
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021 1891

Data Acquisition System for the
COMPASS++/ AMBER Experiment

Vladimir Frolov, Stefan Huber , Igor Konorov, Antonin Kveton, Dmytro Levit , Josef Novy ,

Dominik Steffen, Benjamin Moritz Veit, Miroslav Virius, Martin Zemko , and Stephan Paul

Abstract— We present a new data acquisition system for the
COMPASS++/AMBER experiment designed as a further devel-
opment of the intelligent FPGA-based data acquisition frame-
work. The system is designed to have a maximum throughput
of 5 GB/s. We designed the system to provide free-running
continuous readout, which allows us to implement a sophisticated
data filtering by delaying the decision until the hardware filter
and high-level trigger stage which processes data. The system
includes front-end cards, fully digital hardware filter, data
multiplexers, a timeslice builder, and a high-level trigger farm.
The data selection and data assembly require a time structure of
the data streams with different granularity for different detectors.
We define a unit of detector data as image and combine images
from different detectors within a time window to timeslices.
By routing data based on the timeslices, we can average data
rates and easily achieve scalability. The main component that
allows us to achieve these goals is a high-performance and
cost-effective hardware timeslice builder. The timeslice builder
combines streaming data by their time and consists of the data
switch and the spillbuffer build. The scalable architecture allows
us to increase the throughput of the system and achieve a true
triggerless mode of operation.

Index Terms— Data acquisition, data handling, high-energy
physics instrumentation computing.

I. INTRODUCTION

THIS article presents a fully FPGA-based data acquisition
system for the upcoming experiment COMPASS++/

AMBER1 at CERN [1]. The experiment is dedicated to study
strong interaction effects at a wide range of four-momentum
transfer. This experiment aims to measure the proton

Manuscript received October 30, 2020; revised January 13, 2021; accepted
May 23, 2021. Date of publication June 30, 2021; date of current version
August 16, 2021. This work was supported by the German Ministry of
Education and Research and Excellence Cluster Origins.

Vladimir Frolov is with JINR, 141980 Dubna, Russia, and also with CERN,
1211 Geneva, Switzerland.

Stefan Huber, Igor Konorov, Dmytro Levit, Dominik Steffen, and Stephan
Paul are with the Physikdepartment E18, Technische Universität München,
85748 Garching, Germany (e-mail: dmytro.levit@tum.de).

Antonin Kveton is with the Department of Low Temperature Physics,
Charles University, 180 00 Prague, Czech Republic.

Josef Novy and Miroslav Virius are with the Department of Software
Engineering, Czech Technical University, 120 01 Prague, Czech Republic.

Benjamin Moritz Veit is with Johannes Gutenberg-Universität Mainz, 55099
Mainz, Germany, and also with CERN, 1211 Geneva, Switzerland.

Martin Zemko is with Czech Technical University, 120 01 Prague, Czech
Republic, and also with CERN, 1211 Geneva, Switzerland.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2021.3093701.

Digital Object Identifier 10.1109/TNS.2021.3093701
1COmmon Muon Proton Apparatus for Structure and Spectroscopy/

Apparatus for Meson and Baryon Experimental Research.

charge radius by elastic muon–proton scattering at low
four-momentum transfer, the spectroscopy of mesons and
baryons at intermediate four-momentum transfer, and to study
the structure of mesons and baryons at high four-momentum
transfer.

Section II compares our system with the upcoming
free-running systems of other experiments. Section III explains
the free-running concepts followed by the description of
COMPASS++/AMBER data acquisition system and hard-
ware. Section V presents the performance measurements of
the system on a test setup. Finally, Section VI describes the
future extension of the system.

II. STATE-OF-THE-ART SYSTEMS

In the last decade due to progress in the microelectronics,
computing, and FPGA technology, it became possible to read
and process detector data without classical data reduction
scheme using a level-1 trigger. This stimulates the devel-
opment of the free-running concepts for data acquisition in
the high-energy physics experiments to allow us to imple-
ment more efficient data selection. Several experiments, for
example, LHCb2 [2], sPHENIX3 [3], CBM4 [4], DUNE5 [5],
develop free-running systems. The common approach of these
systems is to get data into a server and merge them in software.
The systems require at least two layers of servers and network
infrastructure.

We introduce the fully FPGA-based data merger, which we
call the timeslice builder, in our data acquisition system. The
timeslice builder processes data streams in pipeline entirely in
FPGA fabric which results in a high-performing and a compact
design. The compactness of the system also translates into
lower hardware costs.

Another advantage of the fully hardware-based design is
the high reliability and fast recovery after a crash. The
FPGA-based system requires only a fast reset signal to recover
in contrast to the software-based systems which have to reload
and reinitialize the full software stack. The reliability translates
into the uptime of the system: the data acquisition systems

2The Large Hadron Collider beauty experiment at CERN.
3Pioneering High Energy Nuclear Interaction eXperiment with emphasis on

strongly interacting particles at the Relativistic Heavy Ion Collider.
4Compressed Baryonic Matter experiment at the Facility for Antiproton and

Ion Research.
5Deep Underground Neutrino Experiment at the Sanford Underground

Research Facility.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2640-9595
https://orcid.org/0000-0001-5789-6205
https://orcid.org/0000-0002-5904-3334
https://orcid.org/0000-0002-8813-0437
https://orcid.org/0000-0002-0390-9418

1892 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Fig. 1. Comparison between the triggered and the free-running readout.

with software-based event builder showed an uptime of 91.7%
(ATLAS 2016 [6]) and 95.87% (CMS 2018 [7]), while the
COMPASS data acquisition system with fully FPGA-based
event builder showed an uptime of 99.6% [8].

III. CONTINUOUS READ-OUT CONCEPT

We designed the data acquisition system in the intelligent
FPGA-based data acquisition framework, iFDAQ [9], for con-
tinuous triggerless readout to fulfill the wide range of physics
cases covered by the experiment. The word “intelligent” in
the name of the framework describes the ability of the system
to self-recover from the loss of synchronization caused by
missing or corrupted data. The system delivers a continuous
data stream with timing information that can be processed for
feature extraction and high-level triggering in real time.

Fig. 1 shows the evolution of the COMPASS iFDAQ
architecture from the triggered to the free-running system.
The system with the triggered readout generates triggers using
data from a subset of the detectors. The front-end electronics
buffers data while waiting for the trigger decision. The trigger
logic must have a latency smaller than 2 µs because the
buffers in the front-end electronics are usually small [10]. This
requirement limits the complexity of the trigger decision. The
free-running system reads and buffers the data in the much
larger buffers of the data multiplexers for the entire accelerator
cycle for timeslice building. After the timeslice building the
system buffers data on hard disks for data reduction in the
high-level trigger.

While we designed the system to be able to deliver all
data to the high-level trigger for final data reduction, we also
foresee an optional hardware filter for additional data reduc-
tion. The hardware filter receives the same data as the data
acquisition and has significantly more time to meet the filter
decision than in the conventional triggered scheme. Therefore,
the hardware filter can incorporate more sophisticated algo-
rithms which will improve the quality of the filter decision.

We aim to operate the system in the free-running mode.
To merge data from different detectors that are generated by
the same physical event, we match data by the time when
data are generated in the detector. Therefore, we use a readout
mode based on timeslices with a typical period in the order

of hundreds of microseconds to a few milliseconds. Fig. 2
shows the time structure of the data streams in the iFDAQ
framework. A timeslice is a basic time period used to combine
data from different sources. The time control system, TCS,
generates the timeslice information centrally and distributes
it to the whole experiment. Because every subdetector has
different time precision, we subdivide the timeslice into finer
detector images. The width of an image is different for every
detector and reflects the detector’s timing precision.

We base the data reduction in the free-running system on the
selection of images. The images contain a timestamp which
we use to associate images for data reduction. We keep only
those images for which there is a matching trigger decision.

We can also apply a hardware filter for the free-running
readout without changing the data structure. In this mode,
we keep the images which are selected by the hardware filter
or read all images without data reduction but store the filter
decision in the second case. We use the filter decision for final
data reduction in the high-level trigger.

The time structure brings other advantages as well. We use
an FPGA-based switch together with an FPGA-based spill-
buffer card as a timeslice builder which combines timeslice
data from the detectors. Fig. 3 shows the functionality of the
switch. Before data processing, data are stored in the large
external memory of the data multiplexers. The switch steers
data flow, receives data, and routes the timeslice data from all
detectors to the same spillbuffer. Long timeslices averages data
rates on all input streams of the timeslice builder and increases
efficiency of the timeslice builder algorithm. The algorithm
consists of the 4×4 switching units arranged in two layers. The
switching units change their configuration so that the switch
can change the routing of the input streams to the output
streams. We can extend the topology of the switch by adding
switching units or even FPGA cards to scale the system. The
performance of the switch depends only on the throughput of
the data links because the algorithm is implemented using only
FPGA fabric resources.

IV. COMPASS++/AMBER DATA ACQUISITION SYSTEM

We combine the previously described components to build
the data acquisition system of the COMPASS++/AMBER
experiment. The experiment contains approximately
300 000 data channels without silicon pixel detector and
approximately 100 million data channels of the pixel detector.
The expected sustained data rate of the spectrometer without
data reduction is 5 GB/s.

Fig. 4 shows the layout of the data acquisition system. For
example, the experimental setup for the proton radius measure-
ment consists of an active-target time projection chamber, a sil-
icon tracker based on the ALICE pixel detector (ALPIDE) [11]
sensors, large-area gas electron multiplier (GEM) detectors,
scintillation fiber tracking stations, beam momentum stations,
hodoscopes, and electromagnetic calorimeters.

The experiment follows the spill cycle of the super proton
synchrotron accelerator [12]. During the so-called “ON-spill”
period that lasts 4.8 s, the beam hits the target, and the
detector generates up to 72 GB of data during proton radius
measurement. The “ON-spill” period is followed by a longer

FROLOV et al.: DATA ACQUISITION SYSTEM FOR COMPASS++/AMBER EXPERIMENT 1893

Fig. 2. Example of the time structure with the timeslice length of 100 µs in the iFDAQ framework.

Fig. 3. Data processing in the 8 × 8 switch. Input data are stored in the
memory of the data multiplexers.

“OFF-spill” period when there is no beam. The data rate
during the “ON-spill” period is 15 GB/s which is higher
than the system’s throughput of 5 GB. Therefore, we use the
“OFF-spill” period to finish processing data generated during
the “ON-spill” period. The average data size of data for a
timeslice with the width of 1 ms is about 14.4 MB.

The multiplexers combine raw data from different sources,
buffer them in the memory, and send them over a single
link, thus reducing the number of the links in the timeslice
builder and the trigger processor. The switch prepares data
for timeslice building by routing data of the corresponding
timeslices from multiplexers to the same spillbuffer input. The
trigger processor searches for events in data streams and sends
the decision to the TCS controller. The spillbuffer combines
data that belong to the same timeslice and sends data to
the read-out server over PCIe interface. The read-out servers
store data on hard disks for the high-level trigger farm, thus
decoupling the read-out system and the high-level trigger. The
high-level trigger farm reads data over 25-Gb/s Ethernet for
data reduction and sends reduced data stream to the CERN
tape archive for permanent storage.

The DAQ6 uses a Virtex-6 iFDAQ DHMx card [9] with
17 high-speed serial links operated at 650 MB/s as multiplex-
ers and as a switch. These cards provide 4 GB of external

6Data acquisition.

DDR37 memory which is used to buffer data in multiplexers
and timing information in the switch. The 8 × 8 switch
implemented in this card has a maximum throughput of 5 GB/s
which allows us to process all data during the “ON-spill”
period. Due to the way the timeslice builder processes data,
as shown in Fig. 3, the multiplexers must buffer data for up to
eight timeslices. If we use the 8 × 8 switch configuration and
the full timeslice size of 14.4 MB for a 1-ms-long timeslice
as an upper limit, this would require 115.2 MB of memory in
the multiplexers.

We use a commercially available Nereid Kintex 7
XC7K160T PCIe board [13] with four lanes PCIe gen. 2 in
the read-out server as a spillbuffer. The theoretical bandwidth
of the PCIe interface is 2 GB/s, but due to the limit of the
maximum payload size of 128 B in the DMA engine8 of
the host system, the achievable throughput of the system is
1.6 GB/s due to protocol overhead [14]. The throughput of
the PCIe board fits well with the throughput of the attached
RAID09 storage of 1.5 GB/s built with the RAID controller
AOC-SAS3-9380-8E.

Section IV-A describes the implementation of the new DAQ
algorithms.

A. 8 × 8 Switch

Fig. 5 shows the layout of the switch firmware. The switch
contains a link to the TCS, eight incoming and eight outgoing
links, a data consistency checker on every input stream, and
an 8 × 8 switch matrix. The TCS link receives the timing
information which is used in the switch matrix to determine
the destination of the timeslice data. The incoming and the
outgoing links use the 8-/10-b Aurora [15] protocol with
native flow control for signaling backpressure. The outgoing
links also provision a user flow control interface to distribute
the timing information from the TCS and the current switch
configuration to the spillbuffers.

We store the timing information in a deep FIFO10 imple-
mented using the external DDR3 memory to compensate

7Double data rate.
8Direct memory access engine.
9Redundant Array of Inexpensive Disks level 0.
10First-in first-out.

1894 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Fig. 4. Data acquisition system of the COMPASS++/AMBER experiment.

Fig. 5. Switch firmware layout.

for the data latency in the previous DAQ stages. The FIFO
distributes timing information to the data consistency checkers,
the switch matrix, and sends it to the spillbuffer over the user
flow control interface.

The data consistency checkers use the timing information to
check the format of the incoming data for consistency. If the
data format is corrupt, the checker restores correct data format
and marks the frame as broken.

The most important role of the checker is the restoration of
data synchronization which is important for the event building
process. If the checker detects inconsistencies between data
and timing information, these inconsistencies are resolved
either by inserting dummy data or discarding data from
unexpected timeslices. This is done to assure uninterrupted
data flow even in the case of lost links or corrupted data

Fig. 6. 8 × 8 switching matrix.

transmission which can happen especially during detector
commissioning when detectors are included or excluded while
the system is running.

The switch matrix receives eight perfectly synchronized data
streams and may route them to any of the output streams. The
routing is limited to the barrel-shifter configurations. Fig. 6
shows the layout of the 8×8 switch matrix. The matrix consists
of the switch controller, the configuration RAM, and four 4×4
reconfigurable switching blocks which are arranged in two
layers.

The switch controller monitors and controls data flow on
all links. The controller is also responsible for changing the
configuration of the switching blocks. When all data in one
timeslice in a stream pass the switch, the controller blocks
data flow on this stream until all streams finish sending data
of their respective timeslices.

In parallel to controlling the data flow, the switch reads
timing information from the FIFO and determines the next

FROLOV et al.: DATA ACQUISITION SYSTEM FOR COMPASS++/AMBER EXPERIMENT 1895

Fig. 7. Layout of the data processing pipeline in the spillbuffer card.

destination. Once all streams complete to process data of their
timeslices, the switch changes topology of the switching block
by selecting the next topology in the configuration RAM.
After the switching blocks have applied the new topology,
the controller activates data flow on all incoming streams.

The configuration RAM is implemented in the block RAM
of FPGA [16]. It holds eight routing tables for all switching
blocks. The firmware initializes the memory at the booting
time for the full 8×8 operation, but we can change the routing
table for other configurations later over the IPbus protocol [17]
over Ethernet.

The switching blocks perform the actual data routing.
We interconnect the switching units as shown in Fig. 6.
We connect output streams of a switching unit to the inputs
of the next layer unit or the output streams of the switch. Two
output streams are connected to the unit or the switch streams
below the unit, and two streams are connected to the diagonal
units or switch streams. This interconnection guarantees that
we connect any input stream to any output stream in eight
distinct configurations.

To sort data by timeslices as shown in Fig. 3, we have to
skew data on the input to the switch. This is done with the fol-
lowing algorithm. At the start of the run, the switch deactivates
data flow on all input channels. The switch transmits data of
the first timeslice from the input link 1 to the output link 1.
When the transmission of the data of timeslice 1 is completed,
the switch changes configuration and activates the input link 2.
The switch transmits data of the first timeslice from the input
link 2 to the output link 1. The input link 1 transmits data
of the timeslice 2 to the output link 2. Switch continues to
activate the input links one by one and changes the topology
every timeslice transmission cycle until all links are activated.
The read-out servers receive data sorted by timeslices as the
result.

We configure, control, and monitor the switch as well as
other DAQ modules using IPbus protocol.

B. Spillbuffer Card

Fig. 7 shows the layout of the data processing pipeline of
the spillbuffer card. Each node contains up to two pipelines.

The pipeline starts with an Aurora link which receives
data, timing information, and switch configuration and sends
backpressure to the switch when the pipeline is busy. The
data checker checks data for consistency with the timing
information and switch configuration, recovers data format and

synchronization in the case of corrupted data, assigns data
to events, and writes data to one of the two slots assigned
to this pipeline in the external memory. Data of the same
timeslice is stored in one of the two memory slots. Once the
processing of the timeslice data is complete, the data checker
passes information such as slot ID, size of all data chunks
which belong to the same timeslice, and pointers to individual
timeslice data chunks from different multiplexers to the event
builder. The timeslice builder reads data from memory slots
allocated to different pipelines, combines these data, and sends
them over the PCIe interface to the read-out server.

V. SYSTEM PERFORMANCE

To measure the system performance, we built the prototype
of the system which consists of two DHMx cards and a Nereid
Kintex-7 PCIe card installed in a server with the Intel Xeon
CPU E5405 at 2.00 GHz. Fig. 8 shows the photograph of the
test setup and Fig. 9 shows the layout of the test setup.

We configured one of the DHMx cards as a data generator.
The data generator can generate events with fixed event size
or with a randomly distributed event size based on a real run
of the COMPASS experiment as shown in Fig. 10. In the latter
case, the total event size is divided by 8 to account for eight
links, and a fluctuation is randomly added or subtracted. The
fluctuation is the square root of the total event size divided by
eight.

The data generator and the switch receive triggers from the
TCS, the data generator generates events in the COMPASS
data format, and sends them to the switch over eight inde-
pendent 312.5-MB/s Aurora links. The second DHMx card
is configured as a switch. The switch receives data from the
generator, sorts data by timeslices, and sends sorted data to
the spillbuffer card over two 625-MB/s Aurora links. The
spillbuffer card receives data and timing information on two
input links and sends data from one link to the readout server.

We generate triggers with a spill cycle which emulates the
spill structure of the Super Proton Synchrotron at CERN. The
first phase of the cycle is the ON-spill state, which lasts for 5 s.
During this state, triggers are distributed to the generator and
the switch. The second phase is the OFF-spill state which lasts
for 15 s. During this state, no triggers are distributed.

Fig. 11 shows data rate measured at the input to the
spillbuffer during the 12-h-long test of the system under full
load. The system shows consistent data flow and stable data
rate of 290 MB/s. The regular drops of the data rate are

1896 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Fig. 8. Test setup.

Fig. 9. Layout of the test setup.

due to the spill cycle. The measured data rate is 10% below
the bandwidth limit of the input links. This reduction of the
maximum throughput is the result of the variation of the event
sizes. Following paragraphs describe this effect in more detail.

Fig. 12 shows the timeslice processing time distribution
recorded with the test system for the timeslice width of 1 ms,
realistic event size distribution, and the trigger rate 40 kHz dis-
tributed after the Poisson distribution. The distribution shows
that in most of the cases, the switch is capable to process data
of the timeslice for a single link within the timeslice period.
The mean value of the distribution corresponds to the time

Fig. 10. Event size distribution used during the tests.

Fig. 11. Output data rate of the switch for timeslice width of 1 ms, realistic
event size, and trigger rate 40 kHz distributed after the Poisson distribution.

Fig. 12. Timeslice processing time distribution for timeslice width of 1 ms,
realistic event size, and trigger rate 40 kHz distributed after the Poisson
distribution.

needed to transmit data to the switch

Tproc = S̄event · N̄triggers

MIN(Binput, Boutput)
= S̄event · R

MIN(Binput, Boutput)
· Ttimeslice

where S̄event is the average event size, N̄triggers is the average
number of triggers within the timeslice, R is the trigger
rate, Binput and Boutput are the bandwidths of the input and
output links, and Ttimeslice is width of the timeslice. With the

FROLOV et al.: DATA ACQUISITION SYSTEM FOR COMPASS++/AMBER EXPERIMENT 1897

Fig. 13. Relative processing time for different timeslice widths.

parameters of the test system, we obtain

Tproc = (40 kB/8 links) · 40 kHz

320 MB/s
· 10−3 s = 0.625 ms.

This measurement shows that the performance of the system is
limited by the bandwidth of the links. If the data transmission
time is greater than the timeslice width, the system will have to
“borrow” time from the next timeslice. In this case, one has to
allocate regular trigger-free time for the system to compensate
for the borrowed time. In COMPASS++/AMBER, we use
the DDR3 memory in the multiplexers to buffer data and
process them during the OFF-spill periods to compensate for
the borrowed time.

The timeslice processing time distribution also shows the
averaging effect of the timeslice-based readout. The switch
averages event sizes of all events in the timeslice which gives
us another metric for prediction of the necessary bandwidth.

Fig. 13 shows the measurement of the relative timeslice
processing time Trel:

Trel = Tproc

Ttimeslice

where Tproc is the timeslice processing time and Ttimeslice is the
timeslice width, for different timeslice widths. The measure-
ment shows that with increasing timeslice width, the relative
processing time asymptotically approaches the bandwidth limit
and its variation decreases. The effect of decreasing variation
with increasing timeslice width is caused by averaging over
more data.

VI. FUTURE SYSTEM EXTENSION

The current system consists of one switch and eight spill-
buffers and has a maximum throughput of 5 GB/s if we
increase the bandwidth of the input links to the switch to
625 MB/s. But with the bandwidth of a switch-spillbuffer link
of 625 MB/s, we are using only 40% of the bandwidth of the
PCIe interface of 1.6 GB/s. We can use this resource to scale
the system for higher throughput.

Fig. 14 shows the possible low-cost extension of the system
which will double the system’s throughput to 10 GB/s. We add
a second switch to the system which sends data to the existing
spillbuffers.

Fig. 14. Extension of the system by adding the second switch.

We can compare the cost of the current system with the
upgraded system. The 5-GB/s system needs nine DHMx cards
(eight as multiplexers and one as a switch) at 1200 ¤ and
eight spillbuffer cards at 1500 ¤. The 10-GB/s system needs
17 DHMx (16 as multiplexers and 1 as a switch) cards
and eight spillbuffer cards. Therefore, the cost of the system
per GB/s, C, decreases with increasing bandwidth as the
following calculation shows:

C5 GB/s = 9 · 1200 ¤+ 8 · 1500 ¤
5

= 4560 ¤/GB/s

C10 GB/s = 17 · 1200 ¤+ 8 · 1500 ¤
10

= 3240 ¤/GB/s.

To integrate this change, we must modify the algorithms
of the existing system. Because both switches must send
corresponding timeslice data to the same spillbuffer, the des-
tination selection must be deterministic and synchronous. The
spillbuffers will be extended with a second data pipeline.
Therefore, we have to change the timeslice builder algorithm
to merge data from two data sources.

The upgrade is technically feasible and requires only a small
investment compared to the system cost.

VII. SUMMARY

We designed the free-running data acquisition system for the
COMPASS++/AMBER experiment. The system uses a novel
fully FPGA-based timeslice builder. The timeslice builder
combines data from eight data streams by time and distributes
full timeslices for the following data reduction in the high-level
trigger.

We measured and characterized the performance of the test
system that consists of the data generator, and the reduced
timeslice builder with only two output streams instead of eight
in the full system. The test showed that the throughput of the
system is limited by the throughput of the input–output links
of the timeslice builder and the fluctuation of the data size
of individual timeslices. We also demonstrated that we can
reduce the fluctuation of the timeslice data sizes by extending
the timeslice period.

We presented a possible future extension of the system that
will double the throughput of the system for a tiny fraction of

1898 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

the system’s cost as an example of the flexibility of this DAQ
architecture.

We plan to further test the system during the upcoming dry
run with the real detector data at COMPASS++/AMBER.

REFERENCES

[1] B. Adams et al., “COMPASS++/AMBER: Proposal for measurements
at the M2 beam line of the CERN SPS phase-1: 2022–2024,” CERN,
Geneva, Switzerland, Tech. Rep. CERN-SPSC-2019-022, SPSC-P-360,
May 2019.

[2] R. Aaij et al., “Allen: A high level trigger on GPUs for LHCb. Allen: A
high level trigger on GPUs for LHCb,” Comput. Softw. Big Sci., vol. 4,
p. 12, Dec. 2019. [Online]. Available: http://cds.cern.ch/record/2704717

[3] A. Adare et al., “An upgrade proposal from the PHENIX collaboration,”
Brookhaven Nat. Lab, Upton, NY, USA, Tech. Rep., Jan. 2015. [Online].
Available: https://arxiv.org/abs/1501.06197

[4] P. Staszel, “CBM experiment at FAIR,” Acta Physica Polonica B, vol. 41,
no. 2, pp. 341–350, 2010.

[5] R. Acciarri et al., “Long-baseline neutrino facility (LBNF) and deep
underground neutrino experiment (DUNE) conceptual design report,
volume 4 The DUNE detectors at LBNF,” Jan. 2016, arXiv:1601.02984.
[Online]. Available: https://arxiv.org/abs/1601.02984

[6] W. P. Vazquez and A. Collaboration, “The ATLAS data acqui-
sition system in LHC run 2,” CERN, Geneva, Switzerland,
Tech. Rep. ATL-DAQ-PROC-2017-007, Feb. 2017. [Online]. Available:
https://cds.cern.ch/record/2244345

[7] G. Badaro, “Daqexpert the service to increase CMS data-taking effi-
ciency,” EPJ Web Conf., vol. 245, p. 01028, Nov. 2020. [Online].
Available: https://doi.org/10.1051/epjconf/202024501028

[8] S. Huber et al., “Intelligence elements and performance of the FPGA-
based DAQ of the COMPASS experiment,” PoS, vol. TWEPP-17, p. 127,
Mar. 2018. [Online]. Available: http://cds.cern.ch/record/2314733

[9] Y. Bai et al., “Overview and future developments of the FPGA-based
DAQ of COMPASS,” J. Instrum., vol. 11, no. 2, p. C02025,
Feb. 2016.

[10] H. Fischer et al., “Implementation of the dead-time free F1 TDC
in the COMPASS detector readout,” Nucl. Instrum. Methods Phys.
Res. A, Accel. Spectrom. Detect. Assoc. Equip., vol. 461, pp. 507–510,
2001.[Online]. Available: https://cds.cern.ch/record/472556

[11] M. Šuljič, “ALPIDE: The monolithic active pixel sensor for the ALICE
ITS upgrade,” J. Instrum., vol. 11, no. 11, p. C11025, Nov. 2016.

[12] F. Velotti et al., “Characterisation of SPS slow extraction spill
quality degradation,” in Proc. 10th Int. Part. Accel. Conf. (IPAC), Mel-
bourne, VIC, Australia, no. 10. Geneva, Switzerland: JACoW Publish-
ing, Jun. 2019, pp. 2403–2405, Paper WEPMP034. [Online]. Available:
http://jacow.org/ipac2019/papers/wepmp034.pdf, doi: 10.18429/JACoW-
IPAC2019-WEPMP034.

[13] NUMATO LAB. Nereid Kintex 7 PCI Express Development
Board. [Online]. Available: https://numato.com/docs/nereid-kintex-7-
pci-express-development-board/

[14] J. Lawley, “WP350: Understanding performance of PCI express
systems,” Xilinx, San Jose, CA, USA, White Paper 350,
2014.

[15] LogiCORE IP Aurora 8B/10B v6.2, User Guide 766, Xilinx, San Jose,
CA, USA, 2011.

[16] Virtex-6 FPGA Memory Resources, User Guide 363, Xilinx, San Jose,
CA, USA, 2014.

[17] R. Frazier, G. Iles, D. Newbold, and A. Rose, “Software and firmware
for controlling CMS trigger and readout hardware via gigabit Ethernet,”
Phys. Procedia, vol. 37, pp. 1892–1899, Jan. 2012.

http://dx.doi.org/10.18429/JACoW-IPAC2019-WEPMP034
http://dx.doi.org/10.18429/JACoW-IPAC2019-WEPMP034

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

