–hole pairs
in that voxel. The electrons drift toward the anode (right of
Voxel V 5), while the holes drift toward the cathode (left of
Voxel V 1). While drifting from one voxel to another, the
electron charges are multiplied by difference of potentials,
shown as wL ,e1 and wL ,e2 for electrons drifting between voxel
V 3 and V 4, and V 4 and V 5, respectively, to generate elec-
trical signals for electrons (signalelectrons). Similar phenomena
occur to generate electrical signals for holes (signalholes). The
electrons and holes induce the signal at the anode and cathode,
calculated as per the Schockley–Ramo Theorem [63]. In each
of the voxels V 1 − V 5, the free charges and the ones trapped
in the trapping centers (electrons and holes), as well as the
signals generated at the electrodes are recorded.

B. Voltage Relation Between Voxels

In the formulation of the model, we consider the voltages
at the electrodes at the ends of the detector to be fixed Vi

Fig. 6. Voltage relation between voxels.

and V f . In general, the voltage can vary in any manner
within the RTSD. However, in this article, we consider the
voltage at each voxel of the detector to increase linearly step-
wise from the previous one, as shown in Fig. 6. The voltage
increases from the cathode to the anode. We consider Voxel
0 with reference position x0, and successive Voxels 1, 2, . . . , 5,
(denoted by V1, V2, . . . , V5) at positions x1, x2, . . . , x5 with
each successive voxel at distance dx , (for example, x5 − x4 =
x4 − x3 = dx) from the previous voxel. In between the two
voxels (for example voxels 3 and 4), we can apply (12),
where voltages V3 and V4 are linearly related. Similarly for
voxels 4 and 5, we can apply (13), where Voltage V ′

4 and
V ′

5 are linearly related. In these equations, C31, C32, C41 and
C42 are learnable coefficients. Now, the voltage V4 and V ′

4
from (12)(b) and (13)(a) must match. Thus combining we can
formulate an error term, errorvoltage as the difference between
V4 and V ′

4 normalized over the distance of Voxel 4 from
origin 0, x4, defined in the following equation:

V3 = C31x3 + C32 (12a)

V4 = C31x4 + C32 (12b)

V ′
4 = C41x4 + C42 (13a)

V ′
5 = C41x5 + C42 (13b)

errorvoltage = (C31 − C41) − (C42 − C32)

4dx
. (14)

C. Loss Function

The model is trained with input–output pairs of data. The
input data are the position of injected electron–hole pair and
the output data are the signals obtained at the electrodes
along with the electrons and holes (free and trapped) in each
of the voxels over time. During training of the model, the
loss function is computed as the sum of the squared errors
between the signals at the electrodes and charges in the
voxels compared to the ground truth signals along with the
error2

voltage. The overall loss function for this model is shown
in (15). The loss function in (15) is shown for one trapping
center for both electrons and holes for illustration. However,
we perform simulation experiments considering CZT detector
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with two trapping centers for holes and 1 trapping center for
electrons [21], [60]. We generate the learning-based model for
CZT detector which is popularly used in radiation imaging
systems. However, in general, there can be several trapping
centers for both electrons and holes, and thus several such
terms, whose number is predefined, and the learning-based
model has to be designed accordingly. In the loss function, the
errors due to the signals and voltage are grouped together, free
and trapped electron charges are grouped together, and free
and trapped charges due to holes are grouped together with
weighting terms k, l, and n, respectively. Clearly, as k, l, and/or
n are varied, the errors due to those terms vary. The higher
the value of the parameters, the lower the errors associated
with those terms. In these error terms, the subscript gt for a
particular parameter X (for instance, X is signal or qe) refers
to the ground truth data for that parameter X generated in
MATLAB using the classical model as described in Section III
and the subscript L for the same parameter X refers to the data
generated by the learning-based model

LF

= k
[(

signalgt−signalL

)2+error2
voltage

]
+l

[(
qe,gt−qe,L

)2

+(
qet,gt − qet,L

)2
]
+n

[(
qh,gt − qh,L

)2+(
qht,gt−qht,L

)2
]
.

(15)

D. Implementation Details

In this learning-based voxelized physical model, the input to
the model is the injection positions of the electron–hole pairs
generated due to the interaction of the high energy rays with
the RTSD along with the magnitude of the injected charges.
The magnitude of the injected charges is normalized to 1. The
output of the model is the signals from the electrodes, free and
trapped electron, and hole charges in the voxels over time. The
model weights as described in Section IV-A are initialized
to an initial value. Based on the electron–hole pair input to
this model, the output (signals, free, and trapped charges)
is computed over time. The model consists of training and
testing phases. In the training phase, the loss is computed
using (15) for every electron–hole input pair based on the
outputs from this model and the ground truth output data
over time. Since our model is a recurrent network structure
over time, backpropagation through time (BPTT) [68], [69]
is used to compute the gradients of the loss with respect
to the trainable (or tunable) weights of the model. BPTT
unfolds the learnable model in time by creating several copies
of the model which can be treated as a feed forward deep
network with tied weights. The update of the trainable weights
is based on a stochastic gradient descent method—ADAM
optimization [70], which is based on adaptive estimation of
first-order and second-order moments. ADAM optimizer is
used with a learning rate of 5 × 10−4 with two momentum
terms set as β1 = 0.9 and β2 = 0.999. Learning rate
higher than 5 × 10−4 causes oscillations in the loss func-
tion, while a lower learning rate slows down convergence.
In each epoch (iteration), the ADAM optimization updates the
trainable weights of the model based on the gradients, with

Fig. 7. Training loss for single and multiple inputs (for k = l = n = 1)
in (15).

the goal to minimize the loss function over the epochs. This
learning-based physical model is developed using Tensorflow
library [71] in Python in eager execution mode. Tensorflow’s
eager execution mode provides a flexible machine learning
platform using Python control flow which helps in easier
debugging and provides an intuitive interface. Over the epochs,
the weights of the model such as electron transport weights
wTrpt,e,i , electron trapping weights weT,i , electron detrapping
weights weD,i , and other weights in voxel i as shown in Fig. 4
in the learning-model are trained. The weights in these voxels
are trained simultaneously over epochs. Once the model is
trained, the model can be tested based on the electron–hole
pair input at the voxel position. The injection position is
different from the ones used for training the model. In the
testing phase, there is no computation of loss. Only the signals
and charges are obtained in each time step as output from the
model.

V. EXPERIMENTAL STUDIES

In order to train and test the model actual measured data
would be needed. Unfortunately, no such dataset is available
in the literature for RTSD. We generate synthetic data using
the classical model developed in MATLAB using (1)–(7),
as described in Section III. The experimental training data
consist of electron–hole pairs injected at different voxels
and the corresponding signals in the electrodes over time
along with the electron and hole distributed charges (free and
trapped) in the voxels over time. Since the learning-based
model is developed in a voxelized manner, the training data
generated using the classical approach is also voxelized. The
experimental data using the classical model has been devel-
oped for different conditions such as voxel sizes, time steps,
and other conditions. During the training process, the loss is
monitored over epochs and allowed to converge to less than
0.005 or until it stops decreasing. In our experiments, there is
no significant improvement in the model coefficients/weights
below this threshold loss value.

A. Experimental Studies With Unweighted Loss Function

We performed experimental studies with k = l = n = 1
in (15) and a model with 100 voxels. The voxel at one end,
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Fig. 8. (a) Drift coefficients (μe), (b) electron coefficients (weT,1, weD,1, weRec), and (c) hole coefficients (whT,1, whD,1, whT,2, whD,2, whRec) for e–h injection
at voxel 50. (a) Drift coefficients. (b) Electron coefficients. (c) Hole coefficients.

voxel 100 is connected to the anode terminal while the voxel
at the other end, voxel 0 is connected to the cathode terminal.
The experimental data used for learning the model consists of
electrons and holes transport, one trapping center for electrons
and two trapping centers for holes along with recombination of
electrons and holes in the detector. This is based on the proper-
ties of the CZT detector as described in [60]. The phenomenon
of diffusion is ignored in the experiments, as it has negligible
contribution to the overall signal and charge output in our
proposed application, which is aimed at keV energy range,
high electric field, and mm-size anode pixels. In general,
diffusion can be included in the model depending on whether
it has a significant contribution to the overall charge transport
and signal at the electrodes. The material is considered as 1D
and discretized into 100 equal partitions, termed as voxels for
generalization, and the experiments are done with timesteps of
10 ns resolution. The simulated detector has a size of 10 mm,
with a total simulation time of 2 μs. The training losses over
epochs for single and multiple inputs are shown in Fig. 7. The
training loss decreases consistently over the epochs. There are
increases in training loss at certain epochs which later reduces,
while the gradient descent optimizer (ADAM) tries to find a
stationary point. However, the overall loss function reduces
over the epochs.

1) Experiment With Charge (e–h) Injection at a Particular
Position: Unit charge in terms of electron–hole pair was
injected at voxel position 50, which is at the middle of the
material. The learned weights of the trained model represent
the properties of the detector material. Fig. 8(a)–(c) show the
drift coefficients, electron coefficients, and hole coefficients,
respectively. The drift coefficients follow the ground truth
which is piecewise linear in the material. The drift coefficients
to the right of the point of charge injection are trained due to
the movement of electrons while the drift coefficients to the
left of the injection point are trained due to the movement of
holes. In Fig. 8(a), the drift coefficients shown are due to the
drift of electrons. For the holes, the drift coefficients were one-
tenth of that shown in Fig. 8(a) due to lower mobility of holes
compared to electrons, which is known a priori in the model.
In Fig. 8(b), the electron coefficients consist of the electrons
trapped and detrapped in the trapping center along with the

recombination of electrons in the bulk of the material. The
trapping and detrapping coefficients follow the ground truth
for most of the voxels in the material, while the recombination
coefficient is oscillating near the end of the material (higher
voxels). This is primarily due to the lower value of the
gradients for the recombination coefficients of electrons at
higher voxels. For the hole coefficients in Fig. 8(c), holes
travel only a couple of voxels toward voxel 0 from the point
of injection, and hence, coefficients in voxels around 40 to
50 only were trained in the model.

2) Experiment With Charge (e–h) Injection at Multiple
Positions: Unit charge in terms of an electron–hole pair is
injected at voxel positions 20, 30, 40, and 50. Fig. 9(a)–(c)
shows the drift coefficients, electron coefficients, and hole
coefficients, respectively. The gradients in the ADAM opti-
mization are computed for the loss in (15) for electron–hole
pair injection at a single voxel, and the overall gradient update
is performed based on the sum of these individual gradients.
The drift coefficients follow the ground truth closely as shown
in Fig. 9(a). It is seen in Fig. 9(c) that hole coefficients (for
trapping centers 1 and 2 and recombination coefficients) also
follow closely the ground truth coefficients. There are slight
oscillations near the injection points of the electron-hole pair,
which are mostly due to the learning of the hole coefficients
for voxels less than ten voxels away which is the length of
the injection intervals of the e–h pairs. Clearly, the closer
the injection points, the lower the oscillations in the hole
coefficients. However, it is seen that the electron coefficients
[Fig. 9(b)] oscillate around the ground truth values for the
recombination coefficients. We explore different combinations
of k, l, n values in Section V-B and show better conver-
gence of the values of the electron recombination and other
coefficients.

B. Experimental Studies With Weighted Loss Function

We performed experimental studies with k, l, n ∈
{0.1, 1.0, 10.0, 100.0} in (15) using the 100 voxel size model.
Now k, l, n can take any finite values. However, in the
experimental studies, k, l, and n are chosen to be linear in
logarithmic scale from 0.1 to 100, which spans a wide range.
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Fig. 9. (a) Drift coefficients (μe), (b) electron coefficients (weT,1, weD,1, weRec), and (c) hole coefficients (whT,1, whD,1, whT,2, whD,2, whRec) for e–h injection
at voxels 20, 30, 40, and 50. (a) Drift coefficients. (b) Electron coefficients. (c) Hole coefficients.

TABLE I

TOP FIVE MINIMUM NMSE VALUES FOR VARYING k , l, n

The experimental data and the model size used for learning the
model are the same as in Section V-A, consisting of transport,
trapping, and detrapping centers for electrons and holes, along
with a recombination of charges.

1) Experiment With Charge (e–h) Injection at a Particular
Position: A unit charge in terms of an electron–hole pair was
injected at voxel position 50, at the center of the detector.
For the combinations of k, l, and n, we obtain 64 sets of
trained parameters for the model. For each of these 64 sets,
we computed the normalized mean squared error (NMSE)
between the actual coefficients used in the classical model
and the learned weights in the model, referred to as NMSE
in (16). NMSE is used for computing the error as the learned
coefficients have values at different scales. Normalizing the
mean squared errors removes this scaling effect. In (16),
wTrpt,e,lr and wTrpt,e,gt refer to the learned and ground truth
drift/transport coefficient for electrons, respectively. Similarly,
other weights refer to electron and hole trapping, detrapping,
and recombination weights. The weights are analogous to
the trapping, detrapping, and recombination lifetime in the
actual detector. The top 5 smallest NMSE values are shown
in Table I. For injection at voxel 50, the NMSE error was
computed for voxels 50 to 100 for drift/transport coefficients,
voxels 50 to 100 for NMSE due to electron weights, and voxels
37 to 50 for NMSE due to hole weights. The range of voxels
used for hole computation was selected based on the mobility
of holes and calculated drift. For electrons, voxel 100 refer to
the end of the material and for holes, voxel 37 refers to the
maximum drift of holes. Generally speaking, the maximum
drift locations from the injection point of the charges must be

Fig. 10. NMSE values for varying k, l, n values.

used for computing the NMSE

NMSE =
{

wTrpt,e,lr − wTrpt,e,gt

wTrpt,e,gt

}2

+
{

weT,lr − weT,gt

weT,gt

}2

+
{

weD,lr − weD,gt

weD,gt

}2

+
{

whT1,lr − whT1,gt

whT1,gt

}2

+
{

whD1,lr − whD1,gt

whD1,gt

}2

+
{

whT2,lr − whT2,gt

whT2,gt

}2

+
{

whD2,lr − whD2,gt

whD2,gt

}2

+
{

whR,lr − whR,gt

whR,gt

}2

+
{

weR,lr − weR,gt

weR,gt

}2

. (16)

Clearly, for k = 0.1, l = 100 and n = 100, the NMSE
is minimum with calculated value of 0.1761. The plot of the
different NMSE values for varying k, l, n is shown in Fig. 10.
The lower NMSE is favored for lower k and higher l, n values.
Fig. 11 shows the drift coefficients (a), detrapping two level for
holes (b), and electron recombination weights (c) for different
l and n values for k = 0.1. It can be seen that for k = 0.1,
l = 100, n = 100, the learned coefficients are closest to the



BANERJEE et al.: LEARNING-BASED PHYSICAL MODEL OF CHARGE TRANSPORT 11

Fig. 11. (a) Drift coefficients (μe), (b) detrapping two hole coefficients (whD,2), and (c) recombination electron coefficients (weRec) for e–h injection at
Voxel 50 for k = 0.1 and varying l, n. Plot legend refers to k_l_n values. Readers are suggested to enlarge the figure for closer view. (a) Drift coefficients.
(b) Detrapping two level holes. (c) Recombination electron.

Fig. 12. (a) Drift coefficients (μe), (b) electron coefficients (weT,1, weD,1, weRec), and (c) hole coefficients (whT,1, whD,1, whT,2, whD,2, whRec) for e–h injection
at voxels 20, 30, 40, and 50 with k = 0.1, l = 100, n = 100. (a) Drift coefficients. (b) Electron coefficients. (c) Hole coefficients.

coefficients used in the classical model to generate training
data.

2) Experiment With Charge (e–h) Injection at Multiple
Positions: It was shown in Section V-B.1 that the calculated
NMSE was optimized for k = 0.1, l = 100, and n = 100.
We use this combination of k, l, n values in the learning
model for injecting charges at multiple voxel positions of 20,
30, 40, and 50. Fig. 12(a)–(c) shows the drift, electron, and
hole coefficients, respectively, for material B (material B has
nonuniform electric field profile as shown in Fig. 2(b) [1]).
It is observed that for the optimal regularized parameters
k, l, n, the learned model coefficients fit the ground truth
coefficients more closely compared to the learned model
coefficients with equal regularization parameters as shown
in Fig. 9. The weighted model clearly prioritizes signals at
the electrodes, charges (free and trapped) due to electrons
and holes differently than the unweighted model. Now, since
these hole and electron charges are more fundamental and the
signals are generated only due to charge motion, the higher
weightage of charges (free and trapped) in the loss function
compared to the signals drives the model to its optimized
material parameters better than the unweighted model. In both
cases, e–h injection is at exactly the same voxel locations

of 20, 30, 40, and 50. Clearly, choosing appropriately the
regularization parameters in the loss function improved the
accuracy in the learned parameters. We also show similar
results and conclusions for the electron, hole, and recombi-
nation coefficients in Fig. 13(a)–(c), respectively, for material
A with electron–hole pairs fed in position 9, 19, 29, 39, 49,
59, 69, 79, 89, and 99 in a 100 voxel model (material A has
uniform electric field profile as shown in Fig. 2(b) [1]). There
is some oscillatory behavior in the hole trapping, detrapping,
and recombination coefficients as the holes do not travel large
distances from their point of injection.

C. Model With Different Voxel Sizes

The model can be designed with larger than 100 number
of voxels. In this article, we also show the results of the
model with 200 and 400 voxels. For material with the same
dimension as before, increasing the number of voxels in the
model will reduce the size of each voxel. The decrease in voxel
size in the model will improve the response characteristics of
the output signals. In Sections V-C1 and V-C2, we show the
performance of the model with a higher number of voxels
having charge (e–h) injection at both a single position and
multiple positions.



12 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 69, NO. 1, JANUARY 2022

Fig. 13. (a) Drift coefficients (μe), electron coefficients (weT,1, weD,1), (b) hole coefficients (whT,1, whD,1, whT,2, whD,2), and (c) recombination coefficients
(weRec, whRec) for e–h injections at voxels 9, 19, 29, 39, 49, 59, 69, 79, 89, 99 with k = 0.1, l = 100, n = 100. (a) Electron coefficients. (b) Hole coefficients.
(c) Recombination coefficients.

Fig. 14. (a) Drift coefficients (μe), (b) electron coefficients (weT,1, weD,1), and (c) hole coefficients (whT,1, whD,1, whT,2, whD,2), for e–h injection at Voxel
200 with k = 0.1, l = 100, n = 100. Readers are suggested to enlarge the figure for closer view. (a) Drift coefficients. (b) Electron coefficients. (c) Hole
coefficients.

1) 400 Voxels Model With Charge (e–h) Injection at a
Particular Position: The 400 voxels model has a time step
of 2.5 ns in the ground truth model. This time step has been
chosen in order to ensure that the electrons have enough time
to travel from one voxel to the next adjacent voxel. Results of
the model with 400 voxels with the injection of electron–hole
pair at position 200 are been shown in Figs. 14 and 15. For
charge injection at a particular voxel, the model was trained
for 100 voxels for electron coefficients and 20 voxels for hole
coefficients. k = 0.1, l = 100, and n = 100 were used
in the loss function in (15). Clearly for the electrons and
holes, the learned coefficients of drift, trapping, detrapping,
and recombination match most of the ground truth values used
in the MATLAB model. It must also be kept in mind that in
our experiments, the weight initialization values for this model
were different compared to the 100 voxels model. This is due
to the fact that the ground truth parameters for this model differ
from the 100 voxels model. The model coefficients for the
400 voxels model are rescaled from the 100 voxels model with
a known scaling factor of 1/4. Thus in principle, a model with
any other voxel size can also be simulated with the knowledge
of scaling factor. The drawback of considering finer (smaller)

Fig. 15. Recombination coefficients for electrons and holes (weRec, whRec),
for e–h injection at Voxel 200 with k = 0.1, l = 100, and n = 100.

voxel sizes is the need for finer sampled data to train the model
at the expense of added computations.
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Fig. 16. (a) Drift coefficients (μe), (b) electron coefficients (weT,1, weD,1), and (c) hole coefficients (whT,1, whD,1, whT,2, whD,2), for multiple e–h injections at
Voxel 80, 120, 160 with k = 0.1, l = 100, n = 100. Readers are suggested to enlarge the figure for closer view. (a) Drift coefficients. (b) Electron coefficients.
(c) Hole coefficients.

Fig. 17. Electron recombination coefficients (weRec) for multiple e–h
injections at voxels 80, 120, 160 with k = 0.1, l = 100, n = 100.

2) 200 Voxels Model With Charge (e–h) Injection at Multi-
ple Positions: The 200 voxels model has been designed with
a time step of 5 ns in the ground truth model. Similar to
the 400 voxel model, the parameters, if required, had to be
rescaled for this model as well. The time step of 5 ns was
also chosen. The results of this model with 200 voxels injected
with electron–hole charges at voxel positions 80, 120 and
160 is shown in Figs. 16–18, respectively. The model is
trained for 60 voxels at a time for electrons and 20 for holes.
k = 0.1, l = 100 and n = 100 have been used in this model.
Clearly, for the electrons and holes, the learned coefficients
of drift, trapping, detrapping, and recombination match the
ground truth values for the classical model for most of the
cases. Different initializations for the model weights have been
used than for the 100 voxels model. This is due to the fact
that the ground truth parameters for this model differ from the
100 voxels model.

Fig. 18. Hole recombination coefficients (whRec) for multiple e–h injections
at voxels 80, 120, 160 with k = 0.1, l = 100, n = 100.

D. Comparison to Classical and Other Approaches

The current state-of-the-art approaches for determining the
detector properties—drift, trapping, detrapping, and recombi-
nation of charges are typically computed using experimental
methods as described in Section II. However, these approaches
only characterize the material in the bulk considering the
homogenous behavior of the material. On the other hand,
the material properties are often nonhomogenous at a smaller
length scale over the material depending on the localized
doping concentration, crystalline defects and other factors.
Our learning model characterizes the homogenous as well
as the nonhomogenous properties of the material in terms of
transport, trapping, detrapping, and recombination properties
for electrons and holes at a smaller length scale over the spatial
dimensions of the material compared to classical state of art
methods. Thus, our method provides detailed characteristics at
a smaller length scale of the material compared to the classical
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experimental approaches currently in the literature. Hence,
it is not meaningful to compare our method with classical
approaches in the literature.

Numerically, in the voxelized model of the material, the
detector parameters can be determined by exhaustive search
in the parameter space. For every combination of material
properties (drift, trapping, detrapping, and recombination of
charges), input electron–hole charge pairs can be fed, and sig-
nals are generated at the electrodes along with free and trapped
charges in each voxel of the material. On the other hand,
we can obtain the signals at the electrodes and electron–hole
charges (trapped and free) either from experimental data
or from other theoretical models. The signals and charge
distribution (free and trapped) from both of these methods
can be matched by the process of matched filtering [72]. The
combination of parameters can be identified which produces
the best match of the signals and charges (free and trapped)
for both these methods. However, the process of exhaustive
search combined with matched filtering is computationally
expensive. For instance, in our model with 100 voxels, each
voxel has nine parameters. Considering ten discrete possible
values for each of the nine parameters, the total number of
possible combinations is 109×100 = 10900. Clearly, searching
over all these values is very computationally expensive. Faster
search algorithm such as branch and bound algorithm [73]
can be used with matched filtering approach. However, all
search algorithms will search from a finite set of values for
the parameters. The simulation time for arriving at the model
parameters will depend on the algorithm implemented. On the
other hand, our learning-based modeling approach provides a
gradient-based solution considering no bounds on the range
of the material parameters in a reasonable time. Our learning-
based model searches over an infinite range of values in the
parameter space. For a single electron–hole pair input, the
training time of 5 h is required. Thus, our learning-based
approach provides us not only with the detailed characteristics
of the material but also at a reasonable time.

Instead of the physics-inspired model, an alternative
approach could be to use standard DL architectures (such
as LSTM or fully connected or convolutional layers) with
electron–hole pair at a position as input, and signals (at
electrodes) along with free and trapped charges in the material
as output corresponding to the input–output training pair.
However, in such cases, the weights in the fully connected
or convolutional layers do not correspond directly to the
material parameters such as drift, trapping, detrapping, and
recombination weights for electrons and holes. Moreover, such
DL models typically have millions of trainable parameters.
This not only requires a very large amount of training data,
but it also requires larger training time.

VI. DISCUSSIONS

The learning-based approach for obtaining the detector
parameters is novel for RTSD. The model has been developed
for voxels of different sizes. It learns the properties of the
detector in a fast and efficient way and can identify defects
in the detector spatially and their variations over time. This

learning model uses error backpropagation in order to update
the model parameters over the epochs. However, for a very
sparse input charge pair (for example two charge inputs over
a 600 voxel model), the gradients reduce for voxels away from
the injection points, and hence, the model parameters are not
updated effectively. This is often referred to as the vanishing
gradient problem in the DL literature [74]. In order to avoid
such scenarios, the incident input charges close to each other,
are utilized with their corresponding outputs. In this work,
we considered the physical properties of the material in terms
of the number of trapped and detrapped centers for electrons
and holes to be known a priori. Without this information, there
will be an inherent model mismatch between the physical and
learned model parameters, which is beyond the scope of this
article.

In this work, 1-D learning model of the detector is pre-
sented. However, a 3-D learning model of the detector will
follow the same principles. Moreover, in this work, the
ground truth data has been simulated using a classical model
described in Section III. The simulation results must be vali-
dated with actual experimental data. The experimental data can
be obtained using thermoelectric emission spectroscopy, TSC
measurements, laser-induced techniques, and others. However,
during actual implementation of the detector, the actual signal
at the electrodes along with the free and trapped charges
in the material has to be used. These data will contain
additional noise (such as electronic noise) which has to be
modeled as well. Extending this model to work with actual
experimental data in 3-D detector systems is one of the future
directions of work. As a future research direction, we plan to
implement a classical numerical approach and a standard DL-
based algorithm for determining the properties of the RTSD.
A comparative study between these techniques in terms of
simulation times and computational complexity will be done
in future work.

VII. CONCLUSION

The article introduces a novel learning-based approach
to model the properties of the radiation detector material.
Compared to traditional approaches, this approach aids in char-
acterization at a smaller length scale which is not feasible with
the current state-of-the-art technologies. We design the model
for a CZT detector having two trapping centers for holes, one
trapping center for electrons along with a recombination of
electrons and holes in the bulk of the detector. Simulation
experiments have been performed with an unweighted and
weighted loss function to find the optimal combination of
weights resulting in a minimum error for detecting the material
properties. The model has been tested for 100, 200, and
400 voxels. The model shows promising results which could
lead the way for future developments in RTSD.
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