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Abstract—Evaluating the impact of utilising different GPU
resources is crucial for gaining insights into the reliability of
GPUs when exposed to radiation. In this study, we employed
various versions of a microbenchmark to investigate the effect
of different memory types on the performance of a low-power
GPU integrated into the TX1 SoC of a Jetson Nano board.
Additionally, we explored the trade-off between enhanced com-
putational performance and the occurrence of failures over time
by optimising the utilisation of GPU resources. Our findings
demonstrate that maximising the utilisation of the device’s cores
enables the completion of a greater number of computations
without errors. By fully harnessing the computational potential
of the GPU cores, we effectively increase the work that we can
complete between failures. Moreover, we observed that the use
of the different memory types has a significant influence on the
overall reliability of the GPU. The outcomes of this research
contribute to a comprehensive understanding of the interplay
between GPU resources, irradiation effects, and reliability. This
knowledge is instrumental in guiding the development of robust
GPUs for applications in radiation-prone environments.

Index Terms—Fault tolerance, GPU, microbenchmark, neu-
tron, radiation, soft error

I. INTRODUCTION

Modern GPUs have become increasingly complex and
powerful devices, employing technologies with large-scale
integration. They are utilised across a wide range of applica-
tions, each with varying requirements in terms of size, price,
reliability, computational performance, and power consump-
tion. High-performance GPUs consist of thousands of cores,
encompassing integer and floating-point computing units with
varying precision, along with multiple control units like warp
schedulers and instruction dispatchers. These devices also
feature a very large number of registers and multiple levels of
memory with differing performance characteristics. With the
rise of neural network applications, GPUs have even started
incorporating specialised components such as tensor cores [1].
This heightened complexity and diversity of components pose
significant challenges in analysing the reliability of GPUs and
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identifying the sources of potential errors. These errors can
arise from various factors, including manufacturing defects,
voltage scaling, hardware wear-out, or radiation effects [2],
[3]. In data centers, which increasingly deploy high-end GPUs
in their nodes, these errors have become more prevalent [4],
[5]. Furthermore, safety-critical environments such as space
missions [6], autonomous driving [7], [8], and railway sig-
nalling [9] have also incorporated SoCs with increasingly pow-
erful GPUs [10]. Understanding and addressing the reliability
challenges posed by these errors is crucial for ensuring the
robustness and dependability of GPUs in diverse applications
and demanding environments.

This paper focuses on the investigation of soft errors in-
duced by terrestrial radiation, which refers to transient errors
that occur in the processing logic and memory components
of GPUs. Accelerated radiation is a widely used method for
analysing the reliability of such devices. However, pinpointing
the software and hardware sources of radiation-induced errors
presents significant challenges [11]. Microbenchmarks that
stress specific GPU components offer a promising solution
for narrowing down these sources [12], [13]. For example,
they allow us to test the behaviour the different types of
memories, such as registers, L1 cache or L2 cache, or to
evaluate the fault tolerance of using one resource of the GPU
(i.e. floating point unit, LD/ST unit, etc) when repeatedly
executing some assembly instructions. We have designed a
simple microbenchmark that iteratively performs different
arithmetic operations per iteration and thread. We have used
CUDA to implement it [14]. One of our goals is to increase
the number of instructions executed per cycle in order to
stress the arithmetic and control units of the GPU. Besides,
by modifying the size of the grid and thread block, we can
systematically change the computational load of the cores,
warp schedulers, dispatch units and other control components
of the GPU. Additionally, we have implemented three versions
of each microbenchmark that differ in the type of memory
used to store the result of the operations on each thread.
Namely, we have used registers, shared memory and global
memory to store the result. This way, we can also assess
the effect of using different types of memories in the error
rate of the microbenchmark. The microbenchmark was also
designed to facilitate the task of identifying errors in the result
on each thread due to radiation. To perform the radiation
experiments and facilitate the analysis of the results, we used
a small low-power GPU integrated into the Tegra X1 SoC,
which is part of the NVIDIA Jetson Nano platform [15].
By using this experimental setup, we aimed to gain insight
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into the behaviour and vulnerabilities of low-power GPUs
under radiation, contributing to a better understanding of their
reliability in radiation sensitive environments.

The main contributions of the paper can be summarized as
follows:

• We assess the soft error reliability of the GPU integrated
into a low-cost and low-power SoC, specifically the
Tegra X1 SoC featured in the NVIDIA Jetson Nano
board. Platforms of this nature prove highly valuable in
environments with constraints on power, weight, and size,
as seen in applications like space missions and other
embedded systems, which are increasingly prevalent in
the IoT era. Therefore, it is important to assess the soft
error reliability of this kind of platform, which has been
less studied that other discrete and higher performance
GPUs not included in SoC.

• We design and implement a simple microbenchmark
using CUDA that can run a high number of instructions
per cycle. Besides, it allows us to easily increase the
utilization of the main resources of the GPU by changing
the grid and thread block sizes. This allows us to assess
the relation between the observed error rates and the
use of the resources of the GPU including, for example,
cores, warp schedulers, dispatch units and other control
components.

• We analyze the effect of using the different memories of
the GPU in the error rates. In particular, we compare the
effect of using registers, shared memory and global mem-
ory and, in some cases, the cache memories. To do this,
we have developed three versions of the microbenchmark
that stress the use of each particular type of memory.

• We leverage the profiling metrics of the GPU to examine
the relationship between resource utilisation, computa-
tional performance, and the reliability of the different
versions of the microbenchmark. Results show a strong
correlation between the SDC failures and the performance
of the code.

Experimental results show that maximising core utilisation
reduces reliability issues caused by radiation and that the
choice of memory type has a significant impact on GPU
reliability.

The use of a low-power GPU with only one Streaming
Multiprocessor (SM) simplifies the experiments and results
analysis, as all thread blocks are executed in the same SM.
However, similar results and conclusions have been obtained
using other benchmarks and microbenchmarks to stress the
resources of GPUs with more SMs. For example, in [16],
the authors use matrix multiplication, Fast Fourier Transform
and two synthetic benchmarks where each thread performs
floating point sums or multiplications. They test the codes on
two high-performance GPUs with 14 and 15 SMs. They study
the effect of varying the grid and thread block size and find
that increasing the degree of parallelism, and thus the resource
utilisation, increases the cross section. However, optimising
core utilisation can compensate for this increased error rate
and allow more work to be completed without errors.

The remaining sections of the paper are organised as
follows. In Section II, we provide an overview of related

work in the field of GPU reliability, including studies on
microbenchmarking and the utilisation of profiling metrics.
Section III presents detailed descriptions of the Device Under
Test (DUT) and the experimental environment used in our
study. In Section IV, we present and discuss the experimental
results obtained from our investigations. Finally, in Section V,
we summarise the main conclusions drawn from our research.

II. RELATED WORK

Over the past decade, there has been extensive research
conducted on the radiation reliability of various types of GPUs.
The majority of these studies focus on high-performance
GPUs that consume substantial power, as indicated by pre-
vious works such as [17]–[19]. However, fewer studies have
explored the behaviour of low-power GPUs integrated into
Commercial off-the-shelf (COTS) System-on-Chips (SoCs), as
highlighted by the works showed in [20]–[22]. To the best of
our knowledge, experiments using radiation with our Device
Under Test (DUT), which comprises a Jetson Nano board,
have only been published twice. In [23] the authors tested it
using gamma ray photons to assess its suitability for space
missions by determining its tolerance to radiation using Total
Ionizing Dose (TID). In [24], the authors show that using
redundant kernel execution is an effective way of reducing
the SDC cross-section of the Jetson Nano when exposed to
proton irradiation. They also show that the CPU in the SoC is
the main source of the functional interrupts detected.

A wide range of benchmarks has been employed to assess
the radiation reliability of GPUs. Among these, the matrix
product benchmark stands out as one of the most commonly
used methods, as evidenced by studies such as the ones
included in [16], [25]. Additionally, various other codes, both
memory-bound and compute-bound, with distinct characteris-
tics in terms of GPU resource utilisation, have been utilised,
as highlighted in works like [13], [18], [21]. Furthermore, in
recent years, numerous studies have focused on evaluating
the fault tolerance of neural networks on such devices, as
demonstrated by research included in [26], [27].

Sometimes, it is essential to evaluate the reliability of
specific components within a device, such as memory, arith-
metic units, load/store units, and others. In such cases, it is
advantageous to implement simplified benchmarks that solely
utilise the specific component of the architecture that we wish
to assess. This approach allows for a more focused evaluation
of the targeted component’s reliability and performance.

For instance, in the studies showed in [4], [28], neutrons
were employed to evaluate the neutron sensitivity of GPU
L2 caches and register files. These memory structures are
responsible for the majority of failures in modern GPUs. The
researchers focused on two different GPU architectures: Fermi
(40nm technology) and Kepler (28nm technology). Special
attention was given to the occurrence of multiple bit and
multiple cell upsets. The experiments revealed that the em-
ployment of the ECC mechanism, capable of detecting double
bit errors and correcting single bit errors, proved sufficient to
detect and correct all observed errors. Additional experiments
were documented in [17], wherein the same architectures were
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tested, including the L1 cache memory of the GPU. The results
confirmed that the GPU with the Kepler architecture, which
is newer than the GPU with the Fermi architecture, exhibited
improved memory reliability. Moreover, the reliability of the
GPU’s arithmetic units was also evaluated under radiation
in [16]. The authors utilise two microbenchmarks to assess the
behaviour of two GPUs during repeated execution of floating-
point sums and multiplications. The degree of parallelism was
varied by adjusting the number of threads while increasing the
number of operations per thread.

At a lower level, exploring the behaviour of specific assem-
bler instructions under neutron radiation can provide valuable
insights. In the study showed in [12], the authors utilised
both error injection and radiation techniques to evaluate seven
commonly used low-level assembly SASS instructions exe-
cuted by workloads from the Rodinia benchmark suite [29].
These instructions encompass various operations, including
integer and floating-point operations (IADD, FADD, IMAD,
FFMA), shared memory load (LDS), branching (BRA), and
the ISETP instruction, which performs a comparison and stores
the result in a predicate register. For each microbenchmark, the
authors implemented a CUDA kernel that repeatedly executed
the targeted instruction. The experiments were conducted on
an NVIDIA K40 Tesla GPU with the Kepler architecture.
A similar methodology, combining injection and radiation
experiments, was employed in the study presented in [13]
to evaluate the SDC and DUE FIT rates of six low-level
assembler instructions. Additionally, the authors implemented
a microbenchmark to evaluate the FIT rate of the Register File
storage. The experiments were conducted on two GPUs with
Kepler and Volta architectures.

Profiling techniques have been employed by researchers to
obtain behaviour and performance metrics of different codes,
enabling the exploration of their relationship with reliability.
In the study showed in [13], various higher-level benchmarks
were used to assess the reliability of GPUs. To gain insights
into the contributions of low-level instructions within these
benchmarks, the authors utilize profilers such as nvprof and
nsight-compute [30]. By profiling these codes, they were
able to analyze the performance characteristics of individual
instructions. Additionally, the authors proposed a model to
estimate the FIT rate of different codes. This model leverages
two well-known performance metrics provided by the profil-
ers: Instructions per Cycle (IPC) and Achieved Occupancy
of the GPU. In the subsequent sections, we will also employ
these metrics to evaluate how our microbenchmark utilises the
resources of the GPU.

Finally, in the study presented in [31], the authors put
forward a machine learning methodology to predict the vul-
nerability of GPU applications to soft errors. They employed
regression and classification models to forecast the rates of
masked faults, SDC, and crashes for various benchmarks.
These predictions were based on metrics collected through
simulation and the profiling tool nsight-compute. The
classification models achieved impressive maximum prediction
accuracy rates ranging from 82.6% to 96.6%, depending on the
specific type of error.

III. EXPERIMENTAL ENVIRONMENT AND METHODOLOGY

A. Device Under Test

The NVIDIA Tegra X1 (TX1) System on Chip (SoC) was
used as the Device Under Test (DUT) in this study [15].
This SoC is built using 20nm planar technology and consists
of a quad-core ARM Cortex-A57 CPU that implements the
Armv8-A architecture. Each core is equipped with a 48KiB
L1 instruction cache, a 32KiB L1 data cache, and a 2MiB
L2 unified cache that is shared by all cores. Additionally,
the cores feature the advanced SIMD NEON extension that
supports vector operations with both integer and floating point
elements.

The TX1 SoC also includes an NVIDIA Maxwell GPU
with 1 Symmetric Multiprocessor (SM) that is partitioned into
four processing blocks, each with its own instruction buffer,
warp scheduler, and 32 CUDA cores. The GPU has a 256KiB
L2 cache, 64KiB shared-memory, and 64K (32-bit) registers.
While the L2 cache of the CPU supports error-correcting codes
(ECC) and they were enabled during all our experiments, GPU
memories does not support this mechanism.

To support the CPU and GPU, the TX1 SoC is integrated
into an NVIDIA Jetson Nano System-on-Module (SoM) that
also includes 4GiB of external DDR4 memory. This memory
is shared by both the CPU and GPU. Figure 1 shows the main
components of the DUT.
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Fig. 1: Device Under Test. Tegra X1 SoC included in a Jetson
Nano SoM.

B. Setup and procedure

The beam was focused on a spot with a diameter of 2 inches
plus 1 inch of penumbra, which provided uniform irradiation
of the GPU chip without directly affecting nearby board power
control circuitry and DDR memories. Even if the beam is
collimated, scattering neutron may be found outside the beam
spot

The experiments were conducted in November 2022 at the
ChipIR facility of the Rutherford Appleton Laboratory in the
UK, where a beam of neutrons with an energy spectrum similar
to atmospheric radiation was used [32]. The average neutron
flux was maintained at approximately 3.14× 106n/(cm2 · s),
and the total flux during the irradiation campaign was 2.28×
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Fig. 2: Setup of the experiments showing the six irradiated
Jetson-Nano boards.

1011 n/cm2. Six Jetson boards, including the TX1 SoC under
test, were irradiated as shown in Figure 2. The entire SoC was
affected by the irradiation. That includes the four CPU cores
and the GPU with its shared, L1, and L2 cache memories.
The beam spot was focused on the SoC and the position of
the board was chosen to reduce the effect of radiation on the
DDR memory. However, even when the beam is collimated,
scattered neutrons can be found outside the beam spot and can
also affect this type of external memory, which contains the
operating system and all the files with our codes and results.
All experiments were conducted at room temperature.

The Jetson Nano Development Kit comes with a heat sink
attached to the SoM, which provides effective cooling for high-
performance computing, and we added two fans to improve
heat dissipation. We followed the recommendations in [33] and
monitored the temperature and power consumption of the units
throughout the experiments by accessing the internal sensors
provided by the board.

In our setup, the six Jetson Nano boards sent test logs to a
host controller via their serial communications port. The host
controller was located outside the shielded irradiation room
and was not affected by the radiation. The controller was also
connected to the GPIO pins of the DUTs, allowing for remote
reset of each Jetson Nano board if the system hung. The entire
test was managed remotely from a laptop connected to the host
controller via Ethernet. We used Power over Ethernet (PoE)
technology to provide power and access to the boards over
the same Ethernet cable. Figure 2 illustrates the radiation test
setup used during the experiments. We ran the Ubuntu 20.04
operating system with the CUDA 10.2 driver from a external
memory, which was connected to each Jetson Nano board with
a 30cm cable and protected under several paraffin blocks to
reduce the effects of radiation on the operating system and
application files.

The microbenchmarks were implemented in C, and we used
Python scripts to run and test them. We used the Python
module Pexpect to spawn and control a subprocess respon-
sible for executing each microbenchmark. We included three
watchdogs to detect and recover from various hangs of the
tests and the operating system. The first timeout, associated
with the spawned process, was set to a time greater than the
maximum expected duration of each microbenchmark. The
second watchdog used the watchdog Linux API to reboot the

system if it hung for more than 20 s. Finally, a watchdog was
implemented on the host controller to reset the device if the
Jetson system hung and did not send a log result for more
than 25 s.

C. Programming model and microbenchmarks

The Compute Unified Device Architecture (CUDA), defined
by NVIDIA, is based on an array of Streaming Multipro-
cessors (SMs), each of which contains multiple CUDA cores
that can execute multiple threads in parallel [14]. Threads are
logically grouped into thread blocks, which are dispatched
to an SM and can utilise its shared-memory. Thread blocks
are further divided into ”warps” of 32 threads, which are
scheduled to execute on the cores of the SM. Thread blocks
are organised in a grid. CUDA programs combine host code,
run on the CPU, with one or more kernel functions that
are executed on the CUDA cores using a Single Instruction
Multiple Threads (SIMT) model.

Since the DUT’s GPU contains only one SM, the defined
thread blocks will execute sequentially. Each thread block will
be divided into warps of 32 threads, which will execute the
same instructions in lockstep, using the 128 available cores
in parallel. Starting with the Volta architecture, newer than
the Maxwell architecture of the GPU of the Device Under
Test (DUT), NVIDIA introduced a feature called ”thread-
level warp“, that allows threads within a warp to execute
instructions independently, rather that strictly in lockstep, thus
improving the efficiency of the GPU by reducing the impact
of divergent branching within warps. However, the entire warp
still executes in lockstep when it comes to certain operations,
such as arithmetic instructions. The GPU’s occupancy, use of
instruction dispatchers and warp schedulers, and the number
of instructions executed per cycle will depend on various
factors, such as the number and size of thread blocks, the code
executed by each thread, and the utilisation of computational
resources, such as registers and memories, available on each
core or on the GPU.

1: void micro ( i n t num i te r , v o l a t i l e i n t * g l o b a l ) {
2: i n t out , i n = mem = t h r e a d i d ;
3: # pragma u n r o l l 2
4: f o r ( i n t i t e r =0 ; i t e r <n u m i t e r ; ++ i t e r ) {
5: o u t = i n *mem + t h r e a d i d ;
6: mem = ( out −mem ) / i n ;
7: }
8: }

Listing 1: Microbenchmark kernel executed by every thread
in the GPU.

To assess the radiation reliability of the DUT, we use a
simple microbenchmark run by each of the threads using the
GPU cores. As can be seen in the Listing 1, each thread
performs a given number of iterations in which it performs four
basic arithmetic operations on integers. We have chosen to use
the integer data type since it allows us to more easily achieve
a higher number of instructions per cycle (IPC). We leverage
both Instruction-level parallelism (ILP) and Thread-level par-
allelism (TLP) to increase the IPC and also the occupancy of
the GPU [34]. We have used #pragma unroll 2 to unroll
the loop, increase the instructions that can be dispatched and
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better hide the memory access latency. Results show that this
unrolling increases the IPC of the code.

The microbenchmark basically uses three variables that
it stores in registers local to each thread (in, out and
thread_id). To study the effect of using different types of
memory we use an additional variable mem. In the register-
only version of the kernel, this variable is stored locally in one
additional register per thread. In the version that uses shared
memory, the variable is stored in a dynamically reserved block
of shared-memory when the kernel executes. Each thread
accesses a different shared-memory location to work with its
variable mem. Finally, in the version that uses global-memory,
each thread accesses that variable in a different location in
global-memory stored out of the GPU, shared with the CPU
and passed as the second argument of the function. The
microbenchmark version utilizing global-memory incorporates
an extra parameter pertaining to the global memory employed
by the threads. To prevent the compiler from optimizing the
code by storing data in a register, we employ the volatile
keyword. This ensures that, during each iteration, each thread
reads the data directly from its original global memory lo-
cation. In the case of the version employing shared memory,
we similarly use the volatile keyword when declaring the
shared memory vector responsible for storing data used by
each thread.

We have designed the microbenchmark to facilitate the de-
tection of errors during its execution. If everything has worked
correctly, at the end of the execution each thread should store
in its variable mem its unique global index (thread_id).
Therefore, we can easily detect whether an error has occurred
due to radiation and the number of threads that have been
affected by it by counting the number of threads for which the
above condition is not met. The microbenchmark code is pub-
licly available at https://github.com/josembadia/microbench.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To investigate the impact of computational load on the
reliability of the DUT (Device Under Test), we conducted
three versions of the microbenchmark using various grid sizes
(representing the number of thread blocks) and varied the
number of threads per block. The test configurations were
denoted by the notation gxby, where x indicated the grid
size (i.e., the number of thread blocks) and y represented
the number of threads per block. For instance, an example
configuration would be g32b64, which employed a grid
consisting of 32 thread blocks, each containing 64 threads,
resulting in a total of 2048 threads.

The number of iterations run by the microbenchmark in each
variant was adapted so that the duration of all iterations was 2
seconds. Thus, each type of experiment was subjected to the
same amount of radiation. Each variant was run continuously
under irradiation until a total of 100 errors of any type were
counted. In our experimental evaluation we distinguish two
main types of detected errors due to radiation:

• Silent Data Corruption (SDC): the result of the mi-
crobenchmark is not correct, that is, at least one thread
finished with a value different that its global thread index

Occupancy (%) IPC
grid tbs reg shm glb reg shm glb

g1b32 1 32 1.56 1.56 4.49 0.25 0,23 0.04
g1b128 1 128 6.25 6.25 6.25 0.96 0,90 0.07
g1b1024 1 1024 50 50 50 2.04 2,06 0.17
g64b32 64 32 50 50 50 4.07 4,12 0.17
g32b64 32 64 100 100 100 4.08 4.13 0.41

TABLE I: Performance metrics of the different variants of
the microbenchmark. tbs refers to the thread block size in
CUDA.

in its variable mem. The radiation has affected to the result
of one or more threads.

• Detected Unrecoverable Error (DUE): the program
crashes due for example to an exception while accessing
outside its memory segment, or the system hangs and
produces a system reboot.

A. Computation performance and profiling metrics

The different variants examined use more or less GPU
components with varying degrees of intensity. The use of GPU
computing resources and memory can be assessed using the
nvprof profiler. Table I contains two of the most important
performance metrics provided by the profiler. These are the
average number of instructions per cycle (IPC) and the GPU
occupancy, which is the ratio of active warps to the maximum
number supported by the SM. Three of the execution variants
(g1b32, g1b128, and g1b1024) use a single block of
threads and contain 32, 128 and 1024 threads per block
respectively. In the case of 32 threads, we only use one of
the four GPU core blocks and only one warp scheduler and
two instruction dispatchers. This means that in the best case,
using registers, the IPC in the four core blocks is only 0.25
and the utilisation is 1/64 = 1.56%, as the maximum number
of active warps in the DUT is 64. In the case of 128 threads,
we can use all the cores of the GPU, but in practice we only
maintain an average of 0.96 instructions per cycle. It is well
known that in order to hide the latency between dependent
instructions, it is necessary to keep many more warps running
than the 4 running at any given time in the DUT [35]. By
using a block with 1024 threads, we double the number of
instructions executed per cycle (2.04). In order to maximise
the workload on the core components of the GPU, we use two
additional variants (g32b64 and g64b32) that increase the
number of threads to 2048, which is the maximum allowed by
SM in the GPU architecture of our DUT. These two variants
make it possible to increase the average number of instructions
executed per cycle to more than 4.

Figure 3 allows us to evaluate the computational perfor-
mance of each of the microbenchmark variants used. We can
clearly see how the number of arithmetic operations with
integers increases when we modify the size of the grid and
of the thread blocks. This happens independently of the type
of memory used. The increase correlates with the behaviour
of metrics such as the average number of instructions per
cycle (IPC), the issue instruction slot utilization, the average
number of eligible warps per cycle, among others. Obviously,
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g1b32 g1b1024 g32b64
reg shm glb reg shm glb reg shm glb

glb trans 2 2 6.79× 107 2 2 2.57× 108 2 2 6.31× 108

l2 read trans 5.49× 106 5.50× 106 2.68× 107 5.50× 106 5.50× 106 8.23× 107 5.50× 106 5.49× 106 1, 99× 108

shm ld tr 0 2.46× 107 0 0 2.17× 108 0 0 4.35× 108 0
tex cache trans 0 0 1.70× 107 0 0 6.45× 107 0 0 1.58× 108

global hit rate 0% 0% 50% 0% 0% 50% 0% 0% 50%

TABLE II: Memory use metrics.

using more efficiently the resources of the GPU increases the
computational performance of the code. The figure also allows
us to assess the effect of using different types of memory in the
microbenchmark. It is clear that continuous access to global-
memory slows down code execution enormously. This can also
be seen by comparing the value of the IPC metric in the table I
when using different types of memory.

Table II shows the number of memory transactions for
the three versions of the microbenchmark with four types
of memory: global, GPU L2 cache, GPU unified L1/Texture
cache and GPU shared memory. The results are shown with
three of the variants of the test with an increasing number
of threads. The three versions of the algorithm use a sim-
ilar quantity of registers per thread and use the L2 cache.
Specifically, the shared memory version uses 19 registers per
thread, the global memory version uses 20 registers per thread
and the registers version uses 18 registers per thread. Note
that in the last version only one of these registers is used to
store the variable mem, while the rest are used to store other
local variables or to compute memory addresses. The shared
memory version is the only one to use this kind memory.
The metrics show that accessing the microbenchmark variable
mem in global memory significantly increases the number of
global memory transactions (glb_trans) and also the use
of the both cache memory levels of the GPU, that is the L2
cache (l2_read_trans) and the unified L1/Texture cache
(tex_cache_trans). As a matter of fact, the microbench-
mark using global memory is the only one using the unified
cache memory of the GPU and increases its use with the
number of threads. The global_hit_rate metric reflects
that it has a 50% hit rate for global loads in unified cache.
The performance using registers and shared memory is quite
similar. Their use of the L2 cache is similar and the shared
memory transactions (shm_ld_trans) only slightly reduce
the operations per second. We can also see that when we use
global memory, both global and shared memory transactions
increase with the number of threads, while these metrics
remain constant for the versions of the microbenchmark that
use registers and shared memory. Obviously, the only version
that increases shared memory transactions with the number of
threads is the one that uses this type of memory.

B. DUT reliability

First of all, it is important to point out that radiation affects
not only the GPU running the microbenchmark, but the entire
SoC, including the CPU and its associated cache memory.
Radiation can also affect the process in charge of launching
the kernel to the GPU, collecting the results of the different
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Fig. 3: Effect of the memory type and computational load in
the performance of the microbenchmark measured as billions
of integer arithmetic operations per second (GOP/s).

threads and checking their correctness, as well as all the
operating system processes that may be running during the
tests. Although the GPU is running the microbenchmark most
of the time during the tests, some of the errors detected may
be due to the effect of radiation on the CPU and the processes
it runs.

Secondly, it is worth remembering that although the overall
memory (DDR) of the device is less affected by radiation,
the CPU and GPU cache memories are included in the focus
of the beam. As we can see in the Table, there are a large
number of transactions with the L2 cache memory of the GPU
and this number is especially high in the case of the version
of the microbenchmark based on global memory, since the
variable accessed by each thread in the different iterations is
temporarily stored in this type of cache memory. Thus, the
effect of radiation on this type of cache may particularly affect
this version of the microbenchmark.

The modification of the grid and thread block size influences
not only the computational performance obtained by the
microbenchmark, but also the number of failures produced.
This is because it will increase the area used to perform the
calculations and the stress to which the different components
of the platform susceptible to particle impact are subjected.

To assess the radiation reliability, we ran more than 33,000
executions of the different variants of the microbencharmk, ex-
posing the Nano boards to a total fluence of 2.28×1011 n/cm2

for more than 21 hours of irradiation. We use the Failures in
Time (FIT) metric to evaluate the radiation sensitivity of the
SoC while running the microbenchmark. This metric is the
number of failures detected in 109 hours having into account
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that the terrestrial radiation flux is 13n/(cm2 · h) [36].
Figure 4 depicts the SDC and DUE FIT rates obtained

from various variants of the microbenchmark run. The figure
includes the confidence intervals computed with a confidence
of 95%. Unfortunately, due to time constraints during the radi-
ation campaign, sufficient data could not be obtained for three
specific variants: g1b32 with shared-memory and global-
memory, as well as g32b64 with global-memory. Moreover,
as the number of events of each type that we were able to
accumulate for each test is small, the level of confidence in
the results is not very high. However, it is of sufficient quality
to allow us to analyse the behaviour of the algorithms.

Comparing the FIT rates of both error types, it becomes
evident that the SDC rate is significantly lower than the DUE
rate. Neutron radiation primarily results in program crashes,
system hangs, and reboots, rather than producing incorrect
results in the code executed by the GPU cores. To illustrate,
the g1b32 test using registers experienced no SDC errors, but
the code crashed 27 times, requiring 26 system reboots due
to system hangs. Furthermore, it can be observed that SDC
errors increase with the use of GPU resources across all three
memory types. That is, as we increase the occupancy, IPC and
other performance metrics, and so the code performance, the
SDC FIT rate increases. This can be due to the increase in the
number of cores being used or the number of instructions they
execute per second and so the use of the instruction scheduler.
In the last two variants (g64b32 and g32b64) we are also
increasing the number of warps and so the use of the warp
schedulers.

The behaviour of the DUE rate is quite different. This type
of error only increases when we increase the use of GPU
resources in the microbenchmark that does not use global
or shared memory, except in the case of 32 threads. On
the contrary, the DUE rate of the other two versions of the
microbenchmark does not seem to depend on the size of
the grid or the thread blocks, even if the use of the GPU’s
computational and memory resources is quite different, as we
can see in tables I and II.

The behaviour of both types of errors seems to confirm that
the DUE FIT can arise from errors that affect the instruction
cache or the code itself, but most of them are dependent solely
on hardware features such as control logic, synchronisation,
and interfaces [21]. On the other hand, the SDC FIT rate
depends on how the device’s resources are utilised and the
Architecture Vulnerability Factor (AVF), which is the prob-
ability that a fault in the architecture will propagate to the
application’s result [37].

We have used the Pearson correlation coefficient to statis-
tically quantify the relation between the failure rate and the
performance metrics. Table III shows the correlation between
the failure rates of the two types of errors and the IPC
performance metric. Similar results are obtained if we use
other profiling performance metrics such as the issue slot
utilization or the eligible warps per cycle , but also if we use
the arithmetic operations per second of each version of the
microbenchmark. Coefficients confirm that there is a strong
correlation between the performance of the three versions of
the benchmark and the SDC FIT, while the DUE FIT only

reg shm glb Total
SDC FIT 0,93 0,89 0,84 0,81
DUE FIT 0,90 -0,69 0,01 0,55
Total FIT 0,95 0,39 0,39 0,75

TABLE III: Pearson coefficient correlation between the IPC
performance metric and the error rates of the different variants
of the benchmark.

shows this kind of correlation with the register-based version.
The FIT metric does not take into account the performance

of the code being executed and the amount of work that can
be carried out without being affected by any radiation induced
errors. It may happen that some variant has a higher number
of FIT, but this problem is compensated by the fact that it has
been able to perform a much higher number of calculations
in the same time. To take this phenomenon into account, we
use the Mean Work Between Failures (MWBF) metric [38].
We measure the work done by the microbenchmark as the
number of arithmetic operations with integers performed. We
have measured the number of arithmetic operations on each
variant of the microbenchmark. Since the execution of all the
variants used had a duration of 2 seconds, Figure 3 shows
the work done by each of them, if we double the scale of
the vertical axis. The MWBF value for the different variants
is shown in Figure 5, which demonstrates that the benefits
of using the GPU’s computational resources more efficiently
can compensate for a possible increase in errors. We can see,
for example, that although the number of FIT in the global-
memory version is similar to the other two versions, given the
very low performance obtained when using global-memory,
the amount of work that can be done before an error occurs is
much smaller than with the versions using registers or shared-
memory.

Therefore, if we want to increase the total amount of work
done without errors, it is best to maximise the GPU resources
use by launching the maximum number of threads supported
by SM and to leverage shared-memory for computation. Since
the amount of FIT does not increase substantially with increas-
ing GPU resource usage, except when we use more registers,
it is best to optimise our code implementation to get the most
out of those resources [21].

Our analysis also includes an examination of the number of
threads impacted by the SDC errors. The results reveal that
in nearly all instances (93%), only one thread’s outcome was
affected by the neutron-induced error. This outcome aligns
with expectations since individual threads perform indepen-
dent computations utilising mostly distinct resources such as
arithmetic units, registers, and memory cells. Only in a few
instances were the results of several tens of threads impacted
by SDC errors, and in just two cases were the results of almost
all threads affected.

V. CONCLUSIONS

Evaluating the impact of utilising different GPU resources
is crucial for gaining insights into the reliability of GPUs
exposed to radiation. In this study, we employed various
versions of a microbenchmark to investigate the effect of
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Fig. 4: Effect of the memory type and computational load in the Failures in Time of the DUT.
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Fig. 5: Effect of the memory type and computational load
in the Mean Work Between Failures (MWBF) measured as
billions of integer arithmetic operations (GOP).

different memory types on the performance of a low-power
GPU integrated into the TX1 SoC of a Jetson Nano board.
Additionally, we explored the trade-off between enhanced
computational performance and the occurrence of failures over
time by optimising the utilisation of GPU resources. Results
show that there is a strong correlation between the code
performance and the SDC failures.

Our findings demonstrate that maximising the utilisation of
the device’s cores enables the completion of a greater number
of computations without errors. By fully harnessing the com-
putational potential of the GPU cores, we effectively reduce
the reliability challenges posed by irradiation. Moreover, we
observed that the choice of memory type has a significant
influence on the overall reliability of the GPU.

The outcomes of this research contribute to a comprehensive
understanding of the interplay between GPU resources, irra-
diation effects, and reliability. This knowledge is instrumental
in guiding the development of robust GPUs for applications
in radiation-prone environments.
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