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ERelLLA: A Low-Power Reliable Coarse-Grained
Reconfigurable Architecture Processor
and Its Irradiation Tests

Jun Yao, Mitsutoshi Saito, Shogo Okada, Kazutoshi Kobayashi, and Yasuhiko Nakashima

Abstract—In this work, facing pressure from both the increasing
vulnerability to single event effects (SEEs) and design constraints
of the power consumption, we have proposed a Coarse-Grained
Reconfigurable Architecture (CGRA) processor. Our goal is to
translate a user programmable redundancy to a guide for bal-
ancing energy consumption on the one hand and the reliability
requirements on the other. We designed software (SW) and
hardware (HW) approaches, coordinating them closely to achieve
this purpose. The framework provides several user-assignable
patterns of redundancy and the hardware modules to interpret
well these patterns. A first version prototype processor, with the
name EReL A (Explicit Redundancy Linear Array) has been im-
plemented and manufactured with a 0.18 ;zm CMOS technology.
Stress tests based on alpha particle irradiation were conducted to
verify the tradeoff between the robustness and the power efficiency
of the proposed schemes.

Index Terms—Data flow computing, fault tolerance, reconfig-
urable architectures, redundancy.

I. INTRODUCTION

HE continuous shrinking of transistor dimensions has pro-

vided the major advances in the functionality of micropro-
cessors. However, the miniaturization of the size, capacitance
and working supply voltage of transistors also brings up new
problems such as process variations and the increasing vulner-
ability to cosmic rays, noises and wearouts. Hardwired redun-
dancies, such as rad-hard circuits [1], [2], duplicated executions
in IBM z990 [3], [4], and parity in Fujitsu SPARC64 [5], have
been well explored to mitigate the single event effects (SEEs) on
general purpose processing. These approaches provide a trans-
parent SEE mitigation, which can be used seamlessly to cover
all kinds of applications.
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However, the duplicated execution and frequent comparisons
to detect an error in the above techniques add visible pressures
to the already tightly constrained power consumption. With the
exponential growth in the number of transistors in use, processor
design is now facing a utilization wall, i.e., due to thermal dissi-
pation issues, not all transistors can be switched simultaneously.
Adding a duplicated execution and a comparison becomes in-
creasingly expensive with modern electronic devices, in which
the constraint of this wall already dominates.

The redundant execution for reliability is sometimes consid-
ered to be over-designed, mainly because it lacks flexibility
for individual applications. The redundancy level of most hard-
wired redundancy cannot be changed after manufacturing. For
this reason, all data are unconditionally duplicated and checked,
even when entering unimportant data zones. In this paper, we
address this lack of flexibility found in most redundancy-based
fault-tolerance methods with our processor architecture, named
Explicit REdundancy Linear Array (EReLA). EReL A balances
power consumption and reliability requirements by effectively
exploiting an assignable execution redundancy. More specifi-
cally, this EReLA work offers two primary contributions:

1) A Coarse-Grained Reconfigurable Architecture (CGRA)
processor is designed to be very compatible with an as-
signable redundancy level, by providing a hardware/soft-
ware (HW/SW) cooperative framework. Users can easily
indicate the target redundancy at the programming or com-
piling stages. The HW effectively reflects this explicitly as-
signed reliability requirement and performs the given fault
coverage to address SEEs. In our work, the inflexible hard-
wired redundancy has been largely replaced by this pro-
grammable redundancy.

2) We provide easy-programmable code patterns to help users
explicitly assign the importance of data (hereafter, data im-
portance). In addition, our HW/SW cooperative platform is
also easily extendable to hardware tuning modules, which
analyze the data importance. In this paper, we give several
empirical patterns of the data importance of some example
program codes. Instructed by the data importance, the pro-
cessor can optimally reduce the redundancy level for better
power efficiency, while not sacrificing a lot of data cov-
erage.

A prototype processor has been implemented to verify these
design concepts, with a 0.18 pm CMOS technology. We have
conducted stress irradiation verification of the prototype chip.
Our results show that by applying simple checks on the control
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Fig. 1. Tradeoffs between the data coverage by fault-tolerance methods and quality of results. (a) No fault-tolerance. (b) Covers important data. (c) Covers all

data.

path, we can avoid unexpected data loss caused by early pro-
gram abort. These checks incur only 1% of additional power
cost. Also, based on the analysis of the program data-flow, we
avoid the over-designed excessively frequent data checks, and
we place checks only at the final step before generated data
are about to interfere with other program blocks. In this way,
without sacrificing the robustness, we can save more than 8%
in working power in our prototype chip by not having frequent
check operations that are commonly performed in most conven-
tional fault-tolerable systems.

II. THE NECESSITY OF DATA IMPORTANCE

Many fault-tolerance architecture, such as [6]-[8] have been
proposed to guarantee a solid coverage for data. However, the
increased chip area and energy consumption due to the full du-
plication are not preferred in most circumstances: they interfere
with power-efficiency, and power efficiency is the most impor-
tant requirement in some fields. The excessively high energy
consumption comes from the multiple instruction execution in
the redundancy processor, treating each individual instruction
equally important. However, much recent research also indi-
cates that instructions in a program have different weights in the
final quality of program outputs. The most representative exam-
ples are the image processing applications, where several pixel
data corruptions may lead only to an undetectable quality loss.

As an example, Fig. 1 shows the simulated results of heavy
fault injections on three redundancy-controlled systems that
work on an image processing application. For the purpose of
maximizing the fault effect, the SEE rate in these experiments is
largely accelerated: over 10* bit flips per second in the system.
By the redundancy method, these three experiments explore,
respectively, 0% data coverage, important data coverage, which
is around 2% of the total executions, and full data coverage.
The quality of each resulting image and the energy cost are
depicted in Fig. 1 from left to right.

The image quality is given by the PSNR (peak signal-to-
noise ratio) metric, with respect to the non-error injection result.
Human eyes can hardly detect the difference between images
with a PSNR larger than 40 dB, and can tolerate the difference
between images with a PSNR above 25 dB. As can be expected,
the full data coverage has no result different from the correct
one, which is achieved at a cost of 210% energy consumption.

Conversely, the image quality of the low-cost 0% redundancy
(Fig. 1(a)) is visibly low, which shows a 15 dB PSNR to the
correct result. Unlike the above two experiments, the method in
Fig. 1(b) covers 2% of the total data, the 2% being designated as
the important data processed in this image processing applica-
tion. The noise in the Fig. 1(b) resulting image is already down
to a tolerable level, indicated both by its visual quality and its
PSNR value. Compared to the full data coverage by redundant
execution, the additional energy for this important data coverage
is small. Similar findings are also given in [9]. These results
show a tradeoff between cost and efficiency in fault tolerance.
Consequently, the aim of this work is to carry out a reliable and
highly area- and energy-effective platform, which can facilitate
the removal of over-designed redundancy according to the data
importance.

ITII. OUR PROPOSAL: SW/HW APPROACHES TO ACHIEVE AN
INSTRUCTIVE REDUNDANCY

A. ERelLA: A CGRA Based Baseline Architecture

Basically, to designate well the data importance, a common
way is to study the data relationships, i.e. the data flow, of
this program. A general-purpose processor, normally, is not
specially designed to have sufficient resources for holding a
large data flow. We therefore start our work from a special hard-
ware—Coarse-Grained Reconfigurable Architecture (CGRA)
[10], [11], which is compatible with, specifically, data-flow
based processing. Apart from the baseline architecture, our
main proposal in this work is to use explicit redundancy on
CGRA to tolerate faults. The CGRA in this research, therefore,
is called Explicit REdundancy Linear Array (EReLA).

The baseline architecture of our CGRA processor is given in
Fig. 2. The CGRA mainly focuses on accelerating the hottest
program blocks, which can usually be abstracted into a loop
form or a cascaded loop form. Since the innermost loop takes
the most execution time, its data flow graph (DFG) will be the
target workload to be handled and accelerated by the CGRA
hardware. As shown in Fig. 2, our proposed CGRA processor
contains a conventional pipeline, which is composed of instruc-
tion fetch, decode, register read, execution, memory access, and
commit stages. It is used for non-loop executions. We also lin-
early add extra execution and memory access stages along the
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Fig. 2. Baseline architecture of EReLA, a Coarse-Grained Reconfigurable Ar-
chitecture (CGRA) processor.

vertical direction, whose FUs form a large linear FU array to
map loop DFGs. This CGRA processes instructions based on the
FR-V instruction set architecture (ISA) [12], which is a VLIW
(Very Long Instruction Word) ISA. Each FR-V instruction can
take three calculation operations and one load/store operation at
maximum. This VLIW ISA also facilitates our fault tolerance.
The details are to be introduced in other sections.

The example FOR loop kernel in Fig. 2, which loads two data
streams and stores their sum into a third stream, can be mapped
into the abstracted FU array by taking five array rows, known
as array stages. This architecture can largely fold the execution
of different loop iterations into a same cycle for a very high
performance. Using the mapping in Fig. 2 as an example, in
the first cycle, operations of i — — and a + 1 of the first loop
iteration, where i = N, can be executed in the first array stage.
In the second cycle, the execution of i> 07 and b + i of the
i = N iteration can start in the second array stage. Meanwhile,
in this second cycle, since the first array stage has completed

the i — — and a + i operations in the i = N iteration in the
first cycle, it becomes available and now processes the execution
of i — — and a + i of the second iteration (i = N — 1). In this

way, the throughput of this special hardware is per cycle loop-
iteration completion after the FU array is filled, and thus results
in a very high performance. Note that data dependence between
loop iterations is restricted for this acceleration. The execution
detail of a similar CGRA was given in our previous paper [13].

The FU array is adopted in this work because of its high-speed
acceleration of loop-based executions by mapping the DFG. Re-
dundant executions can be added into the loop kernel DFG by
duplicating the instructions. When the extended DFG can still be
held inside the proposed FU array, the top performance, which
only relates to the number of loop iterations, can be maintained.

B. Highly-flexible controllable dependability

This section describes our key contribution, called pro-
grammable redundancy here, which is offered by SW ap-
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i=N; i1=N;i2=N;
Loop begin: i--; Loop begin: i1 --; (1) i2 -

if (i==0) break; if (I1==0) break; (2) CMP i1, i2;
$1 = @(a+) ; $2 = @(b+i); $1 = @(a+i) ; $2 = @(b+i);
$3 =81+ $2; $3 =91+ $2;
@(c, i) = $3; @(c, i) = $3;
loop end; loop end;

(@ (b)

i1=N;i2=N;
Loop begin: i1 —; (1) i2 -; srej ves g ans

$11 = @(a+i1);$12= @(a+i2);

if (i1==0 k; (2) CMP i1, i2;
Lee i Ohu s T $21: $22 : CMP $11, $12;

$11=@(@+1); (3) $12 = @(a+i2);
$21= @(b+i1),  (4) $22 = @(b+i2); wieei CMP$21, $22;
$31=$11+$21; (5)$32=$12+$22; =i
(6) CMP $31, $32;
) @(c, i1) = $31; @(c, i2) = $32;
loop end;
© ()

Fig. 3. Different redundancy levels, explicitly assigned at the programming
phase. (a) Level 0: no redundancy. (b) Level 1: control redundancy. (c) Level 2:
DMR + minimal CMPs. (d) Level 3: Traditional DMR, duplicates and checks
all instructions.

proaches. The concept is demonstrated in Fig. 3. More
specifically, since we translate the data relationships in the
program into the DFG, which is mapped into the FU array, we
have the following findings, especially for a loop-based DFG.
1) The loop kernel can be divided and abstracted into two
parts—the control and data processing. A control data cor-
ruption will lead to an uncontrollable number of loop itera-
tions, or an infinite loop execution. Conversely, the corrup-
tion of data processing is isolated in individual loop-itera-
tions when there is no data dependence across iterations.

2) A DFG mainly passes data to other DFGs via memory data.
In the example of Fig. 3, the array c gathers the processed
results in this DFG and provides input data to other parts
of the program. Each DFG will converge into a limited
number of output data.

Accordingly, if a loop control and stored data are verified, we
can suppose that all its iterations are correctly executed. More-
over, the control data have more importance than the other parts
of the DFG. We expect that these rules also apply to the pro-
gram execution because, in general programs, about 90% of the
execution time will be consumed by only 10% of the program
codes, usually in a loop fashion.

Here, we apply the above findings for the loop DFGs to gen-
erate effective redundancy for programs. A compiler module
is designed at the final stage of the binary generation to add
this effective redundancy. We give two instructive redundancies
that can be adaptively used for the SEE mitigation, as shown in
Fig. 3. Starting from the C code, the level0 mode gives the non-
redundant execution of this program. The levell mode, which is
denoted as the control redundancy, duplicates the control path
of the loop kernel by adding instructions (1) and (2), while the
data processing is not covered. Levell is the partial redundancy
to balance the energy consumption and reliability. The execu-
tion of levell is expected to finish all the loop iterations while
the store-data corruption in the processing leads to silent data
corruption (SDC).
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Secondly, the level2 mode represents a full duplication of all
instructions in the loop kernel, where duplicated instructions
from (1) through (6) are added to the original DFG. However,
with the full understanding of the loop kernel, we know that
the processing in one DFG converges to a limited number of
outputs, which are usually in a store-data stream fashion. With
this information, we only explicitly add the data check at the
final store operation, testing the correctness of its address and
its store-data. Though instruction (7) is written as a duplicated
store, by hardware supports and extensions it internally per-
forms a data check and an address check to detect possible in-
fluence from SEEs.

The level3 mode, with a dual execution and a data check for
each instruction, is also given in Fig. 3. It is a traditional DMR
mode and is not necessary in the SEE mitigation when we al-
ready have a clear understanding of the DFG. We only use it as
a comparison mode in our explicitly programmable scheme.

These different redundancies are generated with compiler
aids and can be exclusively applied according to the data
importance and dynamic error rate sampling. In this way, the
task of determining the redundancy has been extracted from
HW to a flexible SW layer. This avoids the inflexibility arising
from hardwired full duplication. Many possible combinations
can be explored even after the processor is manufactured.

C. Compiler Aids to Generate Target VLIW Binaries with
Different Redundancies

In this work, we also designed our own tool-chain, which is
mainly a compiler module working in the final compiling phase
to generate the redundant codes in Fig. 3. Our compiler module
uses fully the parallel feature of the VLIW to achieve the redun-
dancy augmentation.

Fig. 4 gives a typical VLIW block with three VLIW instruc-
tions. The selected VLIW instruction can carry one LD/ST
(load/store) and three ALU operations at maximum, following a
specification of a subset of the FR-V ISA [12]. The three VLIW
instructions in Fig. 4(a) have read-after-write data dependence
between them, which are given as the arrows in Fig. 4(a).

First, the compiler module starts from the instruction dupli-
cation, which is referred as VLIW instruction decomposition
here. The VLIW instruction is decomposed into individual op-
erations, which are originally in the VLIW slots. The LD/ST
operation will then be duplicated along the vertical direction,
following the duplication of the B operation in the example in
Fig. 4(b). This is to satisfy the specification of VLIW, which
exhibits only one LD/ST slot due to the hardware structure, i.e.,
only a one-port memory is assumed. The other operations will
be duplicated along the horizontal slots. As shown in Fig. 4(b),
another rule for this duplication is that instructions without data
dependence, especially the LD/ST and ALUs, can be merged to
save VLIW instructions.

This duplication will have the third ALU slot available for
an easy augmentation of the CHECK instruction, as A == A’.
According to our definition of level2, the data inside loop exe-
cution will be checked at the output of this DFG, so that only the
store address and data will be checked before store operations.
The control data path in levell and level2, together with other
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Fig. 4. Compiler aid to generate VLIW binary with explicit redundancy. (a)
Original VLW block. VLIW: 1LD/ST + 3ALUs. (b) Duplication. Rules: I.
LD/ST: vertically; II. ALU: horizontally; III. move LD duplication forward
when possible (example B). (c) Selective Dup. & data check.

important data, will be additionally checked at the middle of the
DFG. Fig. 4(c) shows this scenario. First of all, the data impor-
tance is indicated either by the automatic recognition of the con-
trol data, or by explicit user assignment—#pragma precise
“C”—in Fig. 4(c). If levell is assumed, only the related opera-
tions, as A and C will be duplicated. And data check instructions
can be added by the compiler aid in the third ALU slots.

In this work, the control data refers to the loop index calcu-
lation, which will internally be regarded as an important datum
and will thus always be checked. The loop-exit instruction fol-
lows a certain pattern like the instruction bz i, loop_exit;,
which breaks the loop execution when i goes to 0. By analyzing
the parent instructions to the branch instruction recursively, our
compiler module can easily detect the dependent data flow re-
lated to i and then cover this flow. Other schemes to recognize
data importance needs to understand the program itself. In this
work, we provide a style similar to [9], which allows the user to
assign the importance via #pragma precise “C”-style indica-
tions.

After the compiling phase, the binary is generated with the ex-
plicit redundancy indication, as shown in Fig. 4(b) and (c). The
duplication in Fig. 4(b) will increase DFG to about 2 times in
size. More specifically, the size will be dominated by the number
LD/ST operations, because LD/ST can only be duplicated ver-
tically. Currently, thanks to the slot utilization rate, which is
usually around 30% to 50%, in the conventional VLIW pro-
grams due to the data dependence limitation, it is still easy to
find empty slots for duplication. The DFG size will be 130%
to 200% for most applications. For LD/ST intensive program,
the size will reach 250%, in level2. Levell, however, does not
have this problem. In levell, the redundancy DFG of Fig. 4(c),
modified by our compiler module, will be the similar size of the
Fig. 4(a) DFG, since only one or two operations are duplicated.

D. Error Detection and Recovery in Hardware

With the SW providing an instructive redundancy, HW ex-
tensions are added to interpret this explicit redundancy so as
to detect and tag the erroneous execution accordingly. As in
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Fig. 3(b)(c), the control path error is detected at the (2) CMP-in-
struction before the branch instruction. The data error is de-
tected by the explicitly added comparison instruction, as the
(6) CMP instruction in Fig. 3(c) shows. As mentioned above,
the data check is also performed internally at the store operation
by checking both the data and the address. In this way, we in-
terpret the SW instructive redundancy/comparison and set error
marks in the HW. The error marks will then be used to trigger
error recovery. If a control error is detected, the loop execution
will be instantly terminated and the recovery phase will start.
This helps to avoid loosing control of the loop.

Otherwise, in our current first prototype design, if there is no
control error in the whole loop execution, a flag will be used to
accumulate all the error data inside the loop execution detected
before the store operation. Based on the assumption that SEEs
still occur infrequently, we predict that the loop will tend to
have more successful completions without any error than the
erroneous completions. When a SEE happens on the data part
of the loop, the recovery will start after the loop is finished.

A control module in EReLA starts the recovery, for both the
control-path and the data-path, by taking a rollback to the orig-
inal states of the loop entry. For most cases, the loop starts
from the assignment of the loop counter and base addresses of
memory operations. As introduced in Section II, other data in
the loop DFG are usually acquired via the load operations and
via the child computations based on the load data. Therefore,
the re-execution of the loop is easily performed by reassigning
the above initial loop counter and the initial base addresses, fol-
lowing a method similar to that in [14].

However, as mentioned in Section I11-B, levell does not have
data coverage in the data parts, and this leads to SDCs when SEE
attacks. Our previous research gave a method to measure the
SEE vulnerability of the next loop body according to the sam-
pled SEE rate [15]. This method can also be used in this work.
More specifically, we can assign levell as the major method to
mitigate SEEs on the control path. When the SEE vulnerability
increases, level2 can be dynamically invoked to cover all data.
Since the compiler gives both levell and level2 codes, and the
HW does the selection of these two modes, the cost for manual
indications from users is kept at the lowest level.

IV. PROTOTYPE CHIP AND IRRADIATION RESULTS

A. Basic parameters of the EReLA chip and the irradiation
tests

A prototype of EReLA, shown as EReLAv1 (ver. 1) in Fig. 5,
has been implemented to verify the above ideas. The core size
of EReLAv1 is 37.5 mm? ina 0.18 yum CMOS technology, com-
prising 3.8M transistors and 10kB of on-chip SRAM. EReL Avl
includes 8 FU array pipeline stages to map DFGs of loop ker-
nels. The floorplan of the 8 FU array stages is also given in
Fig. 5(a). Note that the array stage 0 of EReL A has a larger area
since the memory units are covered in this stage. Other stages
have a similar size. As introduced in Section II1I-A, EReL A can
extend its size vertically by adding more array stages, if a larger
chip area is assumed.

Our irradiation test platform is shown in Fig. 5(b), in which
the test board is able to supply to the processor a voltage
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Fig. 5. EReLAv]1 chip micrograph.

ranging from 1.25 V to 1.8 V. The irradiation test is performed
by an alpha particle source, 3 Mbq 241 Am. This test platform
in Fig. 5(b) is the same as our previous work [8]. As described
in [8], the irradiation generates 7.72 x 10~ % FF flips per bit
per second under 1.8 V. This rate increases to 2.24 x 10 *
erroneous flips per second under 1.25 V. In this present study,
we apply the 1.25 V supply voltage to the EReLA core to max-
imize the fault injection rate by our alpha source. Since EReLA
has 5,632 unprotected DFFs, which are not covered by device
hardening or ECC, these unprotected DFFs will be flipped at a
rate of 1.26 FFs/second by the irradiation. Since EReLAv1 was
originally designed to work with 1.8 V, defined by the 0.18 pm
CMOS library, at a target frequency of 71.4 MHz, we lowered
the working frequency to 25 MHz to guarantee that the critical
path of the execution unit is not violated under 1.25 V.

B. Fault-Tolerance Tests by Simulation and Irradiation

First, we performed RTL simulations of EReL A, injecting
one fault inside the EReL A processing units per each program
run. The injected fault may hit randomly the loop control path,
the operations in the loop body, and the units that are currently
not occupied. Fig. 6(a) presents the results of four experiments
of a simple image processing application, whose level2 DFG
uses the full 8 stages in EReLAvI1. The 4 level0—3 modes, re-
spectively, are applied in these four experiments. Five hundred
runs of each mode are performed to reduce the randomness. The
results of each mode are given as the number of corrupted pixel
data in the final image output.

The data of Fig. 6(a) shows that level0, without any fault-tol-
erance, leads to 6.11 incorrect pixels in the result. This number
of errors is larger than the one fault that we injected. This is
a direct proof that faults hitting on the control path terminate
the loop execution immediately, leading to large parts of un-
processed data. Levell can avoid this type of early termination
error by merely adding data duplication and check on the con-
trol path. The simulated result of levell shows that 0.25 fault
per each injected fault eventually become errors, which is SDC
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Fig. 6. Simulated error injection and irradiation test results (a) Simulated error injection results. 1 fault injection per each run (b) Radiation test test by « particle
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error in the loop body execution. Also, this indicates that not
all faults will be translated into an SDC. This is because on one
hand some faults hit the unoccupied FUs inside the array and
on the other hand the check in the control path can cover con-
trol errors. If image processing is the target application, the 0.25
SDC per each fault injection has only a negligible QoS drop in
the final image data. Level2 and level3 are based on full DMR
execution. These modes do not show any data corruption in the
result.

The alpha particle irradiation experiments are then carried
out to study the real chip-based fault-tolerance results of our
SW/HW cooperative EReLAv1. We use the same way to count
the number of faults and give the results in the same format, as
in Fig. 6(b). Note that in this series of experiments, the number
of fault injections cannot be precisely controlled. We managed
only the irradiation time of each program execution by moni-
toring the number of loop iterations. According to our measure-
ment, the alpha source injects faults at a rate of 1.26 FF-flips/
second, considering the number of DFFs in EReLAv1. We con-
trolled the run time of each test to inject around two faults,
trying to increase the possibility that at least one fault would
be injected. The injected faults may possibly range from one to
three due to variations. Five hundred runs per each non-redun-
dant or redundant mode were performed and the average results
are shown in Fig. 6(b).

The irradiation results in Fig. 6(b) show a resemblance to the
simulated fault injection data of Fig. 6(a). More specifically, the
non-redundant level) mode shows a visibly higher rate of errors
than that of other fault-tolerant modes. The number of corrupted
pixels in level0 is 1.44, averaged from the 500 runs. We have
increased the dependability 4.4 times by applying the simple
levell mode, with merely covering the data on the control path.
The 0.33 erroneous pixels in levell experiments are the SDC er-
rors. This 0.33 rate of errors is at a similar level to the simulated
result of levell in Fig. 6(a).

These error rates, around 0.2 to 0.3 erroneous pixels per each
fault injection, are connected possibly to the rate of sensitive
input/output DFFs, which is known as the utilization ratio of
the EReLAv1 during the program runs. Back to the erroneous
pixel result in levelO, the rate of 1.44 errors per run is higher
than the utilization ratio. This proves that under level0, one fault
injection may connect to multiple errors in the results.

The difference between the simulation and irradiation in the
levelO error numbers may come from the different fault injec-
tion schemes. In the simulation, to make the fault more visible,
we apply the fault to the outputs FF of FUs. In irradiation, the
fault strikes on the input FFs, output FFs and operation type FFs
as well. Some of the faults in the irradiation, such as input FF
faults, may likely be masked before becoming a visible error.
Moreover, the different manufacturing of FFs is also a possible
influence to the sensitivity to SEEs.

Also, from Fig. 6(b), we can observe that applying modes
of level2 or level3 can lower the number of errors to a 1/7-1/5
level of that of levell. However, these rates are still higher than
the error rate we were expecting. Since level2 and level3 apply
fully DMR-ed executions to each instruction, all transient faults
should be tolerated and the final number of errors should be
zero, as the simulated results show. The uncovered modules
in the EReLAv1 processor may cause these undetected errors.
More specifically, as we re-checked the layout, the configuration
DFFs, which are used to assign the operation to each individual
FU of EReLAvl, are wrongly designed, not being covered by
any error detection techniques. This is also possibly the reason
that level3, with DMR and check instructions for every paired
DMR-ed execution, demonstrates a higher final error rate than
the level2 DMR mode. Level3 uses 50% more configuration bits
than level2, so that from simple calculation, its dependability
would be 33% worse than level2. The difference between the
irradiation results of level2 and level3, which are respectively
0.048 and 0.062 pixel errors per each fault injection, is also
around 30%.

Fig. 7 shows the mean-time-to-failure (MTTF) of these irra-
diation-based experiment data. Fig. 7 shows that levell extends
the MTTF of levelO by 4.4 times, by merely applying the du-
plication and comparison to the control path. Level2 and level3
further extend MTTF to 30 x and 23 x the MTTF of level0.
We also give the estimated MTTF data of an ideal EReLAv1, if
all imperfect configuration bits are covered by error correction
code (ECC) technology. The correction is done by assuming that
all data difference between level2 and level3 in Fig. 6(b) comes
from the unprotected configuration bits. The failure shown in
Fig. 7 refers to the corrupted pixels. Both of the two lines show a
good tendency that adding fault tolerance can extend the MTTF.
The MTTF data with the fix of unprotected configuration bits
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Fig. 7. Mean-time-to-failure (MTTF) results: (a) measured data from
EReLAvl prototype chip. Possible design bug of unhardened configuration
FFs makes level2 and level3 MTTFs lower than the expectation. (b) fixed data
by estimating the configuration FFs are protected by circuit hardening.
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Fig. 8. EReLAv1l W/MIPS results of redundancy modes.

show a much higher MTTF in level2 and level3, even under
our stress radiation test. The possible undetected errors in level2
and level3 after data fixing may now in the shared units of the
EReLAv1 processor that still escaped protection in our design.
Therefore, rad-hard circuits or ECC technique is necessary to
cover these units outside the redundancy zone.

In our stress test environment, level2 has a better MTTF than
level3, which verifies the point that the reliability is maintained
with limited but correctly placed check-operations in level2.
Therefore, the over-designed data checks in level3 can be re-
duced for better energy efficiency without sacrificing the data
coverage. Apart from the full data coverage, from the viewpoint
of extremely effective redundancy, we can select levell as the
working mode. Note that the 4.8s MTTF of levell is observed
in the accelerated irradiation tests, in the practical environment,
levell may show an optimal tradeoff between robustness and
power efficiency. The power consumption data will be given in
Section I'V-C.

C. Power Consumption Results

The final target of avoiding over-designed redundancy is
to achieve better power efficiency. Overall, measurements in
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Fig. 8 show that, level0 of EReLAv1 achieves 0.47 mW/MIPS
with a 25 MHz clock frequency and 1.8 V supply voltage.
This power/performance will drop to 0.31 mW/MIPS under the
1.25 V supply voltage.

Also, as shown in Fig. 8, when the redundancy modes are
used for fault tolerance, the power/performance, in terms of
mW/MIPS, grows according to the redundancy level. Note es-
pecially that the traditional level3 DMR gives 14% mW/MIPS
increase, while our two proposals—levell and level2—only
give a 1% and 6% mW/MIPS increase, respectively. Also
in EReLAvl, to lower the hardware complexity, no power
gating technique has been applied. Without power gating, the
unmapped FUs in the FU array also partially consume power,
so that the power consumption differences from level0 to level3
are not very distinguishable. Overall, in this prototype chip,
assuming that level3 represents the conventional DMR method,
we can achieve an 8% reduction in power consumption by
merely adding the necessary check instructions. Note that this
does not sacrifice the data coverage. If some SDCs are allowed,
we have a very low-cost fault-tolerant levell, which only
increase the working power by 1% of from the non-redundancy
mode. All this is achieved by our programmable redundancy in
this SW/HW cooperative platform.

V. CONCLUSION

In this work, we have designed and implemented a prototype
chip EReLAv1, which uses architectural redundancy instead of
circuit hardening to mitigate SEEs. Programmable redundan-
cies can be flexibly applied by merely changing program soft-
ware, which largely extends the possible utilization of the de-
signed hardware. The tradeoff between robustness and power
efficiency has also been studied with the designed 0.18 psm tech-
nology chip. From our irradiation test, the very low-cost levell,
which only covers the control data, extends the MTTF of the
system by about 4.4 times. Also, our full data coverage level2
removes all unnecessary data checks based on the analysis of
program behavior, which avoids over-design in conventional
DMR methods. Compared to conventional DMR methods, such
as level3, our level2 explicit redundancy has 8% better energy
efficiency, without any degradation in the MTTF data, as veri-
fied by the stress irradiation test.
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