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Abstract—Kinetic analysis can be applied both to dynamic PET
and dynamic contrast enhanced (DCE) MRI data. We have inves-
tigated the potential of MRI-constrained PET kinetic modeling
using simulated [ ]2-FDG data for skeletal muscle. The volume
of distribution, , for the extra-vascular extra-cellular space
(EES) is the link between the two models: It can be estimated by
DCE-MRI, and then used to reduce the number of parameters to
estimate in the PETmodel. We used a 3 tissue-compartment model
with 5 rate constants (3TC5k), in order to distinguish between
EES and the intra-cellular space (ICS). Time-activity curves were
generated by simulation using the 3TC5k model for 3 different
values under basal and insulin stimulated conditions. Noise was
added and the data were fitted with the 2TC3k model and with
the 3TC5k model with and without constraint. One hundred
noise-realisations were generated at 4 different noise-levels. The
results showed reductions in bias and variance with constraint
in the 3TC5k model. We calculated the parameter , repre-
senting the combined effect of glucose transport across the cellular
membrane and phosphorylation, as an extra outcome measure.
For , the average coefficient of variation was reduced from
52% to 9.7%, while for in the standard 2TC3k model it was
3.4%. The accuracy of the parameters estimated with our new
modeling approach depends on the accuracy of the assumed
value. In conclusion, we have shown that, by utilising information
that could be obtained from DCE-MRI in the kinetic analysis
of [ ]2-FDG-PET data, it is in principle possible to obtain
better parameter estimates with a more complex model, which
may provide additional information as compared to the standard
model.

Index Terms—FDG, kinetic modeling, PET/MRI.

Manuscript received July 15, 2015; revised October 02, 2015; accepted De-
cember 04, 2015. Date of publication February 29, 2016; date of current ver-
sion October 11, 2016. This work was supported by the EPSRC under Grant
EP/K005278/1. UCL/UCLH research is supported by the NIHRBiomedical Re-
search Centers funding scheme.
K. Erlandsson is with the Institute of Nuclear Medicine, University College

London, London WC1E 6BT, U.K. (e-mail: k.erlandsson@ucl.ac.uk).
M. Liljeroth was with the Institute of Nuclear Medicine, University Col-

lege London, London WC1E 6BT, U.K. She is now with University Hospital
Southampton, Southampton SO16 6YD, U.K.
D. Atkinson is with the Centre for Medical Imaging, University College

London, London WC1E 6BT, U.K.
S. Arridge is with the Department of Computer Science, University College

London, London WC1E 6BT, U.K.
S. Ourselin is with the Centre for Medical Image Computing, University Col-

lege London, London WC1E 6BT, U.K.
B. F. Hutton is with the Institute of Nuclear Medicine, University College

London, London WC1E 6BT, U.K., and also with the Centre for Medical Radi-
ation Physics, University of Wollongong, Wollongong NSW 2522, Australia.
Digital Object Identifier 10.1109/TNS.2015.2507444

I. INTRODUCTION

K INETIC analysis of dynamic PET can be used for estima-
tion of various physiological or biochemical parameters

(see [1]–[4] for general summaries and [5][6] for FDG). The
models used in these analyses are simplified versions of the true
physiological and biochemical processes involved. Simplifica-
tion is needed for reasons of numerical stability of the estimated
parameters. Also dynamic MRI data can be used for estimation
of physiological parameters. We wish to extend and improve the
stability of conventional PET modeling through the use of spe-
cific kinetic MRI parameters. The reason behind this investiga-
tion is the recent introduction of combined PET/MRI scanners,
which allow for simultaneous acquisition of PET and MRI data
[7].
In dynamic contrast enhanced (DCE) MRI studies, Gd-based

contrast agents can diffuse across the capillary walls but not
across the cellular membrane. The data can be analysed using
a model with one tissue-compartment (TC) and two rate con-
stants, as shown in Fig. 1 [8]. We will refer to this model as
a 1TC2k-model. The rate constants for forward and reverse
transfer between blood and tissue are conventionally called

and , respectively, and their ratio is the volume of
distribution of the extra-vascular extra-cellular space (EES)
( ) [8].
In PET studies, the most commonly used tracer is -la-

belled 2-fluoro-2-deoxy-D-glucose ([ ]2-FDG). This is a glu-
cose analogue, which can be used for measuring the metabolic
rate of glucose ( ). Most clinical [ ]2-FDG studies con-
sist of a single static PET scan, performed some time after the
injection of the tracer. However, more accurate uptake values
can be obtained by performing a dynamic scan and kinetic anal-
ysis.
After injection, [ ]2-FDG is carried by the blood stream to

different organs and tissues in the body. The tracer is extracted
from the vascular to the extra-vascular space in the same way
as glucose. In skeletal muscle this occurs by diffusion [9]. It is
then transported from the EES across the cellular membrane
to the intra-cellular space (ICS). This transport is facilitated
by glucose transporters, some of which are insulin mediated
[9]. Inside the ICS, [ ]2-FDG can be phosphorylated to
[ ]2-FDG-6- by the enzyme hexokinase. Phosphory-
lation is also the first step in the metabolism of glucose, but
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Fig. 1. DCE-MRI model with vascular space (VS) and extra-vascular extra-
cellular space (EES).

Fig. 2. Standard [ ]2-FDG model with two tissue-compartments, repre-
senting un-metabolised (UM) and metabolised (M) tracer, respectively.

Fig. 3. [ ]2-FDG model for skeletal muscle, proposed by Bertoldo et
al. [10], including one EES compartment and two ICS compartments for
un-metabolised (IC-UM) and metabolised tracer (IC-M), respectively. NB:
The symbols for the rate constants are different from those in [10].

[ ]2-FDG does not go any further along this metabolic
pathway. In some tissues (e.g. brain), [ ]2-FDG-6-
can be dephosphorylated back to [ ]2-FDG by the enzyme
glucose-6-phosphatase. This enzyme is not present in skeletal
muscle and therefore no dephosphorylation occurs [9]. Free
[ ]2-FDG can be transported back across the cellular mem-
brane to the EES and from there back to the blood stream.
Kinetic analysis of dynamic [ ]2-FDG PET data was first

applied to brain studies, and two different models were devel-
oped at an early stage: An irreversible model with 3 rate con-
stants was proposed by Sokoloff et al. in 1977 [3], and a re-
versible model with 4 rate constants by Phelps et al. in 1979 [4]
(see Fig. 2). Both models have two , and we will refer to
them as the 2TC3k and 2TC4k model, respectively. The param-
eter was introduced to represent dephosphorylation, which
in the 2TC3k model, is assumed to be negligible. In the 2TC4k
model, dephosphorylation is assumed to occur, although at a rate
much lower than that of phosphorylation ( ). Neither of
these models distinguish between the EES and the ICS, which
corresponds to the implicit assumption that the rate of trans-
port across the cellular membrane is much faster than the rate
of phosphorylation, as this would lead to a steady state in the
[ ]2-FDG concentrations in EES and ICS from an early time
point in the experiment.
In 2001, Bertoldo et al. proposed a model with 3 TCs and 5

rate-constants (3TC5k) for studying uptake of [ ]2-FDG in
skeletal muscle (Fig. 3) [10]. They argued that the transport of
[ ]2-FDG across the cellular membrane in skeletal muscle
was not fast enough for the assumption mentioned above. This
model is more realistic, containing one compartment for the
EES and two for the ICS, for un-metabolised and metabolised
tracer, respectively. However, with 5 parameters to estimate,
there can be problems of parameter identifiability and numer-
ical instability with noisy data.

In 2006, Bertoldo et al. presented a study, which combined
the use of [ ]2-FDG and the nonphosphorylatable glucose
analog -labeled 3-O-methyl-D-glucose [ ]3-OMG [11].
The data from the former tracer was analysed using the 3TC5k
model mentioned above, while a 2TC4k model was used for
the latter tracer. The purpose of this study was to investigate
the effect of insulin on the distribution of control among glu-
cose delivery, transport, and phosphorylation in human skeletal
muscle. The rate of delivery and transport were obtained from
the [ ]3-OMG data, while the rate of phosphorylation was
obtained from the [ ]2-FDG data. The authors observed that,
under insulin-stimulated conditions, the efficiency of glucose
transport was increased by a factor of compared to fasting
conditions, and thereby the uptake rate was constrained by the
rate of delivery.
Another dual-tracer approach, with a two-injection scanning

protocol, was proposed by Huang et al. [9] using [ ]2-FDG
in combination with the nonphosphorylatable glucose analog

-labeled 6-fluoro-6-deoxy-D-glucose ([ ]6-FDG). They
used a 3TC5k model in order to resolves the delivery, transport,
and phosphorylation steps of the glucose metabolism in skeletal
muscle. The model was based onMichaelis–Menten kinetics, so
as to utilize information obtained from the competition between
glucose and its radiolabeled analogs.
Zhang et al. [12] combined [ ]- PET with DCE-MRI

in order to determine maps of the permeability-surface area
product (PS) for the MRI contrast agent in tumours.
Here, we propose the use of information derived from

DCE-MRI to constrain the kinetic model for [ ]2-FDG PET
in order to obtain more robust parameter estimation with a more
realistic model. These data sets can be acquired simultaneously
using an integrated PET/MRI scanner [7]. The key for linking
the two models is the EES compartment, and therefore we need
to use a 3TC-model for the PET data. This could also allow for
estimation of more specific biological parameters, in addition
to the standard parameters, which could be clinically relevant.
We have evaluated the potential usefulness of this approach
with simulated data for skeletal muscle.

II. THEORY

A. Outcome Measures
The main outcome measure in standard [ ]2-FDG PET ki-

netic analysis is the macro-parameter , which represents the
combined effect of delivery, transport and metabolism. This pa-
rameter can be determined both with the standard 2TC3k model
(Fig. 2):

(1a)

and with the 3TC5k model (Fig. 3):

(1b)

This parameter can be obtained directly from the impulse re-
sponse function describing the system [2]. It corresponds to the
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Fig. 4. Uncoupled [ ]2-FDG model including the parameter .

Fig. 5. Examples of simulated TACs with 4 different noise-levels for the basal
(solid lines, circles) and insulin (dotted lines, stars) conditions.

rate of uptake of tracer from blood to tissue at steady state and
is the basis for calculation of .
We also define the parameter , representing the combined

effect of transport across the cellular membrane and phospho-
rylation:

(2)

The meaning of this parameter can be illustrated by the model
in Fig. 4, in which the 2 ICS compartments are uncoupled.
is similar to in the standard model, but it is more specific, due
to the explicit differentiation between EES and ICS. The models
in Figs. 3 and 4 are in practice identical, the difference lies in
the interpretation of the parameters. The rate constants of one
model can be derived from those of the other one.

B. Volume of Distribution

The concept of “volume of distribution” has a slightly dif-
ferent meaning when used in the context of PET or MRI data.
InMRI the term refers to the volume the physical space in which
free contrast agent molecules can move around. In PET, the con-
cept has been extended to include both free and bound tracer.

The total volume of distribution for a reversible tracer, described
by a 2TC4k model, is defined as follows [13]:

(3)

The two terms correspond to free and bound tracer, respectively.
In PET studies, is commonly used as an outcome measure
to quantify binding of reversible tracers. It can be interpreted
as the volume of plasma required to account for the amount of
tracer present in a unit volume of tissue. In this paper, we will
use the volume of distribution , referring to the volume of
the EES available for diffusion of either free tracer or contrast
agent. This parameter is not dependent on extraction, transport
or binding of the tracer or contrast agent.
Our basic assumption is that

(4)

This implies that the transport between the vascular and extra-
vascular spaces is symmetric, but the parameter is influenced
by the tissue-fraction effect, as the concentration of tracer in the
EES cannot be measured directly. The same assumption was
made by Huang et al. [9].

C. New Modeling Approach
We propose the use of the 3TC5k PET model (Fig. 3),

constrained by the DCE-MRI estimated value. We have
renamed the rate constants with respect to the nomenclature
used by Bertoldo et al. [5]. The reason for this is that we want
the rate constant with index 3 to represent the phosphorylation
step, as in the standard model. Also, compared to this model,
the new rate constants are the ones representing transport across
the cellular membrane, which we therefore name and .
Some of the rate constants in Fig. 3 have been primed in order
to distinguish them from rate constants in the standard model
with the same index.
In order to use the model, the DCE-MRI data are analysed

first, and is estimated and incorporated into the PET model
as , thereby the number of parameters to estimate
is reduced by 1.
For comparison we also used the 3TC5k model without con-

straint. In this case, was estimated as one of the model param-
eter and was obtained as above. This way we could restrict
the range of to [0, 1].

III. MATERIALS AND METHODS

A. Evaluation
To test our new modeling approach, we generated time-ac-

tivity curves using the 3TC5k model. Data were simulated for
3 different values (0.08, 0.16 and 0.24 mL/mL). The rate
constants corresponding to were the ones deter-
mined experimentally by Bertoldo et al. [10], although slightly
rounded-off for simplicity. For the other values, a scaling
procedure was applied, so that and were inversely pro-
portional to , and and inversely proportional to
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TABLE I
PARAMETER VALUES FOR SIMULATIONS USING THE 3TC5K MODEL UNDER

BASAL CONDITIONS

TABLE II
PARAMETER VALUES FOR SIMULATIONS USING THE 3TC5K MODEL UNDER

INSULIN STIMULATED CONDITIONS

, the volume of distribution of the ICS ( is the
tissue blood volume). This procedure was based on the tissue
fraction effect, mentioned above, resulting in the same for
all values. Simulations were done both for basal and in-
sulin stimulated conditions. The parameters used are presented
in Tables I–II.
Noise-free time-activity curves (TACs) were generated with

the following time-frames: and s, , ,
and min, with a total scanning time of 90 min. Nor-

mally distributed noise was added to the , with standard
deviation ( ) values based on the activity concentration ( ) and
the frame length ( ) as follows:

(5)

where is a proportionality constant, which was changed in
order to obtain 4 different noise-levels. One hundred noise-real-
isations were generated at each noise-level. The data were fitted
with the standard 2TC3k model, and with the 3TC5k model,
with and without constraint. The mean value and standard devi-
ation of the estimated parameters were calculated across noise-
realisations. The data generation and the curve-fitting were done
with the software package COMCAT [14] in Matlab R1013a
(The Mathworks, Inc., Natick, MA).

TABLE III
ESTIMATED VALUES ( ) FOR THE 2TC3K-MODEL WITH ,

BASAL CONDITIONS

TABLE IV
ESTIMATED VALUES ( ) FOR THE UNCONSTRAINED 3TC5K MODEL

WITH , BASAL CONDITIONS

In order to determine the accuracy required in the estima-
tion, we performed a series of experiments, deliberately using
incorrect values. A value of 0.16 was used to generate
data, which were then analysed assuming values with er-
rors of , and . One hundred noise-realisations
were generated with the 2nd of the 4 noise-levels mentioned
above, and mean and SD values were calculated for the esti-
mated parameters across noise-realisations.

IV. RESULTS
The results from the simulations with , obtained

with the 2TC3k and the unconstrained and constrained 3TC5k
model, are presented in Tables III–V for basal conditions, and
in Tables VI–VIII for insulin stimulated conditions.
For , the 2TC3k model gives biased results, both under

basal and insulin stimulated conditions. The 3TC5kmodel gives
accurate -estimates, both with and without constraint, under
basal conditions, while under insulin stimulated conditions, the
constrained model gives better accuracy and precision, espe-
cially at higher noise-levels. The values are better estimated
with the constrained than with the unconstrained 3TC5k model,
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TABLE V
ESTIMATED VALUES ( ) FOR THE CONSTRAINED 3TC5K MODEL

WITH , BASAL CONDITIONS

TABLE VI
ESTIMATED VALUES ( ) FOR THE 2TC3K MODEL WITH ,

INSULIN STIMULATED CONDITIONS

TABLE VII
ESTIMATED VALUES ( ) FOR THE UNCONSTRAINED 3TC5K MODEL

WITH , INSULIN STIMULATED CONDITIONS

TABLE VIII
ESTIMATED VALUES ( ) FOR THE CONSTRAINED 3TC5K MODEL

WITH , INSULIN STIMULATED CONDITIONS

especially under insulin stimulated conditions, where the uncon-
strained model results in large bias and variance.
The and parameters are slightly better estimated with

the constrained than with the unconstrained 3TC5k model.
However, the constrained model gives a clearly better esti-
mation of the ratio , especially under insulin stimulated
conditions. This ratio is more important than the individual rate
constants, as it determines the steady state concentration-ratio
of free tracer in the EES and ICS.
In terms of , the constrained 3TC5k model gives slightly

better accuracy than the unconstrained model. The values
obtained with the 2TC3k model are biased, especially under
basal conditions. The 3TC5k model gives more accurate es-
timates, with better accuracy and precision in the constrained
than in the unconstrained case.
Fig. 6 shows the estimated and values for the 3

different values, normalized to the true values. It can
be seen that, with the standard 2TC3k model, the estimated

values are close to the true values for large values
under basal conditions. Otherwise the estimated values are
lower. With the unconstrained 3TC5k model, the estimated
values show large bias and variance. The constrained 3TC5k
model, on the other hand, gives much better estimates,
under both basal and insulin stimulated conditions, although
bias and variance increase at higher noise levels. The average
coefficient of variation of was reduced from 52% to 9.7%
by using the constraint, while for it was 3.4%.
Results from the error estimation experiment are presented in

Fig. 7 for and . It can be seen that errors in leads to
errors in both parameters, although especially in . Interest-
ingly, the effect on is a combination of the two.

V. DISCUSSION & CONCLUSIONS
In this paper we have proposed a novel approach for kinetic

modeling of dynamic PET by incorporation of data derived from
DCE-MRI. This allows for an increased complexity in the PET
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Fig. 6. Estimated values for or , normalised to the true values
( ), for simulations with different -values; including -values
from the 2TC3k-model, and -values from the 3TC5k model unconstrained
and constrained (3TC5k- ). Results are shown for 4 different noise-levels, for
basal (top graph) and insulin stimulated conditions (bottom graph).

Fig. 7. Estimated relative error in and as a function of the relative
error in .

model, possibly providing more specific biological information.
The key to this approach is the parameter .
The main outcomemeasure in [ ]2-FDG kinetic analysis is

usually , which can be calculated based on the macro-pa-
rameter , which reflects the combined effects of delivery,
transport and phosphorylation of glucose. A change in be-
tween 2 scans does not tell you in which of the 3 steps the change
occurred. In some cases, however, it may be of interest to be able
to distinguish between the different steps in the glucose metab-
olism [9]–[11]. E.g. the rate of glucose transport across the cel-
lular membrane in skeletal muscle can change under the influ-
ence of insulin [11]. Although it may still be difficult to obtain
good estimates of the parameters directly related to the trans-
port step ( and ), we have shown that our new modeling
approach allows for accurate estimation of the parameter ,
which reflects the combined effect of transport and phosphory-
lation. This parameter is similar to in the standard 2TC3k
model, although more specific, since the 3TC5k model includes
a distinction between EES and ICS. We have shown that esti-
mated values can in some cases be close to , but are not
so in general.
The simulations are based on a number of assumptions. Fu-

ture work will include validation of these assumptions using
real data. The advantages of simulated data are that it allows
for comparison of the results with the true values and it also en-
ables performing multiple experiments in order to determine the
uncertainty in the estimated values.
Using simulated data, we have showed that, if can be ac-

curately derived from DCE-MRI, this parameter can be used
as a constraint in a 3TC5k model for [ ]2-FDG in skeletal
muscle, resulting in greater accuracy and precision of the esti-
mated parameters as compared to the unconstrained modeling
approach. This method could also be used with other tracers,
e.g. [ ]FLT, where it could be more beneficial.
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