
1876 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

The ReadoutCard Userspace Driver for the
New Alice O2 Computing System

Konstantinos Alexopoulos and Filippo Costa

On behalf of the ALICE Collaboration

Abstract— A large ion collider experiment (ALICE) experi-
ment focuses on the study of the quark-gluon plasma as a product
of heavy-ion collisions at the CERN large hadron collider (LHC).
During the long shutdown 2 of the LHC in 2019–2020, a major
upgrade is underway in order to cope with a hundredfold input
data rate increase with peaks of up to 3.5 TB/s. This upgrade
includes the new online–offline computing system called O2. The
O2 readout chain runs on commodity Linux servers equipped
with custom peripheral component interconnect express (PCIe)
field-programmable gate array (FPGA)-based readout cards:
the PCIe Gen 3 × 16, Intel Arria 10-based common readout
unit (CRU), and the PCIe Gen 2 × 8, Xilinx Vertex 6-based
Common ReadOut Receiver Card (CRORC). Access to the cards
is provided through the O2 ReadoutCard userspace driver, which
handles synchronization and communication for direct memory
access (DMA) transfers, provides base address registers (BAR)
access, and facilitates card configuration and monitoring. The
ReadoutCard driver is the lowest level interface to the readout
cards within O2 and is in use by all central systems and detector
teams of the ALICE experiment. This communication presents
the architecture of the driver and the suite of tools used for card
configuration and monitoring. It also discusses its interaction
with the tangent subsystems within the O2 framework.

Index Terms— Base address register (BAR), data
acquisition systems, direct memory access (DMA), drivers,
field-programmable gate arrays.

I. INTRODUCTION

ALARGE ion collider experiment (ALICE) is an experi-
ment at the CERN large hadron collider (LHC) focusing

on the study of the quark-gluon plasma—a state of matter
which existed shortly after the Big Bang—as a product of
heavy-ion collisions. Currently, the second long shutdown
(LS2) of the LHC is underway, allowing for preparations
for Run3, which will run at significantly higher luminos-
ity. The main physics topics addressed by the upgrade
require measurements characterized by a very low signal-over-
background ratio, making traditional triggering strategies inef-
ficient. Hence, the time projection chamber (TPC) necessitates
the implementation of continuous readout, capable to keep up
with an interaction rate of 50 kHz [1]. During LS2, ALICE

Manuscript received October 30, 2020; revised March 11, 2021; accepted
May 23, 2021. Date of publication July 20, 2021; date of current version
August 16, 2021.

The authors are with the European Organization for Nuclear Research,
CERN, 1221 Geneva, Switzerland (e-mail: konstantinos.alexopoulos@cern.ch;
filippo.costa@cern.ch).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2021.3098185.

Digital Object Identifier 10.1109/TNS.2021.3098185

is upgrading its detector and software systems to fulfill the
above requirements and achieve a higher resolution.

A. O2 Computing System

The upgrade includes the new online–offline computing
system that is called O2 [2], extending across two major
computing slices, the first level processor (FLP) and the
event processing node (EPN). The O2/FLP subsystem is com-
prised of 200 FLPs responsible for detector readout. They are
equipped with specialized data acquisition cards that interface
with the front-end electronics (FEE) of the detectors. FLPs
are designed to handle triggered and continuous readout oper-
ations, without discarding any events. A first-level grouping of
the read-out events takes place within the FLPs before the data
flow to the next subsystem. O2/FLP also includes the quality
control system and services for control, configuration, moni-
toring, logging, and bookkeeping. The O2/EPN subsystem is
comprised of 250 EPNs that are responsible for synchronous
calibration and reconstruction before the data reaches storage.

For what concerns O2 , the data originate from the read-
out cards of the experiment, namely the Common ReadOut
Receiver Card (CRORC) [3] and the common readout unit
(CRU) [4], which are connected to the front-end cards of
the detector electronics. In this document, we focus on the
ReadoutCard userspace driver, which controls and provides
a communication interface to the cards of the experiment,
serving as the lowest level interface to them within the O2

framework, as shown in Fig. 1.
The ReadoutCard package was initially published in [5].

Since then, the userspace driver has been heavily developed
to improve implementation details and extend core function-
ality. The existing library interfaces have been improved and
fragmented to focus their functionality to their expected uses,
reducing unnecessary complexity. Moreover, several interfaces
have been introduced to facilitate access to new software
components. The available tools have been extended to provide
a complete suite to configure and monitor the status of the
cards. Finally, ReadoutCard has been integrated with the O2

monitoring [6] and O2 configuration [7] components. This
article presents the state of ReadoutCard following these
developments.

II. HARDWARE

The readout chain of the experiment is designed around two
different readout cards: the CRORC and the CRU.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6939-5707
https://orcid.org/0000-0001-6955-3314

ALEXOPOULOS AND COSTA: ReadoutCard USERSPACE DRIVER FOR THE NEW ALICE O2 COMPUTING SYSTEM 1877

Fig. 1. O2 facility.

Fig. 2. CRORC.

Fig. 3. CRU.

A. CRORC

The CRORC in Fig. 2 was used to collect data from
the majority of detectors of the ALICE experiment during
Run2. It is a peripheral component interconnect express (PCIe)
Gen 2 × 8 card based on the Xilinx Vertex 6 field-
programmable gate array (FPGA), equipped with 12 optical
links able to run up to 6 Gb/s each.

The CRORC uses the detector data link (DDL) protocol [8].
A big part of its old firmware has been reused and extended so
that it can address the new needs of the detectors and the O2

facility during Run3. This enables the reuse of DDL-enabled
hardware from Run2 for a few detectors that would not benefit
from higher throughput capabilities.

B. CRU

The CRU in Fig. 3 is the main readout card for the
ALICE experiment during Run3. It is based on the PCIe40 [9]
hardware designed for LHCb, a PCIe Gen 3 × 16 card
equipped with the Intel Arria 10 FPGA. Connection to the
FEE of the detectors happens via up to 24 optical fibers, which
can be used for readout, trigger, timing, and/or slow control,
depending on individual needs.

The CRU uses the gigabit transceiver (GBT) protocol [10]
for its readout links and its firmware is under active develop-
ment.

C. FLPs

Following an extensive software and hardware assessment
process [11] and a competitive tender, the DELL PowerEdge
R740 servers were selected to run the FLP portion of the O2

computing facility. The FLPs come in two flavors, silver and
gold, depending on computing needs for data processing. Both
flavors run CERN CentOS 7 and are equipped with 96 GB
of 2666 MT/s DDR4 memory and a 480 GB solid state drive
(SSD) at 6 Gbps. The Silver version uses 2 Intel Xeon Silver
Cascade-Lake 4210s, each with 10 cores at 2.2 GHz, whereas
the Gold version uses 2 Intel Xeon Gold Cascade-Lake 6230s,
each with 20 cores at 2.1 GHz. A single server may be
equipped with up to four CRORCs or up to three CRUs,
depending on detector and FEE topology and configuration.

III. KERNEL DRIVER

The first layer over the PCIe interface to the cards is
the portable driver architecture (PDA) Userspace IO (UIO)
kernel module [12], developed by the Frankfurt Institute for
Advanced Studies (FIAS). PDA also provides a userspace
library in C language, which supports device enumeration and
provides a handle to PCIe devices.

Through the PDA handle, the following functionalities may
be exploited.

1) Registering direct memory access (DMA) memory
targets with the input–output memory mapping unit
(IOMMU), which maps the PCIe physical address space
to the virtual address space of the CPU. This allows the
mapping of separate memory regions to a contiguous
memory space while also preventing invalid memory
accesses.

2) If the IOMMU component is not physically present
in the system or is inactivated, PDA generates DMA
scatter-gather lists in order to ensure access to the
nonconsecutive physical memory spaces of the DMA
engine of the device.

3) Memory mapping the base address registers (BAR) of
the device to a virtual address space. This allows the
execution of BAR operations on the process level to be
carried out by means of simple memory reads and writes.

IV. USERSPACE DRIVER

ReadoutCard is an open-source [13] C++ userspace
driver and library, which wraps around PDA functionality to
access and control the cards. Both cards of the experiment,
the CRORC and the CRU, are fully supported by the Readout-
Card package, and access is published through a BAR interface
as well as a high-level DMA channel interface.

A. Addressing

ReadoutCard accesses the cards on the level of an endpoint,
which coincides with a PCIe endpoint.

1878 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

TABLE I

CRU/CRORC ACCESS INTERFACES

The CRORC has a total of six optical connections, all within
a single endpoint, and for each of them, a BAR handle can
be acquired and a DMA channel opened. In other words,
the access granularity level of the CRORC is a link for all
interfaces.

The CRU boasts 24 optical connections, with each physical
card separated into two logical endpoints. Each endpoint
owns 12 of the 24 links. Contrary to the CRORC, the CRU
follows a different scheme to access its links. It publishes
two BARs per endpoint: BAR 0 publishes DMA-related
registers and facilitates DMA orchestration on the endpoint
level, whereas BAR 2 publishes the rest of the registers,
i.e., configuration, monitoring, and so on. For what concerns
the DMA functionality of the CRUs links, each endpoint
orchestrates the DMA transfer through a single DMA channel.

Table I summarizes the addressing details that are specific
to each card.

ReadoutCard offers multiple ways of addressing an
endpoint.

1) Using the PCI address comprised of bus, device,
and function number assigned to the PCI device
(e.g., 3b:00.0).

2) Using the Serial ID of the device, a pair of the serial
number of the card, which is unique to every physical
card, and its endpoint (0 or 1) (e.g., 0233:1).

3) Using the Sequence ID of the endpoint, a sequential
number assigned by ReadoutCard aiming to simplify
development and testing (e.g., #2).

B. Enumeration

For what concerns the PDA driver, PCIe devices are enu-
merated on kernel module insert. When ReadoutCard requests
a handle, it receives a handle to a PCI device, which can,
by means of the vendor and device ID, be classified as a
CRORC or a CRU. Upon receiving the device handle by
PDA, ReadoutCard builds upon it to create a RocPciDevice
object. This object holds a reference to the PDA device handle,
initialized handles to the BAR interface(s) of the device,
as well as a CardDescriptor struct. The latter serves as a
standalone identifier for a given endpoint, holding addressing
information.

The handle acquisition process takes place every time a
process requests a device scan or an interface to a specified
device through the ReadoutCard library. Information gathered
during the initial stages remains available throughout the
lifetime of the process, allowing for an efficient transition
between devices and interfaces.

C. Compatibility

The driver is accessing the card at the lowest level through
its published registers in the BAR. Between firmware versions,
the functionality of a given set of registers may change,
ranging from a simple shift of control bits to a completely
different submodule. As a result, a firmware incompatibility
between what is expected by the driver and what is used by
the device can lead to an unexpected state within the device
or simply faux operations.

To address this, ReadoutCard checks the firmware of the
device in question against a list of supported versions. This
check is implemented on the level of the DMA interface
as well as for the various command line tools that need to
be protected. In all cases, an option to bypass the check is
available, which may be necessary during development and
testing in between releases.

D. Synchronization

For its synchronization needs, ReadoutCard employs an
internal mutex, which uses an abstract UNIX socket as its
underlying locking mechanism, called SocketLock. The
SocketLock attempts to bind to the UNIX socket with the
specified name, and if it is successful, it keeps the connec-
tion open, thus guaranteeing atomic access to the underlying
resource, in this case PDA access.

As an example, the PDA library is not thread-safe. It is
necessary to ensure that exclusive access is granted whenever
a PDA operation is taking place; otherwise, the kernel module
or the device might end up in an unsafe state, with undefined
side effects.

Even though the SocketLock is not the most performant
among modern interprocess synchronization mechanisms (see
boost::interprocess [14]), securing access for the needs of
ReadoutCard takes place during channel initialization, leaving
throughput-dependent sections unaffected. Moreover, robust-
ness is much more important, as it is dictated by the large
number of users and processes that are active on an FLP
at any time. The SocketLock guarantees that in case of
a pathological scenario (e.g., a process crash), resources will
be automatically released, eliminating the need for any manual
intervention.

E. BAR Interface

ReadoutCard utilizes PDA to request a map of the BAR
of the device in its virtual memory space. Consequently,
ReadoutCard implements operations for BAR reads and writes
by indexing its BAR-mapped virtual address space. By per-
forming basic BAR limits checks, it ensures that only legal
BAR accesses are carried out.

BAR accesses are used for all communication with a
device, being that data-taking orchestration, configuration,
or monitoring. BAR communication needs to be exclusive dur-
ing data-taking and, depending on the subcomponent, during
configuration. Atomicity during data-taking is anyway guaran-
teed as will be discussed in Section IV-F, whereas atomicity
during configuration is assured through tangent packages on a
case-by-case basis.

ALEXOPOULOS AND COSTA: ReadoutCard USERSPACE DRIVER FOR THE NEW ALICE O2 COMPUTING SYSTEM 1879

Fig. 4. BAR class hierarchy.

As a result, the BAR interface does not itself enforce mutual
exclusion. This is vital to ensure low-latency and service
continuity, as multiple tools and users need to constantly
communicate with the cards in a responsive way. The number
of concurrent processes accessing the BAR interface of a card
is only limited by the resources of the system.

Implementation: BAR accesses rely on two interfaces.
The RegisterReadWriteInterface defines functions
for reading, writing, and modifying a register. The
BarInterface defines functions that utilize the BAR
and are common between the CRU and the CRORC.
The BarInterfaceBase initializes the device if needed,
maps the BAR address space to virtual memory, and
implements the RegisterReadWriteInterface. The
BarInterfaceBase is extended for every card, so as
to implement all card-specific operations, resulting in the
CrorcBar and CruBar classes, as shown in Fig. 4.

F. DMA

DMA is used for data acquisition, which presents the
heaviest requirements in terms of throughput. A DMA transfer
is facilitated through the use of a DMA channel, which is
uniquely opened on the level of an endpoint.

Initializing a DMA channel involves a handshake procedure
between the card and the driver, which makes sure that the card
is properly reset and relevant structures on both sides, such as
buffers, FIFOs, and counters, are initiated in order to support
data-taking. Moreover, a userspace shared memory buffer is
registered with PDA as the DMA buffer of the transfer, which
is in turn validated by ReadoutCard.

Starting with this process, mutual exclusion needs to be
guaranteed, as concurrent actions on the same channel will
certainly have unintended consequences, invalidating the con-
ditions of the ongoing transfer and overwriting contended
buffer memory, leading to a data-taking halt or corrupted data.

To mitigate this, ReadoutCard once again exploits
SocketLock functionality, acquiring the mutex before any
hand-shaking takes place and holding it until the data-taking
is finished and relevant buffers have been purged. As a
consequence, any attempt to open a DMA channel, while an
established transfer on this channel is in progress, will fail
gracefully with no side effects.

1) Memory Layout: DMA transfers are performed using
DMA channel buffers, made up of shared memory, and are
comprised of Superpages. A Superpage (usually 1 MiB) is the

Fig. 5. Memory layout (typical sizes).

granularity level on which the driver and the cards commu-
nicate. Each Superpage contains DMA pages, which have a
variable size of up to 8 KiB, even within the same Superpage
(see Fig. 5). Every DMA page includes a header followed by
the payload. With regard to its DMA functionality, the driver
is agnostic to the content and structure of a Superpage.

2) Communication: As discussed before, DMA channel
functionality is always wrapped in a SocketLock acquisi-
tion associated with the endpoint in question, which guarantees
the mutual exclusion property. It is also necessary to clean up
potentially leftover PDA buffers as a result of past process
crashes. This action also happens under the protection of a
SocketLock, albeit a different one, the one that is tied to
PDA communication.

In order to orchestrate the DMA transfer, the DMA channel
holds open interfaces to the BAR, or BARs, of the card, and
also publishes convenience functions to monitor health metrics
of the transaction, such as the number of dropped packets or
the FPGA temperature of the card.

On the successful outcome of the above, DMA buffer
registration needs to take place. ReadoutCard provides the
PDA driver with a pointer to a userspace buffer to be registered
for DMA. For performance reasons, this buffer should be as
physically contiguous as possible. To address this, Readout-
Card supports hugepage-backed buffers. Hugepage support is
a Linux kernel feature that enables OS support of memory
pages larger than the default (usually 4K). ReadoutCard uses
1 GiB hugepages (or 2 MiB as a fallback), greatly limiting the
number of DMA-related memory pages. As a consequence,
memory page swaps to disk and page table entry lookup
times are greatly reduced. Hugepages have been an asset that
was heavily used during development and testing. However,
ReadoutCard will accept any shared memory buffer as long
as it is contiguous. In any other case, the IOMMU needs to
be enabled; otherwise, an exception will be thrown.

After PDA initializations, DMA buffer registration, and
some exchange of information between ReadoutCard and
the underlying card have concluded, data-taking may com-
mence. For both CRORC and CRU, the underlying mechanism
enabling DMA transfers is largely the same and both cards
are “Superpage aware.” The ReadoutCard functionality with
regard to DMA transfers boils down to Superpage address and

1880 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Fig. 6. Superpage data flow.

Fig. 7. DMA class hierarchy.

size information exchange, which is facilitated through the use
of two Superpage queues, as shown in Fig. 6.

The first one is called TransferQueue and manages the
“free” Superpages, i.e., the Superpages that are empty and may
be populated by the card. When such a Superpage becomes
available in the queue, ReadoutCard checks the FIFOs of the
enabled links of the card for free slots and proceeds to push the
Superpage, or Superpages, in a round-robin fashion between
the links. A Superpage push consists of translating the address
of the free Superpage, from the virtual address space of the
process to the bus address space, before placing it and its size
in the relevant FIFOs and notifying the firmware through the
BAR.

When a Superpage is filled or “ready,” the firmware notifies
ReadoutCard by means of an incrementing per-link counter,
which will in turn transfer this Superpage to the second queue,
the ReadyQueue. Superpages in this queue are already filled
with data and are ready to be read out by the relevant process.

3) Implementation: The functionality of a DMA channel
is dictated by the DmaChannelInterface, as outlined
in Fig. 7, which includes interfaces for controlling the DMA
state and interacting with the two Superpage queues and the
device.

The DmaChannelBase implements the methods that are
common between the card-specific classes, takes care of DMA
channel locking, and includes the logging facilities.

DMA buffer-related functions are implemented in
DmaChannelPdaBase, which also incorporates the
high-level DMA start/stop/reset functionality by means of a
simple state machine.

Finally, the card-specific DMA Channel classes,
i.e., CrorcDmaChannel and CruDmaChannel, inherit
the above and implement device-specific communication,
namely the interface to exchange Superpages with the cards.

V. SOFTWARE

Apart from its userspace driver functionality, the Readout-
Card package also publishes a library that may be primarily
used for data-taking through its DMA interface, and control,
configuration, and/or monitoring through its BAR interface.
Building upon these interfaces, ReadoutCard also provides
a set of utilities, the RoC tools, which provide complete
solutions for operations that need to be performed on the cards
in both development and production contexts.

A. Library

In order to provide adequate support for the needs of the
experiment, ReadoutCard provides a number of interfaces with
different scopes.

1) DMA: A high-level C++ interface to the DMA channel
of the cards is used by processes to perform readout. This is
supplied as a well-defined application programming interface
(API) that provides functions to control the DMA state by
performing start and stop operations. It also provides functions
interfacing the two Superpage queues of the driver facilitating
the transfer. These functions include operations to push, pop,
fill Superpages, and check the current status of the queues.
Moreover, the DMA channel offers some convenience func-
tions to get information regarding the underlying card, such
as its type, PCI address, firmware info, and corresponding
Nonuniform Memory Access (NUMA) node, as well as to
monitor health metrics of the transaction, such as the number
of dropped packets and the FPGA temperature of the card.

The DMA interface is exploited by O2 Readout [15],
the high-level readout process of the experiment, to access
the card, initialize, and perform data-taking.

2) BAR: A high-level C++ interface to the BARs of
the cards is heavily used for the internal needs of the
driver and by external tools. External tools normally use an
interface that supports only simple BAR operations: read,
write, and modify the RegisterReadWriteInterface.
Internally, however, ReadoutCard uses a derived interface,
the BarInterface, which also defines functions reporting
on the status of the cards and facilitating configuration. This
offers a complete view of the underlying card for more
complex use cases.

Apart from the custom detector solutions utilizing the BAR
interface, it also serves as the card communication channel
for O2 Alice low-level front end (ALF) [16], the process that
publishes interfaces to detector control system (DCS) [17],

ALEXOPOULOS AND COSTA: ReadoutCard USERSPACE DRIVER FOR THE NEW ALICE O2 COMPUTING SYSTEM 1881

so that the latter can access the card and trigger slow control
operations.

3) Python BAR: A python wrapper to the BAR interface
is used in situations where rapid development cycles are
paramount, mainly firmware development and detector teams.

4) CardConfigurator: For a C++ interface to a class
orchestrating card configuration, the CardConfigurator
class is initialized for a specific card with configuration para-
meters that may be passed programmatically or parsed from a
configuration uniform resource identifier (URI), as facilitated
by the O2 Configuration library. It consequently configures all
the subcomponents of the card in a modular way.

5) Miscellaneous: ReadoutCard also offers a number of
interfaces with a more limited scope to publish software
component functionality that may be needed by tangent
packages. Examples include interfaces to use the firmware
checker, as described earlier, control the pattern player, which
controls the pattern player module in the CRU, or header files
containing, e.g., register addresses.

B. Tools

The command line interface (CLI) tools provide configu-
ration, monitoring, and testing functionality for the readout
cards. The ones providing status output have been integrated
with the O2 Monitoring facility, which takes care of propagat-
ing the state to the centrally managed subsystems. Indicatively,
the following conditions hold.

1) roc-list-cards: It lists the available readout cards
in the system and provides addressing options and device
information (e.g., firmware version and NUMA node).

2) roc-config: It configures the components and links
of the cards in a modular fashion. It takes care not
to unnecessarily reconfigure modules unless explicitly
forced to.

3) roc-status: It reports card configuration status,
i.e., reports the resulting state of a roc-config execu-
tion. It also reports the status of the links, namely if they
are UP or DOWN coupled with information regarding
the optical connections.

4) roc-metrics, roc-pkt-monitor: It reports
card metrics and packet statistics. These tools differ
from roc-status because they report transient
information, specific to the current run state, like the
current packet rate.

5) roc-bench-dma: It performs readout and extensive
error checking. Heavily used to facilitate development
and testing cycles, especially in conjunction with the
firmware teams.

6) roc-reg-read, roc-reg-write,
roc-reg-modify: It performs the most basic, lowest
level, register read, write, and modify operations.

Fig. 8 summarizes the integration of ReadoutCard with the
tangent software components in the context of the FLP.

VI. PERFORMANCE

Benchmarks were executed on an FLP, as described in
Section II, equipped with the Silver version of the CPU and
two CRUs.

Fig. 8. ReadoutCard integration. Solid lines represent users and dotted lines
represent dependencies.

Fig. 9. NUMA node locality.

The FLPs are equipped with dual-socket CPUs, forming two
areas of locality, where CPUs are directly attached to their
own local RAM. In the NUMA architecture, these are called
NUMA nodes. For communication between these two areas,
Intel uses the Intel ultrapath interconnect (UPI) [18], a low-
latency coherent interconnect for scalable multiple-processor
systems in a single shared address space.

The readout cards installed on the FLP are connected to one
of the two CPU sockets and thus are part of a single node.
In case the process accessing the PCIe endpoint is accessing
an NUMA node that is not local to the specific readout
card, data will have to flow over the UPI link Fig. 9, which
for high-throughput DMA transfers, will be a performance
bottleneck. It is thus imperative that processes are pinned to
the correct NUMA node when running DMA, a requirement
that has been addressed by utilizing the numactl utility.

A. DMA Performance

To measure DMA performance, each CRU was configured
to use the DMA data generator (DDG), an internal module
generating packets. In order to maximize throughput, eight
optical links were enabled on the endpoint level. The DMA
throughput measurements are presented cumulatively with

1882 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Fig. 10. DMA throughput–Superpage size–CPU utilization.

regard to endpoints used and as a function of the Super-
page size. Moreover, CPU utilization is also measured for
the different scenarios. These tests were facilitated by the
roc-bench-dma benchmarking tool provided by Readout-
Card. The results can be seen in Fig. 10.

For a single endpoint, the DMA throughput reaches a
stable 53 Gbps, which greatly surpasses the requirement
of 8.75 Gbps. In addition, the Superpage size does not in any
way affect the DMA throughput, which remains stable across
the 32 KiB–8 MiB range.

For all four endpoints, i.e., the two CRUs, concurrently
running DMA at full speed, the throughput scales well without
any bandwidth losses to give a cumulative 212 Gbps.

Throughput remains unaffected in relation to the Superpage
size changes for all endpoint layers. The same is not true,
however, for the CPU utilization, for which we see a sharp
drop as the Superpage size increases. A minimum of 13% of
utilization is reached for sizes of 512 KiB–2 MiB, dictating the
optimum size range to be used. In addition, the low utilization
allows for other processes within the FLP to exploit adequate
CPU resources for their needs.

B. BAR Performance

BAR performance was measured with the
roc-bar-stress tool, which runs a process accessing a
single BAR interface and stressing it for a number of operation
cycles comprising of sequential read and write operations,
at full speed. For the purposes of these benchmarks, a process
was run for ten million cycles. The output of this process is
equivalent to the total usable bandwidth of a single interface.
For BAR 0, the maximum throughput measured reaches
80 Mbps or around 2.5 million 32-bit operations per seconds.
For BAR 2, the maximum throughput is slightly lower at
70 Mbps, which roughly translates to around two million
32-bit operations per second. This inconsistency between the
two BAR interfaces is due to the fact that they are connected
to firmware components that operate on different clocks

Fig. 11. BAR 2 throughput—# Instances. Different colors indicate bandwidth
distribution between instances.

and thus operate at different speeds. BAR performance is
consistently exceeding the operational requirements of the
system.

BAR 0 is used for DMA, and under normal circumstances,
it should only be accessed by a single process. For BAR 2 on
the other hand, multiple concurrent processes are expected to
run at the FLP at any time, including monitoring daemons as
well as user-initiated operations. Consequently, it is important
that the bandwidth of the BAR is distributed fairly among
all processes and no starvation is observed. The results of this
investigation are shown in Fig. 11. The throughput for multiple
instances accessing BAR 2 presents a performance loss when
compared to a single instance. As there are no foreseen sce-
narios for which BAR saturation is expected, this small (≈8%)
discrepancy is of no current concern. Nevertheless, when
increasing the number of concurrent instances, the cumulative
throughput of the interface remains stable and the available
bandwidth is demonstrably distributed fairly among all actors.

VII. CONCLUSION

ReadoutCard is a userspace driver controlling the two cards
of the ALICE O2 computing system. It provides a library
with abstract interfaces to access the cards as well as a suite
of command-line tools that publish functionality and facilitate
development. The ReadoutCard package is the very first layer
to access the readout cards within the O2 facility and has
been in heavy use by all subdetectors and subsystems of the
experiment for the last three years.

Moving toward operations, the ReadoutCard package will
continue to adapt to the evolving requirements. In addition,
the suite of tools will be extended to provide more options
for debugging both during the detector commissioning phase
and production. On the software side, improvements are due
with regard to integration with other O2 software components,
specifically the ones facilitating logging [19] and control [20].
Finally, an effort to improve the continuous integration for the
package is foreseen, which will also cover scenarios for the
various detector use cases.

ALEXOPOULOS AND COSTA: ReadoutCard USERSPACE DRIVER FOR THE NEW ALICE O2 COMPUTING SYSTEM 1883

REFERENCES

[1] B. Abelev, “Upgrade of the ALICE experiment: Letter of intent,”
J. Phys. G, Nucl. Part. Phys., vol. 41, no. 8, Aug. 2014, Art. no. 087001,
doi: 10.1088/0954-3899/41/8/087001.

[2] P. Moreira, M. Krzewicki, and P. V. Vyvre, “Technical design report for
the upgrade of the online-offline computing system,” in Proc. ALICE,
vol. 19, 2015, pp. 33–48.

[3] H. Engel, D. Eschweiler, and D. Francis, “The C-RORC PCIe
card and its application in the ALICE and ATLAS experi-
ments,” in Proc. TWEPP, Aix En Provence, France, Sep. 2014,
pp. 1–10.

[4] O. Bourrion et al., “Versatile firmware for the common readout unite
(CRU) of the LHC ALICE experiment,” in Proc. TWEPP, Madrid,
Spain, Sep. 2019, pp. 2–6.

[5] P. Boeschoten and F. Costa, “The ALICE O2 common driver for
the C-RORC and CRU read-out cards,” in Proc. ACAT, Seattle,
WA, USA, 2017, pp. 1–6, Art. no. 032001, doi: 10.1088/1742-
6596/1085/3/032001.

[6] A. Wegrzynek, V. C. Barroso, and G. Vino, “Monitoring the new ALICE
online-offline computing system,” in Proc. ICALEPCS Barcelona,
Spain, Oct. 2017, pp. 195–200, doi: 10.18429/JACoW-ICALEPCS2017-
TUBPA02.

[7] Configuration. Accessed: Oct. 16, 2020. [Online]. Available:
https://github.com/AliceO2Group/Configuration

[8] F. Carena et al., “DDL, the ALICE data transmission protocol and its
evolution from 2 to 6 Gb/s,” in Proc. TWEPP, Paris, France, Sep. 2014,
pp. 1–8, Art. no. C04008.

[9] J. P. Cachemiche et al., “The PCIe-based readout system for the LHCb
experiment,” J. Instrum., vol. 11, Feb. 2016, Art. no. P02013, doi:
10.1088/1748-0221/11/02/P02013.

[10] P. Moreira et al., “The GBT project,” in Proc. TWEPP Conf., Paris,
France, Sep. 2009, pp. 342–346.

[11] F. Costa et al., “Assessment of the ALICE O2 readout servers,” in Proc.
CHEP, Adelaide, Australia, Nov. 2019, pp. 1–6.

[12] D. Eschweiler, “Efficient device drivers for supercomputers,”
Ph.D. dissertation, Dept. Comput. Sci. Math., Goethe Univ. Frankfurt,
Frankfurt, Germany, 2016.

[13] ReadoutCard. Accessed: Oct. 16, 2020. [Online]. Available:
https://github.com/AliceO2Group/ReadoutCard

[14] Boost Interprocess Library. Accessed: Sep. 25, 2020. [Online].
Available: https://www.boost.org/doc/libs/1_74_0/doc/html/interprocess.
html

[15] S. Chapeland and F. Costa, “Readout software for the ALICE integrated
Online-Offline (O2) system,” in Proc. CHEP, 2018, p. 1041, doi:
10.1051/epjconf/201921401041.

[16] ALF. Accessed: Oct. 16, 2020. [Online]. Available: https://github.com/
AliceO2Group/ALF

[17] P. Chochula et al., “Challenges of the ALICE detector control system
for the LHC RUN3,” in Proc. ICALEPCS Barcelona, Spain, Oct. 2017,
pp. 1–9, doi: 10.18429/JACoW-ICALEPCS2017-TUMPL09.

[18] Intel Phantomx Ultra Path Interconnect Intel Phantom xUPI.
Accessed: Oct. 16, 2020. [Online]. Available: https://software.intel.
com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-
family-technical-overview.html

[19] S. Chapeland et al., “The ALICE DAQ infoLogger,” in Proc.
CHEP, Amsterdam, The Netherlands, Oct. 2013, Art. no. 012005, doi:
10.1088/1742-6596/513/1/012005.

[20] T. Mrnjavac and V. Chibante, “Barroso: Towards the alice online-
offline (O2) control system,” in Proc. CHEP, 2018, p. 1033, doi:
10.1051/epjconf/201921401033.

http://dx.doi.org/10.1088/0954-3899/41/8/087001
http://dx.doi.org/10.1088/1742-6596/1085/3/032001
http://dx.doi.org/10.1088/1742-6596/1085/3/032001
http://dx.doi.org/10.18429/JACoW-ICALEPCS2017-TUBPA02
http://dx.doi.org/10.18429/JACoW-ICALEPCS2017-TUBPA02
http://dx.doi.org/10.1088/1748-0221/11/02/P02013
http://dx.doi.org/10.1051/epjconf/201921401041
http://dx.doi.org/10.18429/JACoW-ICALEPCS2017-TUMPL09
http://dx.doi.org/10.1088/1742-6596/513/1/012005
http://dx.doi.org/10.1051/epjconf/201921401033

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

