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Abstract—Autonomous robots and their application are be-
coming popular in several different fields, including tasks where
robots closely interact with humans. Therefore, the reliability
of computation must be paramount. In this work, we measure
the reliability of Google’s Coral Edge TPU executing three Deep
Reinforcement Learning (DRL) models through an accelerated
neutrons beam. We experimentally collect data that, when scaled
to the natural neutron flux, accounts for more than 5 million
years. Based on our extensive evaluation, we quantify and qualify
the radiation-induced corruption on the correctness of DRL.
Crucially, our data shows that the Edge TPU executing DRL has
an error rate that is up to 18 times higher the limit imposed
by international reliability standards. We found that, despite
the feedback and intrinsic redundancy of DRL, the propagation
of the fault induces the model to fail in the vast majority of
cases or the model manages to finish but reports wrong metrics
(i.e. speed, final position, reward). We provide insights on how
radiation corrupts the model, on how the fault propagates in the
computation, and about the failure characteristic of the controlled
robot.

I. INTRODUCTION

Autonomous robots and their application are becoming pop-
ular in different fields, including smart manufacturing, agricul-
ture, surgery, and space [1], [2]. Robots are asked to solve a
variety of tasks of increasing complexity, which demands ad-
vanced learning and adaptation capabilities. Recent advances
in Deep Reinforcement Learning (DRL) [3] have shown an
exciting potential to address these demands. However, DRL
algorithms are extremely resource-greedy and run on power-
hungry Graphics Processing Units (GPUs). This limits the
deployment of DRL solutions on resource-constrained devices
like autonomous robots. Tiny Machine Learning (TinyML) is
a promising strategy to reduce the computational resources
required for the deployment of robot learning approaches [4].
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A key component of TinyML solutions is the availability of
low-power and low-cost Commercial-Off-The-Shelf (COTS)
devices like the Tensor Processing Unit (TPU) developed
by Google and named Coral Edge TPU [5]. Such EdgeAl
accelerators allow the processing of neural networks on a
small, cost-effective, and energy-efficient device. Therefore,
EdgeAl accelerators are rapidly becoming the enabling tech-
nology for the deployment of Al-based solutions on resource-
constrained devices like robots. As robot capabilities increase,
the number and the complexity of interactions with other
agents, including human beings also increases. When humans
and robots share the same workspace, reliability must be
paramount to prevent injuries [6]. Existing approaches for
safe human-robot interaction focus on developing software
solutions to ensure safe operations [7]-[9] and on measur-
ing how humans perceive the interaction with a robotic co-
worker [10], [11]. However, little research has been done on
characterizing the reliability of hardware devices where the
control policy of the robot is computed. A lack of reliable
computation can cause significant faults and cause dangerous
interactions with the robot’s surroundings, including human
beings. This can negatively affect both the training phase [12]
and the deployment of the RL-based solution.

During normal operation in a real environment, there are
several sources of transient errors that can lower EdgeAl accel-
erator’s reliability, including environmental perturbations, soft-
ware errors, and process/temperature/voltage variations [13],
[14]. Radiation-induced soft errors are particularly critical, as
they have been found to dominate error rates in commercial de-
vices [15]. Crucially, advanced technology reduced power con-
sumption, and increased operation frequency, despite bringing
unquestionable benefits, increased the radiation sensitivity
of computing devices, even for terrestrial applications [15].
Figure 1 teases the motivation of our evaluation, showing an
example of an observed radiation-induced error on Hopper
V3 (Figure 1b) and Humanoid V3 (Figure 1d). Because of
a neutron impact, the EdgeAl accelerator wrongly computes
the model, which is not able to recover and falls. In this
paper, we investigate the sensitivity of DRL policies used
to control autonomous robots as executed on Edge TPU. To
gather a statistically significant amount of data, we expose the
Edge TPU to an accelerated neutron beam. Overall, the Edge
TPU has been irradiated with a total fluence of more than
6.5 x 101n/cm?. With the proposed extensive experimental
evaluation we aim at understanding if COTS EdgeAl acceler-
ators are able to digest, during the computation, the radiation-
induced fault or if they generate a measurable misbehavior. We
also investigate the effects of this misbehavior on the robot’s
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Fig. 1. Example of radiation effects on deep reinforcement learning policies,
observed with accelerated neutrons experiments. Figures a) and c) show a
correct execution of the Hopper V3 and Humanoid V3, respectively. Figure
b) shows the effect of a radiation-induced fault that makes Hopper V3’s leg
to be in a position that will make the next jump impossible and Picture d)
shows Humanoid V3 tripping which will cause a fall.

actuation and quantify how these erroneous actions negatively
impact the execution of the robotic task. To the best of our
knowledge, this is the first study that addresses the reliability
of DRL policies.

The rest of the paper is structured as follows. Section II
presents the background and this paper’s contribution. Sec-
tion III shows the experiment setup, device used, and the
models chosen. In Section IV, the experimental results are
presented and finally, in Section V the conclusions are drawn.

II. BACKGROUND AND CONTRIBUTION

In this Section, we introduce the reliability issue, discuss
the related works in the area, and highlight our contribution.

A. Reinforcement Learning

In a typical Reinforcement Learning (RL) setting, an agent
takes actions in a (partially) unknown environment and it gets
rewarded based on its state. More in details, at time ¢ the agent
is in state s; and takes an action a; according to a stochastic
policy:

mo(als) =Pr(a=a; | s = s), (1)

where 8 € R”™ are the parameters of the policy and 7 is the
probability distribution of sampling action a; in state s; at
time t. Performing action a; changes the state to s;y; and
the agent receives a reward r(s;, a;). Roughly speaking, the
reward is a performance indicator that guides the agent to
improve the learned policy. To this end, the agent explores
the environment trying to maximize the expected return of the
policy [16], i.e.,

max E., Zr(st,at) . 2)

t

In deep RL, the policy is usually represented by a Deep Neural
Network (DNN). During the training, an additive (Gaussian)
noise is added to the sampled action in order to favor the
exploration and increase the robustness.

In this paper, we exploit the Soft-Actor Critic (SAC) [17]
which is an example of an entropy-regularized deep RL algo-
rithm. SAC is designed to handle continuous RL problems, i.e.,
tasks with continuous state and action spaces, and, therefore, it
is well-suited for robotic applications. Instead of only seeking
to maximize the expected return, SAC seeks to also maximize
the entropy of the policy H(-), i.e.,

IHGE:LX Eﬂ-e ;T(St,at) +06H(7T('|St) . (3)
A high entropy in the policy is beneficial to explicitly encour-
age exploration. The scalar o > 0 is used to balance between
the two objectives, i.e., maximize the return and maximize the
entropy.

B. Radiation Effects in Electronic Devices and DNNs

The Earth is constantly bombarded by high-energy particles
coming from space. These particles interact with Earth’s atmo-
sphere, producing a flux of several different particles, mainly
neutrons. About 13 neutrons/((em?) x hour) reach the
ground [18]. When a neutron hits a transistor, the strike may
perturb its state which in turn generates bit-flips in memory
(the stored values are corrupted), or produces current spikes
in logic circuits that, if latched, lead to an error (the operation
output is wrong) [19]. Radiation-induced errors are transients,
i.e. they do not permanently damage the hardware circuit:
they corrupt the memory value or operation output. Neutron-
induced errors are not accumulative, i.e. the probability for
one neutron to induce a failure does not depend on how long
the device has been exposed to neutrons nor to the number of
errors that happened in the past [15].

When a code is being executed over the corrupted hardware,
a transient fault may not affect the program output (i.e., the
fault is masked, or the corrupted data is not used) or may be
propagated through the stack of system layers leading to a
Silent Data Corruption (SDC - the output is corrupted without
any indication), or Detected Unrecoverable Errors (DUEs - a
program or system crash). To exemplify the concept of SDCs,
the computing device will output a value that is different from
the expected one, without any flag or warning that the value
is wrong. SDCs, being silent, are much more critical than
DUE:s that, by definition, are detectable and can trigger safety
actions [15], [20]. When a DNN is executed on a device expe-
riencing a transient fault, its output corruption can be tolerable,
if the system behavior is maintained sufficiently correct, or
critical, when it causes a system failure [21], [22]. What we
show in this paper is that, despite the intrinsic redundancy and
feedback effect of DRL models, the probability for critical
errors to occur is far from being negligible.

C. Coral Edge TPU

Vendors have developed low-cost accelerators for machine
learning execution, named EdgeAl devices that execute ele-
mentary operations (i.e., convolutions and some other matrices
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Fig. 2. Google’s Coral Edge TPU architecture. Adapted from [5].

operations) in low precision (16-bit floating point or even 8-
bit integer). Coupled with a good software framework (e.g.,
Tensorflow) that runs on a host device, EdgeAl devices sig-
nificantly reduce the time and power consumption of DNNs
execution.

The Edge TPU developed by Google is a coprocessor spe-
cialized in efficiently computing convolutions. Convolutions
are the building blocks of CNNs, making the Edge TPU
efficient in accelerating CNNs. The Edge TPU we use as the
case study device is capable of computing 4 Tera operations
per second with a maximum consumption of 2 watts. In order
to maintain a small size and keep a low power profile, in the
Edge TPU all internal operations are in unsigned 8-bit integers.
The use of unsigned 8-bit integers also helps to diminish the
latency of data transfer between the host and Edge TPU. Since
the host uses neural networks in floating-point, the input and
output need to be converted to unsigned integers before and
after the model using a layer of quantization before the input
and a layer of de-quantization after the output of the Edge
TPU. This process is performed by the host device. Figure 2
shows an overview of the architecture of the Edge TPU, which
is composed of a main systolic array fed by a large set of input
buffers. The systolic array applies the model’s weights on each
layer’s input and passes them into the activation unit, where
the partial sums are accumulated and the activation function
is applied. It is worth noting that these buffers and the main
systolic array do not have any error correction capability.

Some previous work has been done on the reliability of the
Edge TPU. In [23], researchers tested several different TPUs,
including the Coral. However, in their work, they irradiate
the Edge TPU with heavy ions and high-energy protons,
while in this work we irradiate the Edge TPU with high-
energy neutrons. Also, we tested only object detection neural
networks, while we explored the reliability of reinforcement
learning models. In [24], the authors report the Edge TPU
reliability under high energy and thermal neutron radiation.
The authors tested several different types of classification and
object detection neural networks, while in this work we use
the same device and the same radiation type but report the
reinforcement learning reliability of 4 different models.

We use a Raspberry Pi 4 as the host device in order

to control the Edge TPU. As discussed in Section III-A,
we place the host CPU meters from the neutron beam, that
is, we only irradiate the Edge TPU and consider the host
procedures unaffected by radiation. The framework used to
control the Edge TPU is based on the TensorFlow Lite, a light
version, optimized for embedded devices, of the TensorFlow.
To execute a CNN model on the Edge TPU, the model needs
to be prepared first. Starting as a normal TensorFlow model
using a 32-bit floating point in the model layers, the first thing
is to convert from a floating-point number to an 8-bit unsigned
integer and convert it to TensorFlow Lite. Lastly, convert
quantized TensorFlow Lite to TensorFlow Lite compatible with
the Edge TPU. All of these steps are already provided by
Google as either Python or C++ libraries.

D. Contributions

We provide the first experimental evaluation of the impact of
radiation in the execution correctness of Deep Reinforcement
Learning (DLR) on Edge TPUs. Besides estimating the error
rate on a realistic application, we also distinguish between
critical and tolerable errors. For the former, we provide an in-
depth analysis of the causes of the system failure. Our study
is the first to target the reliability of reinforcement learning
and the fault outcome in robotics applications. With our data,
we provide useful information to improve the reliability of
embedded reinforcement learning.

III. METHODOLOGY

In this section, we describe the radiation experiment setup,
the tested application, and the devices.

A. Neutron Beam Experiments

We performed the radiation experiments at the ChipIR
facility of the Rutherford Appleton Laboratory (RAL) in
Didcot, UK. ChipIR delivers a neutron beam that mimics the
atmospheric neutron one [25]. The average neutron flux at
ChipIR was about 3.5 x 10°n/(cm?/s), which is about 2 x 10°
higher than the natural one (13 neutrons/(cm? x hour)). We
test the Edge TPU for about 62 effective hours (i.e., without
considering the setup and result checking time) at ChipIR.
Figure 3 shows part of our setup at ChipIR.

We run the Deep Reinforcement Learning (DRL) models on
the Edge TPU accelerator. We irradiate the Edge TPU with
a 3 x 3 cm beam spot, which is sufficient to irradiate the
chip uniformly. A host Raspberry Pi, connected with a USB
extension, was placed 2 meters from the beam spot, where the
number of neutrons is negligible.

During irradiation, we execute continuously the models
(discussed in the following subsection) with known inputs and
compare the experimental output with pre-computed fault-free
output. Once a mismatch is detected we count a Silent Data
Corruption (SDC) and download data for post-processing.
A watchdog detects application or system crashes, to count
Detected Unrecoverable Errors (DUEs, i.e., crashes or hangs).
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Fig. 3. The neutron beam test setup at ChipIR. the Edge TPU is aligned with
the neutron beam, while the host Raspberry Pi is placed 2 meters away.

B. Tested Deep Reinforcement Learning Models

For our experiments, we consider Soft-Actor Critic
(SAC) [17], a widely adopted DRL algorithm. We have chosen
four different SAC models: Walker2D V3, Half-Cheetah V3,
Hopper V3, and Humanoid V3. The models were chosen due
to their increasing complexity: Walker2D V3 models only the
lower part of a bipedal body, Half-Cheetah V3 models only
the horizontal half of a quadruped animal (a single front leg
and a single hind leg), Hopper V3 is composed of a single
leg with a foot, and Humanoid V3 is a simplified complete
humanoid body, with legs, torso, arms, and head. Considered
models and trained SAC policies are publicly available [26].

We have designed two types of experiments, one with and
one without environment simulation: we fed the Edge TPU
with pre-computed data (without simulation) or with real-
time processing based on the (possibly corrupted) feedback
from the Edge TPU (with simulation). The experiment without
simulation is useful to measure the overall FIT rate of the
device, since the execution time on the host (not irradiated)
is short, reducing the wasted beam time (if the Edge TPU
is idle neutrons have no effect on the experiment). Then, to
track the neutron effect on the model’s behavior, we perform
the experiment with full environment simulation. In the ex-
periments with simulation, we log several different parameters
including the model’s velocity and position, if they differ from
the expected values. The comparison is made in each step. It is
important to notice that all models run entirely on the TPU, so
the communication between TPU and host happens only at the
beginning and at the end of each step. During execution, the
TPU uses its own internal memory, so the distance does not
influence the execution time. Lastly, the model’s parameters
are kept in the TPU, since the model does not change with
the steps.

IV. EXPERIMENTAL RESULTS

In this section, we present and discuss the experimental
results obtained when exposing the Edge TPU executing DRL
models to an accelerated neutron beam.
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Fig. 4. SDC FIT rate and DUE FIT rate of all models with and without
simulation. Data is shown with 95% confidence intervals considering a Poisson
distribution.

A. FIT rate

Figure 4 shows the Failure In Time (FIT) rate of the
Edge TPU executing the four models, with (red) and without
environment simulation (blue). We separate the contribution
of Silent Data Corruptions (SDCs, i.e., output error, in the
filled bars) and of Detected Unrecoverable Error (DUE, i.e.,
crashes, patterned bars). We recall that the FIT is the number
of errors expected in 10° hours of operation. The FIT values
might seem low, in the sense that one TPU executing the
tested models continuously for 10° hours (~ 114,000 years)
will experience up to 176 errors (Half Cheetah V3 without
simulation) 114 SDCs, and 62 DUEs. This might seem a
reasonable error rate for a stand-alone chip employed in user
applications. However, the expected large-scale adoption of
EdgeAl devices exacerbates the probability of having several
errors per hour, urging accurate evaluations. Indeed, according
to the ISO2626-2 international reliability standard, a device
employed in a safety-critical system, such as an autonomous
vehicle, must have a FIT rate lower than 10 [27]. Our data
shows that the Edge TPU can have an error rate that is 10 times
higher. For instance, if Half-Cheetah V3, the model with the
highest FIT rate, is employed in 1 billion devices, the overall
expected error rate will be approximately 176 errors per hour.
From the observed FIT rate, we draw a first conclusion that
the reliability of the DRL policies running on the Coral Edge
TPU needs to be further investigated and characterized.

As mentioned in Section III-B, in the experiment without
simulation we fed the Edge TPU with pre-computed steps
(thus reducing the host calculation overhead), while in the
experiment with simulation, the results of the computation are
transferred in real-time to the robot simulator and the updated
state is re-fed to the Edge TPU. We made the experiments
without simulation in order to get the FIT rate more efficiently
since the simulation takes a considerable amount of time to run
(up to 80%). However, the experiment with the simulation is
necessary to track the fault propagation through the model’s
behavior. The results for the effect of faults are shown and
discussed in the next subsection. It’s important to note that
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the simulation is not affected by neutrons since it is executed
on the Raspberry Pi’s CPU. The two configurations (with and
without simulation) have similar FIT rates, for all four tested
models. The FIT rate of the executions with and without
simulation are similar, the difference being less than 43 %
This should not be a surprise, since in both cases, the Edge
TPU executes the same operations, while the simulation runs
on the Raspberry Pi which is out of the beam. Neutron effects
are transient and not cumulative, thus in the FIT calculation
we only consider the fluence in the irradiated TPU during the
execution of the steps, not during simulation.

We observe that DUEs are less likely to occur than SDCs
in Hopper (only on the experiments with simulation), Half
Cheetah, and Walker, while they are comparable with SDCs
in Humanoid. We focus our discussion on the experiments
with simulation, which is the realistic configuration for Rein-
forcement Learning. Hopper V3 has different trends in the
ratio SDC/DUE, which is due to the lower SDC FIT rate
compared to other models, which makes the DUE component
relatively more important. DUEs are detectable (the appli-
cation crashes) and, thus, are to be considered less critical
than SDCs [15]. Nonetheless, given the high FIT rate of
DUEs we have observed, it is necessary to guarantee that,
in the event of an application crash, the robot will maintain a
safe position while the computing system is rebooted. DUEs
can be easily detected with a watchdog that, when triggered,
makes the robot enter a safe position which depends on the
environment and application. Since DUEs do not provide
further information, besides the observed application crash, in
the following discussion we will focus on SDCs, to understand
how the operation of the robot is influenced by the wrong
computation.

Figure 4 shows that the more complex models (Walker2D
V3, Half Cheetah v3, and Humanoid V3), i.e., those with more
joints, are the ones with higher FIT rates. This difference is
up to 5.26x between the lowest (Hopper V3) and the highest
(Half Cheetah V3) on the experiment without simulation (blue
bars). Of all models, Humanoid V3 is the most complex due
to the fact that it has an upper body section with a sectioned
torso, arms, and a head. In contrast, Half Cheetah V3 has
a pair of legs (front and hind legs) and the Walker2D V3
only models a pair of human legs. The higher FIT rate for
Half Cheetah, Walker, and Humanoid comes from the higher
number of operations executed on the Edge TPU. Indeed, DRL
control policies take as input the robot state (joint positions and
velocities) and output control actions, leading to networks of
different sizes. For comparison, the Hopper V3 (the simplest
model) model has 15 states and 3 actions, while Humanoid
V3 (the more complex model) has 44 states and 17 actions.
A higher number of operations increases the probability for a
neutron to hit the Edge TPU while processing, thus increasing
the error rate. But this also may not be the only contributing
factor. When comparing Humanoid with Half Cheetah, we can
see that Half Cheetah has a higher FIT rate than Humanoid,
despite Humanoid being more complex. This may indicate that
the model structure may also contribute to the overall FIT rate
since Half Cheetah has fewer states and actions(16 states and 6
actions) than Humanoid. Despite not being the most complex

TABLE I
PERCENTAGE OF THE OUTCOME OF THE ERRONEOUS EXECUTIONS.

FINISHED NoOT FINISHED
w/ ERROR  W/O ERROR
HOPPER V3 33.33% 33.33% 33.33%
WALKER2D V3 9.09% 9.09% 81.82%
HUMANOID V3 8.57% 8.57% 82.86%
HALF CHEETAH V3 88.24% 11.76% 0%

model, Half-Cheetah has the highest FIT rate. Half-Cheetah,
despite having just two legs as all the models we test, is based
on a four-legged being. The four-legged structure is shown to
be more stable than a two-legged one in the occurrence of a
fault. In fact, as our results show, it is unlikely for a fault in
the Half-Cheetah model execution to induce the robot to fall.
Also, as will be discussed further the type of predominant
critical SDC also changes.

B. Radiation-induced effect on the model’s execution

To have a further fine-grain analysis of the outcome of
radiation-induced faults, we list, in Table I, the observed
outcome of the SDC during the execution of the robotic task.
For the four considered models, the goal is to walk straight (x
direction) as much as possible within a maximum number of
simulation steps. An execution without failures is considered
as the expected outcome of each model. We count the number
of detected SDCs on the experiment with simulation and
classify all erroneous executions into three categories: (i)
Finished Without Error: the model shows only errors on the
intermediary steps, before the final one, but can still reach
the correct final step. (ii) Finished with Error: the model
completes the expected number of steps, but the final position
has at least one wrong parameter (for example speed, position,
and reward); (iii) Not Finished: the model stops before the
expected number of steps. We consider both Finished with
Error and Not Finished as critical, while Finished without
Error indicates that an error occurred in one of the steps but,
in the following steps, the model was able to recover.

It is interesting to see that, for the majority of the models,
being Half Cheetah the exception, the fault makes the robot
to stop before completing the expected number of steps.
This means that it is highly probable that a radiation-induced
fault will lead the robot to completely fail the task on these
models. In the worst case, more than 82.86% of the erroneous
runs make the model stop before expected (Humanoid V3).
Walker2D V3 has a similar behavior, with 81.82% of the
errors forcing the model not to reach the end. In the considered
models, the stop condition is triggered if the maximum number
of steps is reached, but also when the robot falls (this is
measured by a health function that considers the height of
the model and the position of the torso). Therefore, if the
model does not arrive at the expected number of steps, we can
assume that the robot has fallen due to the radiation-induced
fault. Hopper V3 is the only model that has equal probability
in the three categories. However, this might be due to poor
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Fig. 5. Histogram of the distance traveled by the model. The data is
normalized by the expected distance.

statistics, since for Hopper V3, due to beam time constraints
and the lower error rate, we have observed only a few errors.
However, when looking at Half Cheetah we can see that it
has the highest FIT rate but it’s not the most complex model.
Also, it is interesting to see that the model manages to always
finish even in the presence of errors, with the majority of times
finishing with error. The fact that it manages to finish all the
time, can be explained by the fact that Half Cheetah is more
stable due to the disposition of legs (like a quadruped animal)
and the lateral stability is not modeled (the model cannot fall
sideways). Also, when comparing to the other models we can
assume that due to the structure of the model of Half Cheetah,
a fault is more likely to make the model misbehave but they
are less likely to make the model fall, while in Humanoid,
Walker 2D, and Hopper the neutron is less probable to create
an error but they are more probable to make the model fall.
We can further analyze the observed critical SDCs con-
sidering the distance covered by the model before falling.
Figure 5 shows a histogram of the distance where the model
has stopped normalized by the expected distance (from a
successful execution). The critical errors are grouped in ranges
of 10%, from 0% to 100%. Humanoid V3, in 84.38% of
the critical SDCs, has traveled up to 70% of the expected
distance. Walker2D V3 traveled, on average, a little further,
with 60% of the critical errors happening on up to 60% of
the expected distance. This means that, despite Walker2D V3
having a similar FIT rate and a similar rate of critical errors to
Humanoid V3, the former is able to reach a closer position to
the final one. This can be justified considering that Humanoid
V3 has an upper body, which is easier to destabilize than
Walker 2D V3. The outlier is Half Cheetah where in 96%
of the critical SDCs, the model has traveled more than 80%
of the expected distance while finishing the expected number
of steps, and in 80% of the critical SDCs, Half Cheetah has
traveled more than 95% of the expected distance. This shows
that a fault in this specific model is more likely to disturb
the speed and, therefore the position than make it fall. One
main factor to this is the quadruped arrangement of the legs
(lateral stability is not modeled, i.e., the model cannot fall
on its side) which grants more stability for the model. These
characteristics influence the fault impact on the model behavior
and how far the model will go after experiencing a fault. Even
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Fig. 6. Histogram of the first erroneous step of the model. The data is
normalized by the expected number of steps.

if the model arrives at the destination, the wrong speed may
cause injury or equipment damage. Therefore, a developer
must employ good hardening solutions when developing a
robotic system with reliability in mind.

To understand the origin of the (critical) failures, besides
how far the model can travel, it is also important to see in
which step the faults are more likely to be generated. Our
setup allows us to track the fault from the first step in which a
mismatch was observed till the final step. As previously done
for the traveled distance, we take the critical errors and see in
which step the fault was first observed. We also normalized
these results with the expected number of steps for each model.
Figure 6 shows the histogram of probabilities of the step in
which the fault was observed. It is interesting to notice that
most of the errors happen in the first steps. For Humanoid V3,
84.38% of the SDCs begins in the first half of the expected
steps. For Walker2D V3, 70% of critical errors start in the
first half. For Half Cheetah, 70% of the errors begin in the
first half. These observations, when correlated with Figure 5,
indicate that a fault does not make the robot fall immediately.
On the contrary, the radiation-induced corruption triggers a
disturbance to the equilibrium that the model is unable to
handle, in the case of Walker 2D and Humanoid. In the case
of Half Cheetah, this disturbance seems to affect the speed of
the model and not its stability resulting in the model finishing
the expected number of steps but a little behind or further
than expected. Such a result is crucial since it demystifies the
false myth that reinforcement learning models are intrinsically
reliable thanks to their feedback. Also, the model’s architecture
may also dictate the consequence of an error on its behavior.

To further quantify and qualify how critical a (small)
radiation-induced corruption can be for the model equilibrium,
we measure the difference between the corrupted and the ex-
pected status before the failure. Figure 7 shows the difference
between the forward position at the last step before the model
stopped and the expected position at that step. The data is
plotted by the normalized expected final distance. The single
negative Walker 2D V3 SDC is a failure where the model went
backward and fell, and the lowest one of Half Cheetah is where
the model stayed still. On Humanoid V3, there are two SDCs
where the model finished beyond the expected distance. The
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Fig. 7. Difference between the position where the model stopped and where it
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V3.

first thing interesting to notice is that even a small deviation
may cause the model to fall. There are several SDCs with very
little difference in the stopping position. Most of the SDCs are
between 0.4 and —0.4 meters for Walker and Humanoid. Also,
faults that either delay the model or make it arrive early, have
similar probabilities of making the model fall. Finally, in most
cases, the model manages to go further (but still falls) only if
the failure happens later in the execution. For Half Cheetah
we report that the model always finished the simulation but
either a little behind than the expected distance or a little after.
When combining this information with Table I, we can see
that a fault does not make the model fall but affects its speed.
Despite managing to arrive at the goal and finish the expected
number of steps, a wrong speed may cause personal injury or
equipment damage due to arriving at a position earlier or later
than expected resulting in a collision with other equipment or
personnel. Our results clearly show that feedback controllers
learned by SAC are not able to reject disturbances, losing one
of the important properties of feedback control.

V. CONCLUSION

In this paper, we have evaluated the neutron reliability
of deep reinforcement learning algorithms when the learned
control policies are executed on the Coral Edge TPU. In
our analysis, we considered four robot models of increasing
complexity: Hopper V3, Walker V3, Half Cheetah V3, and
Humanoid V3. Our experimental results indicate that using
the Edge TPU device to control an autonomous robot is an
unreliable solution, despite being cost-effective and energy-
efficient. Moreover, we show that most of the SDC errors are
critical. This means that, when a robot suffers a failure, the
probability of it not finishing its mission as expected is high.
In our experiments, we observed that Half Cheetah, Humanoid
V3, and Walker V3 fall in more than 80% of the cases. This
is despite the fact that SAC policies are feedback controllers,
commonly considered robust to external disturbances.

Our evaluation opens new lines of research that will address
the reliability problem, like designing hardening solutions
during the training to increase the capabilities of DRL policies
to reject disturbances.
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