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Abstract— Evaluating the impact of utilizing different GPU
resources is crucial for gaining insights into the reliability of
GPUs when exposed to radiation. In this study, we employed
various versions of a microbenchmark to investigate the effect
of different memory types on the performance of a low-power
GPU integrated into the Tegra X1 (TX1) system on a chip
(SoC) of a Jetson Nano board. Additionally, we explored the
tradeoff between enhanced computational performance and the
occurrence of failures over time by optimizing the utilization
of GPU resources. Our findings demonstrate that maximizing
the utilization of the device’s cores enables the completion of
a greater number of computations without errors. By fully
harnessing the computational potential of the GPU cores,
we effectively increase the work that we can complete between
failures. Moreover, we observed that the use of the different
memory types has a significant influence on the overall reliability
of the GPU. The outcomes of this research contribute to a
comprehensive understanding of the interplay between GPU
resources, irradiation effects, and reliability. This knowledge is
instrumental in guiding the development of robust GPUs for
applications in radiation-prone environments.

Index Terms— Fault tolerance, GPU, microbenchmark, neu-
tron, radiation, soft error.

I. INTRODUCTION

MODERN GPUs have become increasingly complex and
powerful devices, employing technologies with large-

scale integration. They are utilized across a wide range of
applications, each with varying requirements in terms of
size, price, reliability, computational performance, and power
consumption. High-performance GPUs consist of thousands
of cores, encompassing integer and floating-point computing
units with varying precision, along with multiple control units
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like warp schedulers and instruction dispatchers. These devices
also feature a very large number of registers and multiple
levels of memory with differing performance characteristics.
With the rise of neural network applications, GPUs have
even started incorporating specialized components such as
tensor cores [1]. This heightened complexity and diversity
of components pose significant challenges in analyzing
the reliability of GPUs and identifying the sources of
potential errors. These errors can arise from various factors,
including manufacturing defects, voltage scaling, hardware
wear-out, or radiation effects [2], [3]. In data centers, which
increasingly deploy high-end GPUs in their nodes, these
errors have become more prevalent [4], [5]. Furthermore,
safety-critical environments such as space missions [6],
autonomous driving [7], [8], and railway signaling [9] have
also incorporated SoCs with increasingly powerful GPUs [10].
Understanding and addressing the reliability challenges posed
by these errors is crucial for ensuring the robustness and
dependability of GPUs in diverse applications and demanding
environments.

This article focuses on the investigation of soft errors
induced by terrestrial radiation, which refers to transient errors
that occur in the processing logic and memory components
of GPUs. Accelerated radiation is a widely used method for
analyzing the reliability of such devices. However, pinpointing
the software and hardware sources of radiation-induced errors
presents significant challenges [11]. Microbenchmarks that
stress specific GPU components offer a promising solution
for narrowing down these sources [12], [13]. For example,
they allow us to test the behavior of different types of
memories, such as registers, L1 cache, or L2 cache, or to
evaluate the fault tolerance of using one resource of the GPU
(i.e., floating point unit and LD/ST unit) when repeatedly
executing some assembly instructions. We have designed a
simple microbenchmark that iteratively performs different
arithmetic operations per iteration and thread. We have used
CUDA to implement it [14]. One of our goals is to increase
the number of instructions executed per cycle in order to
stress the arithmetic and control units of the GPU. Besides,
by modifying the size of the grid and thread block, we can
systematically change the computational load of the cores,
warp schedulers, dispatch units, and other control components
of the GPU. Additionally, we have implemented three versions
of each microbenchmark that differ in the type of memory used
to store the result of the operations on each thread. Namely,
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we have used registers, shared memory, and global memory
to store the result. This way, we can also assess the effect
of using different types of memories in the error rate of the
microbenchmark. The microbenchmark was also designed to
facilitate the task of identifying errors in the result on each
thread due to radiation. To perform the radiation experiments
and facilitate the analysis of the results, we used a small
low-power GPU integrated into the Tegra X1 (TX1) system
on chip (SoC), which is part of the NVIDIA Jetson Nano
platform [15]. By using this experimental setup, we aimed to
gain insight into the behavior and vulnerabilities of low-power
GPUs under radiation, contributing to a better understanding
of their reliability in radiation-sensitive environments.

The main contributions of the article can be summarized as
follows.

• We assess the soft error reliability of the GPU integrated
into a low-cost and low-power SoC, specifically the
TX1 SoC featured in the NVIDIA Jetson Nano board.
Platforms of this nature prove highly valuable in
environments with constraints on power, weight, and size,
as seen in applications like space missions and other
embedded systems, which are increasingly prevalent in
the IoT era. Therefore, it is important to assess the soft
error reliability of this kind of platform, which has been
less studied that other discrete and higher performance
GPUs not included in SoC.

• We design and implement a simple microbenchmark
using CUDA that can run a high number of instructions
per cycle (IPC). Besides, it allows us to easily increase the
utilization of the main resources of the GPU by changing
the grid and thread block sizes. This allows us to assess
the relation between the observed error rates and the
use of the resources of the GPU including, for example,
cores, warp schedulers, dispatch units, and other control
components.

• We analyze the effect of using the different memories
of the GPU in the error rates. In particular, we compare
the effect of using registers, shared memory, and global
memory and, in some cases, the cache memories.
To do this, we have developed three versions of the
microbenchmark that stress the use of each particular type
of memory.

• We leverage the profiling metrics of the GPU to
examine the relationship between resource utilization,
computational performance, and the reliability of the
different versions of the microbenchmark. Results show
a strong correlation between the SDC failures and the
performance of the code.

Experimental results show that maximizing core utilization
reduces reliability issues caused by radiation and that the
choice of memory type has a significant impact on GPU
reliability.

The use of a low-power GPU with only one streaming
multiprocessor (SM) simplifies the experiments and results
analysis, as all thread blocks are executed in the same
SM. However, similar results and conclusions have been
obtained using other benchmarks and microbenchmarks to
stress the resources of GPUs with more SMs. For example,

Rech et al. [16], use matrix multiplication, Fast Fourier
Transform, and two synthetic benchmarks where each thread
performs floating point sums or multiplications. They test the
codes on two high-performance GPUs with 14 and 15 SMs.
They study the effect of varying the grid and thread block size
and find that increasing the degree of parallelism, and thus
the resource utilization, increases the cross section. However,
optimizing core utilization can compensate for this increased
error rate and allow more work to be completed without errors.

The remaining sections of the article are organized as
follows. In Section II, we provide an overview of related
work in the field of GPU reliability, including studies on
microbenchmarking and the utilization of profiling metrics.
Section III presents detailed descriptions of the device under
test (DUT) and the experimental environment used in our
study. In Section IV, we present and discuss the experimental
results obtained from our investigations. Finally, in Section V,
we summarize the main conclusions drawn from our research.

II. RELATED WORK

Over the past decade, there has been extensive research
conducted on the radiation reliability of various types of GPUs.
The majority of these studies focus on high-performance
GPUs that consume substantial power, as indicated by previous
works such as [17], [18], [19]. However, fewer studies have
explored the behavior of low-power GPUs integrated into
commercial off-the-shelf (COTS) SoCs, as highlighted by the
works showed in [20], [21], and [22]. To the best of our
knowledge, experiments using radiation with our DUT, which
comprises a Jetson Nano board, have only been published
twice. Slater et al. [23] tested it using gamma ray photons
to assess its suitability for space missions by determining its
tolerance to radiation using total ionizing dose (TID). Serrano-
Cases et al. [24], show that using redundant kernel execution
is an effective way of reducing the SDC cross section of the
Jetson Nano when exposed to proton irradiation. They also
show that the CPU in the SoC is the main source of the
functional interrupts detected.

A wide range of benchmarks has been employed to
assess the radiation reliability of GPUs. Among these, the
matrix product benchmark stands out as one of the most
commonly used methods, as evidenced by studies such as
the ones included in [16] and [25]. Additionally, various
other codes, both memory-bound and compute-bound, with
distinct characteristics in terms of GPU resource utilization,
have been utilized, as highlighted in works like [13], [18],
[21]. Furthermore, in recent years, numerous studies have
focused on evaluating the fault tolerance of neural networks
on such devices, as demonstrated by research included
in [26] and [27].

Sometimes, it is essential to evaluate the reliability of
specific components within a device, such as memory,
arithmetic units, load/store units, and others. In such cases, it is
advantageous to implement simplified benchmarks that solely
utilize the specific component of the architecture that we wish
to assess. This approach allows for a more focused evaluation
of the targeted component’s reliability and performance.
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For instance, in the studies showed in [4] and [28], neutrons
were employed to evaluate the neutron sensitivity of GPU
L2 caches and register files. These memory structures are
responsible for the majority of failures in modern GPUs.
The researchers focused on two different GPU architectures:
Fermi (40 nm technology) and Kepler (28 nm technology).
Special attention was given to the occurrence of multiple bit
and multiple cell upsets. The experiments revealed that the
employment of the ECC mechanism, capable of detecting
double bit errors and correcting single bit errors, proved
sufficient to detect and correct all observed errors. Additional
experiments were documented in [17], wherein the same
architectures were tested, including the L1 cache memory
of the GPU. The results confirmed that the GPU with the
Kepler architecture, which is newer than the GPU with the
Fermi architecture, exhibited improved memory reliability.
Moreover, the reliability of the GPU’s arithmetic units was
also evaluated under radiation in [16]. The authors utilize two
microbenchmarks to assess the behavior of two GPUs during
repeated execution of floating-point sums and multiplications.
The degree of parallelism was varied by adjusting the number
of threads while increasing the number of operations per
thread.

At a lower level, exploring the behavior of specific
assembler instructions under neutron radiation can provide
valuable insights. The study showed in Hari et al. [12], utilized
both error injection and radiation techniques to evaluate
seven commonly used low-level assembly SASS instructions
executed by workloads from the Rodinia benchmark suite [29].
These instructions encompass various operations, including
integer and floating-point operations (IADD, FADD, IMAD,
and FFMA), shared memory load (LDS), branching (BRA),
and the ISETP instruction, which performs a comparison and
stores the result in a predicate register. For each microbench-
mark, the authors implemented a CUDA kernel that repeatedly
executed the targeted instruction. The experiments were
conducted on an NVIDIA K40 Tesla GPU with the Kepler
architecture. A similar methodology, combining injection and
radiation experiments, was employed in the study presented
in [13] to evaluate the silent data corruption (SDC) and
detected unrecoverable error (DUE) FIT rates of six low-level
assembler instructions. Additionally, the authors implemented
a microbenchmark to evaluate the FIT rate of the Register File
storage. The experiments were conducted on two GPUs with
Kepler and Volta architectures.

Profiling techniques have been employed by researchers to
obtain behavior and performance metrics of different codes,
enabling the exploration of their relationship with reliability.
In the study showed in [13], various higher level benchmarks
were used to assess the reliability of GPUs. To gain insights
into the contributions of low-level instructions within these
benchmarks, the authors utilize profilers such as nvprof
and nsight-compute [30]. By profiling these codes, they
were able to analyze the performance characteristics of
individual instructions. Additionally, the authors proposed a
model to estimate the FIT rate of different codes. This model
leverages two well-known performance metrics provided by
the profilers: IPC and Achieved Occupancy of the GPU. In the

Fig. 1. DUT. TX1 SoC included in a Jetson Nano SoM.

subsequent sections, we will also employ these metrics to
evaluate how our microbenchmark utilizes the resources of
the GPU.

Finally, in the study presented in Topçu and Öz [31],
the authors put forward a machine learning methodology
to predict the vulnerability of GPU applications to soft
errors. They employed regression and classification models
to forecast the rates of masked faults, SDC, and crashes
for various benchmarks. These predictions were based
on metrics collected through simulation and the profiling
tool nsight-compute. The classification models achieved
impressive maximum prediction accuracy rates ranging from
82.6% to 96.6%, depending on the specific type of error.

III. EXPERIMENTAL ENVIRONMENT
AND METHODOLOGY

A. Device Under Test

The NVIDIA TX1 SoC was used as the DUT in this
study [15]. This SoC is built using 20 nm planar technology
and consists of a quad-core ARM Cortex-A57 CPU that
implements the Armv8-A architecture. Each core is equipped
with a 48 KiB L1 instruction cache, a 32 KiB L1 data cache,
and a 2 MiB L2 unified cache that is shared by all cores.
Additionally, the cores feature the advanced SIMD NEON
extension that supports vector operations with both integer and
floating point elements.

The TX1 SoC also includes an NVIDIA Maxwell GPU with
1 symmetric multiprocessor (SM) that is partitioned into four
processing blocks, each with its own instruction buffer, warp
scheduler, and 32 CUDA cores. The GPU has a 256 KiB L2
cache, 64 KiB shared-memory, and 64 K (32-bit) registers.
While the L2 cache of the CPU supports error-correcting codes
(ECCs) and they were enabled during all our experiments,
GPU memories does not support this mechanism.

To support the CPU and GPU, the TX1 SoC is integrated
into an NVIDIA Jetson Nano system-on-module (SoM) that
also includes 4 GiB of external DDR4 memory. This memory
is shared by both the CPU and GPU. Fig. 1 shows the main
components of the DUT.
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Fig. 2. Setup of the experiments showing the six irradiated Jetson-Nano
boards.

B. Setup and Procedure

The beam was focused on a spot with a diameter of 2 in
plus 1 in of penumbra, which provided uniform irradiation of
the GPU chip without directly affecting nearby board power
control circuitry and DDR memories. Even if the beam is
collimated, scattering neutron may be found outside the beam
spot.

The experiments were conducted in November 2022 at
the ChipIR facility of the Rutherford Appleton Laboratory
in the U.K., where a beam of neutrons with an energy
spectrum similar to atmospheric radiation was used [32].
The average neutron flux was maintained at approximately
3.14 × 106 n/(cm2

·s), and the total flux during the irradiation
campaign was 2.28 × 1011 n/cm2. Six Jetson boards, including
the TX1 SoC under test, were irradiated as shown in Fig. 2.
The entire SoC was affected by the irradiation. That includes
the four CPU cores and the GPU with its shared, L1, and
L2 cache memories. The beam spot was focused on the SoC
and the position of the board was chosen to reduce the effect
of radiation on the DDR memory. However, even when the
beam is collimated, scattered neutrons can be found outside
the beam spot and can also affect this type of external memory,
which contains the operating system and all the files with our
codes and results. All experiments were conducted at room
temperature.

The Jetson Nano Development Kit comes with a heat sink
attached to the SoM, which provides effective cooling for high-
performance computing, and we added two fans to improve
heat dissipation. We followed the recommendations in [33] and
monitored the temperature and power consumption of the units
throughout the experiments by accessing the internal sensors
provided by the board.

In our setup, the six Jetson Nano boards sent test logs to a
host controller via their serial communications port. The host
controller was located outside the shielded irradiation room
and was not affected by the radiation. The controller was also
connected to the GPIO pins of the DUTs, allowing for remote
reset of each Jetson Nano board if the system hung. The
entire test was managed remotely from a laptop connected to
the host controller via Ethernet. We used power over ethernet
(PoE) technology to provide power and access to the boards
over the same Ethernet cable. Fig. 2 illustrates the radiation
test setup used during the experiments. We ran the Ubuntu

20.04 operating system with the CUDA 10.2 driver from an
external memory, which was connected to each Jetson Nano
board with a 30 cm cable and protected under several paraffin
blocks to reduce the effects of radiation on the operating
system and application files.

The microbenchmarks were implemented in C, and we
used Python scripts to run and test them. We used the
Python module Pexpect to spawn and control a subprocess
responsible for executing each microbenchmark. We included
three watchdogs to detect and recover from various hangs
of the tests and the operating system. The first timeout,
associated with the spawned process, was set to a time
greater than the maximum expected duration of each
microbenchmark. The second watchdog used the watchdog
Linux API to reboot the system if it hung for more than 20 s.
Finally, a watchdog was implemented on the host controller
to reset the device if the Jetson system hung and did not send
a log result for more than 25 s.

C. Programming Model and Microbenchmarks

The compute unified device architecture (CUDA), defined
by NVIDIA, is based on an array of SMs, each of which
contains multiple CUDA cores that can execute multiple
threads in parallel [14]. Threads are logically grouped into
thread blocks, which are dispatched to an SM and can utilize
its shared-memory. Thread blocks are further divided into
“warps” of 32 threads, which are scheduled to execute on
the cores of the SM. Thread blocks are organized in a grid.
CUDA programs combine host code, run on the CPU, with one
or more kernel functions that are executed on the CUDA cores
using a single instruction multiple threads (SIMTs) model.

Since the DUT’s GPU contains only one SM, the defined
thread blocks will execute sequentially. Each thread block will
be divided into warps of 32 threads, which will execute the
same instructions in lockstep, using the 128 available cores
in parallel. Starting with the Volta architecture, newer than
the Maxwell architecture of the GPU of the DUT, NVIDIA
introduced a feature called “thread-level warp,” that allows
threads within a warp to execute instructions independently,
rather that strictly in lockstep, thus improving the efficiency of
the GPU by reducing the impact of divergent branching within
warps. However, the entire warp still executes in lockstep when
it comes to certain operations, such as arithmetic instructions.
The GPU’s occupancy, use of instruction dispatchers and warp
schedulers, and the number of instructions executed per cycle
will depend on various factors, such as the number and size
of thread blocks, the code executed by each thread, and the
utilization of computational resources, such as registers and
memories, available on each core or on the GPU.

1: void micro ( i n t num_i te r , v o l a t i l e i n t ∗ g l o b a l ) {
2: i n t out , i n ~= mem = t h r e a d _ i d ;
3: #pragma u n r o l l 2
4: f o r ( i n t i t e r =0 ; i t e r < n u m _ i t e r ; ++ i t e r ) {
5: o u t = i n ∗mem + t h r e a d _ i d ;
6: mem = ( out −mem ) / i n ;
7: }
8: }

Listing 1. Microbenchmark kernel executed by every thread in the GPU.
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To assess the radiation reliability of the DUT, we use a
simple microbenchmark run by each of the threads using the
GPU cores. As can be seen in the Listing 1, each thread
performs a given number of iterations in which it performs
four basic arithmetic operations on integers. We have chosen
to use the integer data type since it allows us to more easily
achieve a higher number of IPC. We leverage both instruction-
level parallelism (ILP) and thread-level parallelism (TLP) to
increase the IPC and also the occupancy of the GPU [34].
We have used #pragma unroll 2 to unroll the loop,
increase the instructions that can be dispatched, and better hide
the memory access latency. Results show that this unrolling
increases the IPC of the code.

The microbenchmark basically uses three variables that
it stores in registers local to each thread (in, out and
thread_id). To study the effect of using different types of
memory, we use an additional variable mem. In the register-
only version of the kernel, this variable is stored locally in one
additional register per thread. In the version that uses shared
memory, the variable is stored in a dynamically reserved block
of shared-memory when the kernel executes. Each thread
accesses a different shared-memory location to work with its
variable mem. Finally, in the version that uses global-memory,
each thread accesses that variable in a different location in
global-memory stored out of the GPU, shared with the CPU
and passed as the second argument of the function. The
microbenchmark version utilizing global-memory incorporates
an extra parameter pertaining to the global memory employed
by the threads. To prevent the compiler from optimizing the
code by storing data in a register, we employ the volatile
keyword. This ensures that, during each iteration, each thread
reads the data directly from its original global memory
location. In the case of the version employing shared memory,
we similarly use the volatile keyword when declaring the
shared memory vector responsible for storing data used by
each thread.

We have designed the microbenchmark to facilitate the
detection of errors during its execution. If everything has
worked correctly, at the end of the execution, each thread
should store in its variable mem its unique global index
(thread_id). Therefore, we can easily detect whether
an error has occurred due to radiation and the number
of threads that have been affected by it by counting the
number of threads for which the above condition is not
met. The microbenchmark code is publicly available at
https://github.com/josembadia/microbench.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To investigate the impact of computational load on
the reliability of the DUT, we conducted three versions
of the microbenchmark using various grid sizes (representing
the number of thread blocks) and varied the number of threads
per block. The test configurations were denoted by the notation
gxby, where x indicated the grid size (i.e., the number
of thread blocks) and y represented the number of threads
per block. For instance, an example configuration would be
g32b64, which employed a grid consisting of 32 thread

blocks, each containing 64 threads, resulting in a total of
2048 threads.

The number of iterations run by the microbenchmark in
each variant was adapted so that the duration of all iterations
was 2 s. Thus, each type of experiment was subjected to the
same amount of radiation. Each variant was run continuously
under irradiation until a total of 100 errors of any type were
counted. In our experimental evaluation, we distinguish two
main types of detected errors due to radiation.

• Silent Data Corruption: The result of the microbench-
mark is not correct, that is, at least one thread finished
with a value different that its global thread index in its
variable mem. The radiation has affected the result of one
or more threads.

• Detected Unrecoverable Error: The program crashes for
example due to an exception while accessing outside its
memory segment, or the system hangs and produces a
system reboot.

A. Computation Performance and Profiling Metrics

The different variants examined use more or less GPU
components with varying degrees of intensity. The use of GPU
computing resources and memory can be assessed using the
nvprof profiler. Table I contains two of the most important
performance metrics provided by the profiler. These are the
average number of IPC and the GPU occupancy, which is the
ratio of active warps to the maximum number supported by
the SM. Three of the execution variants (g1b32, g1b128,
and g1b1024) use a single block of threads and contain 32,
128, and 1024 threads per block, respectively. In the case of
32 threads, we only use one of the four GPU core blocks and
only one warp scheduler and two instruction dispatchers. This
means that in the best case, using registers, the IPC in the four
core blocks is only 0.25 and the utilization is 1/64 = 1.56%,
as the maximum number of active warps in the DUT is 64.
In the case of 128 threads, we can use all the cores of the GPU,
but in practice, we only maintain an average of 0.96 IPC. It is
well known that in order to hide the latency between dependent
instructions, it is necessary to keep many more warps running
than the four running at any given time in the DUT [35].
By using a block with 1024 threads, we double the number of
instructions executed per cycle (2.04). In order to maximize
the workload on the core components of the GPU, we use two
additional variants (g32b64 and g64b32) that increase the
number of threads to 2048, which is the maximum allowed by
SM in the GPU architecture of our DUT. These two variants
make it possible to increase the average number of instructions
executed per cycle to more than 4.

Fig. 3 allows us to evaluate the computational performance
of each of the microbenchmark variants used. We can clearly
see how the number of arithmetic operations with integers
increases when we modify the size of the grid and of the thread
blocks. This happens independently of the type of memory
used. The increase correlates with the behavior of metrics
such as the average number of IPC, the issue instruction slot
utilization, and the average number of eligible warps per cycle,
among others. Obviously, using more efficiently the resources
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TABLE I
PERFORMANCE METRICS OF THE DIFFERENT VARIANTS

OF THE MICROBENCHMARK. TBS REFERS TO THE
THREAD BLOCK SIZE IN CUDA

of the GPU increases the computational performance of the
code. The figure also allows us to assess the effect of using
different types of memory in the microbenchmark. It is clear
that continuous access to global-memory slows down code
execution enormously. This can also be seen by comparing the
value of the IPC metric in the Table I when using different
types of memory.

Table II shows the number of memory transactions for
the three versions of the microbenchmark with four types
of memory: global, GPU L2 cache, GPU unified L1/Texture
cache, and GPU shared memory. The results are shown
with three of the variants of the test with an increasing
number of threads. The three versions of the algorithm use a
similar quantity of registers per thread and use the L2 cache.
Specifically, the shared memory version uses 19 registers
per thread, the global memory version uses 20 registers per
thread, and the registers version uses 18 registers per thread.
Note that in the last version, only one of these registers is
used to store the variable mem, while the rest are used to
store other local variables or to compute memory addresses.
The shared memory version is the only one to use this kind
memory. The metrics show that accessing the microbenchmark
variable mem in global memory significantly increases the
number of global memory transactions (glb_trans) and
also the use of the both cache memory levels of the GPU,
that is the L2 cache (l2_read_trans) and the unified
L1/Texture cache (tex_cache_trans). As a matter of fact,
the microbenchmark using global memory is the only one
using the unified cache memory of the GPU and increases
its use with the number of threads. The global_hit_rate
metric reflects that it has a 50% hit rate for global loads in
unified cache. The performance using registers and shared
memory is quite similar. Their use of the L2 cache is similar
and the shared memory transactions (shm_ld_trans) only
slightly reduce the operations per second. We can also see
that when we use global memory, both global and shared
memory transactions increase with the number of threads,
while these metrics remain constant for the versions of
the microbenchmark that use registers and shared memory.
Obviously, the only version that increases shared memory
transactions with the number of threads is the one that uses
this type of memory.

B. DUT Reliability

First of all, it is important to point out that radiation affects
not only the GPU running the microbenchmark, but the entire
SoC, including the CPU and its associated cache memory.

Fig. 3. Effect of the memory type and computational load in the performance
of the microbenchmark measured as billions of integer arithmetic operations
per second (GOP/s).

Radiation can also affect the process in charge of launching
the kernel to the GPU, collecting the results of the different
threads and checking their correctness, as well as all the
operating system processes that may be running during the
tests. Although the GPU is running the microbenchmark most
of the time during the tests, some of the errors detected may
be due to the effect of radiation on the CPU and the processes
it runs.

Second, it is worth remembering that although the overall
memory (DDR) of the device is less affected by radiation,
the CPU and GPU cache memories are included in the focus
of the beam. As we can see in the Table, there are a large
number of transactions with the L2 cache memory of the GPU
and this number is especially high in the case of the version
of the microbenchmark based on global memory, since the
variable accessed by each thread in the different iterations is
temporarily stored in this type of cache memory. Thus, the
effect of radiation on this type of cache may particularly affect
this version of the microbenchmark.

The modification of the grid and thread block size influences
not only the computational performance obtained by the
microbenchmark, but also the number of failures produced.
This is because it will increase the area used to perform the
calculations and the stress to which the different components
of the platform susceptible to particle impact are subjected.

To assess the radiation reliability, we ran more than
33 000 executions of the different variants of the microbench-
mark, exposing the Nano boards to a total fluence of
2.28 × 1011 n/cm2 for more than 21 h of irradiation. We use
the failures in time (FIT) metric to evaluate the radiation
sensitivity of the SoC while running the microbenchmark.
This metric is the number of failures detected in 109 h
having into account that the terrestrial radiation flux
is 13 n/(cm2

· h) [36].
Fig. 4 depicts the SDC and DUE FIT rates obtained

from various variants of the microbenchmark run. The figure
includes the confidence intervals computed with a confidence
of 95%. Unfortunately, due to time constraints during the
radiation campaign, sufficient data could not be obtained
for three specific variants: g1b32 with shared-memory and
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TABLE II
MEMORY USE METRICS

Fig. 4. Effect of the memory type and computational load in the FIT of the DUT. (a) SDC_FIT rate. (b) DUE_FIT rate.

global-memory, as well as g32b64 with global-memory.
Moreover, as the number of events of each type that we
were able to accumulate for each test is small, the level of
confidence in the results is not very high. However, it is of
sufficient quality to allow us to analyze the behavior of the
algorithms.

Comparing the FIT rates of both error types, it becomes
evident that the SDC rate is significantly lower than the DUE
rate. Neutron radiation primarily results in program crashes,
system hangs, and reboots, rather than producing incorrect
results in the code executed by the GPU cores. To illustrate,
the g1b32 test using registers experienced no SDC errors, but
the code crashed 27 times, requiring 26 system reboots due
to system hangs. Furthermore, it can be observed that SDC
errors increase with the use of GPU resources across all three
memory types. That is, as we increase the occupancy, IPC and
other performance metrics, and so the code performance, the
SDC FIT rate increases. This can be due to the increase in the
number of cores being used or the number of instructions they
execute per second and so the use of the instruction scheduler.
In the last two variants (g64b32 and g32b64), we are also
increasing the number of warps and so the use of the warp
schedulers.

The behavior of the DUE rates is quite different. This type
of error only increases when we increase the use of GPU
resources in the microbenchmark that does not use global or
shared memory, except in the case of 32 threads. On the
contrary, the DUE rates of the other two versions of the
microbenchmark does not seem to depend on the size of
the grid or the thread blocks, even if the use of the GPU’s

computational and memory resources is quite different, as we
can see in Tables I and II.

The behavior of both types of errors seems to confirm
that the DUE FIT can arise from errors that affect the
instruction cache or the code itself, but most of them are
dependent solely on hardware features such as control logic,
synchronization, and interfaces [21]. On the other hand, the
SDC FIT rate depends on how the device’s resources are
utilized and the architecture vulnerability factor (AVF), which
is the probability that a fault in the architecture will propagate
to the application’s result [37].

We have used the Pearson correlation coefficient to
statistically quantify the relation between the failure rate
and the performance metrics. Table III shows the correlation
between the failure rates of the two types of errors and the
IPC performance metric. Similar results are obtained if we
use other profiling performance metrics such as the issue slot
utilization or the eligible warps per cycle, but also if we use
the arithmetic operations per second of each version of the
microbenchmark. Coefficients confirm that there is a strong
correlation between the performance of the three versions of
the benchmark and the SDC FIT, while the DUE FIT only
shows this kind of correlation with the register-based version.

The FIT metric does not take into account the performance
of the code being executed and the amount of work that can
be carried out without being affected by any radiation-induced
errors. It may happen that some variant has a higher number
of FIT, but this problem is compensated by the fact that it has
been able to perform a much higher number of calculations
in the same time. To take this phenomenon into account,



1494 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 71, NO. 8, AUGUST 2024

TABLE III
PEARSON COEFFICIENT CORRELATION BETWEEN THE IPC PERFORMANCE

METRIC AND THE ERROR RATES OF THE DIFFERENT VARIANTS OF THE
BENCHMARK

Fig. 5. Effect of the memory type and computational load in the MWBF
measured as billions of integer arithmetic operations (GOP).

we use the mean work between failures (MWBF) metric [38].
We measure the work done by the microbenchmark as the
number of arithmetic operations with integers performed.
We have measured the number of arithmetic operations on
each variant of the microbenchmark. Since the execution of
all the variants used had a duration of 2 s, Fig. 3 shows
the work done by each of them, if we double the scale of
the vertical axis. The MWBF value for the different variants
is shown in Fig. 5, which demonstrates that the benefits of
using the GPU’s computational resources more efficiently can
compensate for a possible increase in errors. We can see,
for example, that although the number of FIT in the global-
memory version is similar to the other two versions, given the
very low performance obtained when using global-memory,
the amount of work that can be done before an error occurs is
much smaller than with the versions using registers or shared-
memory.

Therefore, if we want to increase the total amount of work
done without errors, it is best to maximize the GPU resources
use by launching the maximum number of threads supported
by SM and to leverage shared-memory for computation.
Since the amount of FIT does not increase substantially with
increasing GPU resource usage, except when we use more
registers, it is best to optimize our code implementation to get
the most out of those resources [21].

Our analysis also includes an examination of the number
of threads impacted by the SDC errors. The results reveal
that in nearly all instances (93%), only one thread’s outcome
was affected by the neutron-induced error. This outcome
aligns with expectations since individual threads perform
independent computations utilizing mostly distinct resources
such as arithmetic units, registers, and memory cells. Only
in few instances were the results of several tens of threads

impacted by SDC errors, and in just two cases were the results
of almost all threads affected.

V. CONCLUSION

Evaluating the impact of utilizing different GPU resources
is crucial for gaining insights into the reliability of GPUs
exposed to radiation. In this study, we employed various
versions of a microbenchmark to investigate the effect of
different memory types on the performance of a low-power
GPU integrated into the TX1 SoC of a Jetson Nano board.
Additionally, we explored the tradeoff between enhanced
computational performance and the occurrence of failures over
time by optimizing the utilization of GPU resources. Results
show that there is a strong correlation between the code
performance and the SDC failures.

Our findings demonstrate that maximizing the utilization
of the device’s cores enables the completion of a greater
number of computations without errors. By fully harnessing
the computational potential of the GPU cores, we effectively
reduce the reliability challenges posed by irradiation. More-
over, we observed that the choice of memory type has a
significant influence on the overall reliability of the GPU.

The outcomes of this research contribute to a comprehensive
understanding of the interplay between GPU resources, irra-
diation effects, and reliability. This knowledge is instrumental
in guiding the development of robust GPUs for applications
in radiation-prone environments.
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