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Abstract— Machine learning is among the greatest advance-
ments in computer science and engineering and is today used
to classify or detect objects, a key feature in autonomous
vehicles. Since neural networks are heavily used in safety-critical
applications, such as automotive and aerospace, their reliability
must be paramount. However, the reliability evaluation of neural
network systems is extremely challenging due to the complexity
of the software, which is composed of hundreds of layers, and the
underlying hardware, typically a parallel device or an embedded
accelerator. This article reviews fundamental concepts of artificial
intelligence, deep neural networks, and parallel computing device
reliability. Then, the reliability studies that consider the radiation
effects in the hardware, their propagation through the computing
architecture, and their final impact on the software output
are summarized. A detailed survey of the available strategies
to measure the sensitivity of neural network frameworks and
observe fault propagation is given, together with a summary
of the data obtained so far. Finally, a discussion on how to
use the experimental evaluation to design effective and efficient
hardening solutions for artificial neural networks is provided. The
available hardening solutions are critically reviewed, highlighting
their benefits and drawbacks.

Index Terms— Artificial intelligence (AI), convolutional neural
network (CNN), deep learning (DL), deep neural network (DNN),
detected unrecoverable error (DUE), EdgeAI, failures in time
(FITs), fault injection, field-programmable gate array (FPGA),
graphics processing unit (GPU), hardening, machine learning
(ML), particle beams, silent data corruption (SDC), single-event
effects, tensor processing unit (TPU).

I. INTRODUCTION

ARTIFICIAL intelligence (AI) has changed the program-
ming philosophy and the modern computing paradigm.

Machine learning (ML) has enabled the algorithm to learn how
to adapt to solve a problem [1]. An artificial neural network
(ANN), depending on its complexity, is capable of solving
problems that could be impossible with traditional imperative
programming languages. The most interesting type of ML is
deep learning (DL), in which several processing layers are
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used to extract progressively higher level features from the
input data. The resulting deep neural networks (DNNs) allow
us to find patterns in the input data, such as identifying objects
in a frame [2].

DL is more and more pervasive in our daily lives, with
the number of AI-based applications sharply increasing and
the deployment of intelligent systems becoming ubiquitous.
We count a number of novel technologies that are enabled
by ML, ranging from diagnosis of malignancies to automatic
predictive maintenance of industrial machines and to fully
autonomous vehicles [3]. This latter technology is particularly
interesting for both automotive (self-driven cars) and aerospace
applications (deep space exploration). While the advantages
of this trend are tautological, the potential harm due to the
adoption of this technology should not be underestimated.
Since AI-based applications are used to control safety-critical
applications, it is fundamental to investigate their reliability
and understand how to prevent failures from occurring.

The high number of operations required to execute DNNs
(hundreds of matrix multiplications per layer) forces reliance
on complex and high-performance parallel devices. The graph-
ics processing unit (GPU) is one of the most widely adopted
devices for accelerating the execution of DNNs. GPUs can
execute several threads in parallel, highly reducing the time
required for the training and inference (i.e., execution) of
DNNs [4]. Lately, some dedicated accelerators for DNNs have
been developed using field-programmable gate arrays (FPGAs)
or specific hardware, such as low-power EdgeAI devices and
tensor processing units (TPUs) [5]. These devices, similar
to GPUs, have a parallel structure. However, DNN-dedicated
accelerators are efficient only when executing specific oper-
ations such as convolutions and filters. Exotic solutions to
overcome the inefficiency of devices built with Von Neumann
architecture include neuromorphic chips that propagate neural
network signals mimicking human brain synapses [6]. The
common characteristic of all the hardware devices employed
for the execution of neural networks is parallelism. The capa-
bility of executing several operations in parallel is essential for
DNNs and not-naive networks; otherwise, the neural network
execution would take an excessive amount of time. Despite the
computing benefit of executing a high number of operations
in parallel, when it comes to reliability parallelism has some
drawbacks, in fact, a fault in particularly critical units (such as
the scheduler or the control units) or shared resources (such
as the caches) can impact the correctness of multiple values,
leading to malfunctions [7], [8].

Recent findings indicate that transient hardware faults,
such as those generated by radiation, may corrupt the ML
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model prediction dramatically [9], [10]. Unfortunately, some
experimental data show that the radiation-induced mispredic-
tion probability can be so high as to impede a safe deployment
of DNN models at scale, urging the need for efficient and
effective hardening solutions. Several beam experiments have
been documented, characterizing the radiation response to
high-energy and thermal neutrons, heavy ions, and protons of
AI accelerators [11], [12], [13], [14]. What is clear is that due
to the large area and the high amount of (critical) resources
available, the radiation-induced error rate of the available
commercial off-the-shelf (COTS) products for AI is far from
being negligible [15], [16]. Chip vendors have been improving
the reliability of their products [17], eventually making them
compliant with strict automotive reliability standards such
as ISO9696 [18]. However, rad-hard components sufficiently
powerful to execute DNNs are not available, yet. In fact, the
design and/or operation overhead necessary to make the chip
rad-hard is too costly for parallel accelerators. In this scenario,
it is then essential to understand at which level the available
COTS devices are sufficiently reliable for being adopted as part
of safety-critical applications and design effective and efficient
hardening solutions for DNNs. Some excellent and complete
surveys of the available reliability studies have already been
published [9], [10], [19]. The goal of this work is to focus
on the experimental procedure and results and to provide an
overview of the challenges and opportunities of testing AI
accelerators.

The accurate experimental characterization of the com-
plex hardware required to execute DNNs is challenging. The
amount of resources to characterize an AI accelerator is huge,
and designing dedicated benchmarks to target a specific unit is
not always possible. Moreover, as mentioned, there are some
hardware units that can be potentially more critical than others.
A corruption in the scheduler, for instance, can impact multiple
parallel processes. In addition, faults in the computing units
have a not trivial effect on the operations output correctness.
While a fault in memory changes one (or multiple) bits, a fault
during computation modifies the output in an unpredictable
way, which depends on the operation type and its input.

To make the reliability evaluation even more challenging,
the software executed on the hardware to test is highly com-
plex as well. Since DNNs are probabilistic, it is hard to predict
the effect of a hardware fault on the software’s correctness.
In addition, the data propagation highly depends on the DNN
training and the input frame. The choice of both training and
input frames, then, will bias the experimental results. A naive
frame or a poorly trained DNN might significantly mislead the
radiation test data.

One possible way to have an accurate reliability evaluation
of AI accelerators is to combine beam experiments, fault
injection at different levels of abstractions, and application
analysis. Beam experiments provide the realistic fault prob-
ability and fault model (i.e., how the hardware fault manifests
in the software’s visible state). Fault injection helps track fault
propagation in the architecture or the software. Application
analysis is necessary to understand the impact of the error on
the system’s correctness. As we will discuss in this article, the

Fig. 1. Classification of AI, ML, and DL.

combination of these studies can help in better understanding
the impact of radiation-induced faults in AI accelerators.

The understanding of fault generation, propagation, and
impact on output correctness is essential to design dedicated,
effective, and efficient, hardening solutions. Traditional hard-
ening solutions, based on replication, might not be efficient
for DNNs. In fact, as we will show, not all faults are critical
for DNNs. A fault modifying the color of a pixel is not as
critical as a fault that causes a misdetection. Replication would
mask both kinds of faults, introducing possible unnecessary
overhead. We will list and discuss the available dedicated
hardening solutions for DNNs, from selective replication to
check-sums, and fault-aware training. The available data attest
that exploiting DNN’s potential provides much more efficient
hardening solutions than adapting to existing DNN mitigation
strategies.

To provide an overview of the available hardware and
software AI frameworks and to propose guidelines to perform
radiation experiments and design efficient hardening solutions,
this article is structured as follows. Section II reviews the
basic concepts of AI and ML and details the architecture
of the available AI accelerators. Section III describes pos-
sible reliability evaluation methodologies, highlighting the
criticality of testing parallel hardware. Section IV presents
the radiation experimental setup, while Section V describes
some of the available fault injection frameworks. Section VI
presents the available hardening solutions. Section VII dis-
cusses possible implications and future projections, and draws
conclusions.

II. BACKGROUND

This section provides the necessary background information
to understand the reliability evaluation and improvement of
neural networks and complex hardware systems. The informa-
tion included in this section is not meant to be exhaustive but
rather to provide the description of concepts and definitions
used in the rest of this article. The provided citations are
references useful for further investigating the discussed topics.

A. ANN Essentials

AI, as depicted in Fig. 1, is the broad definition of a program
that can sense, reason, act, and adapt. Any technique that
enables computers to mimic human intelligence, using logic,
if-then rules, or decision trees is considered AI. ML is a subset
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Fig. 2. Visualization of the structure of a CNN. The convolution layers extract features from the input, ReLU operations ensure nonlinear input–output
correlation, pooling layers reduce the amount of data propagated, and the fully connected layers use the output of previous layers to detect and classify objects.
Taken from [20].

of AI consisting of algorithms whose performance improves as
they are exposed to more data over time. In other words, using
statistical techniques, the algorithm learns how to improve
the output accuracy as it processes additional data. The inner
part of Fig. 1 is DL, which is that subset of AI algorithms
composed of multilayer neural networks that learn from a vast
amount of data.

ANNs are universal function approximators that, thanks to
Backpropagation (short for backward propagation of errors)
training [20], [21], [22] and sufficient network complexity,
enable the solution of a variety of tasks, e.g., classifica-
tion, detection, and regression. Today, most ANNs used in
autonomous vehicles or, more in general, pattern recognition
are composed of various or several layers and are, thus, named
DNNs. A specific class of DNNs, particularly efficient in
image processing (and, thus, object detection), is convolutional
neural networks (CNNs) [20]. In a CNN, as shown in Fig. 2,
most layers perform convolution, i.e., apply a filter to the
image to extract features (feature maps) that are then used
to detect and classify objects. As shown in Fig. 3, a filter is
convolved with a window of the input image. Computationally,
a filter is coded as a kernel, which is a matrix of values that,
once convolved over the input image, extracts the information
needed to perform classification or detection. The size of the
window is a design choice and is typically 3 × 3 elements
(normally floating point numbers). The values of the kernel
decide the kind of information that can be extracted in that
layer and, as discussed later, are decided in the training phase.
The filters adopted to extract the most important information
from the input are not intuitive and are decided in the training
process of the neural networks. The choice of the convolution
kernels is then made by the network itself and is not directly
decided by the programmer. As shown in Fig. 4, the processed
image after convolution is not easily identified by humans,
but the combination of several feature maps leads the neural
network to correctly classify the object.

The amount of data produced after convolution can be
reduced since there is no need to maintain high resolution
given that we are extracting abstract information from the
images. Thus, to avoid unnecessary computation, the con-
volutional layers are interleaved with pooling layers. The
pooling layers filter the data to propagate to downstream

Fig. 3. Example of the convolution operation. The convolution needs to
be performed in every window of the input feature map and, thus, is highly
computationally demanding. Adapted from [20].

layers. The pooling can be implemented in various ways, the
most common ones being max pooling and average pooling.
As shown in Fig. 5, max pool propagates only the element
with the highest value, while average pool propagates the
average value of the elements in the window. We anticipate
that, as detailed in Section VI, pooling can be significantly
beneficial to filter radiation-induced errors [11].

The design process of DNNs consists of the identification
of the number and typology of layers that, once properly inter-
connected, can be adapted to the specific task. The adaptation
is performed through a training phase. The network training
can be seen as the programming of the network weights. It is
a computationally very expensive process, during which the
network is forced to process a list of thousands of labeled
images (dataset). Based on the dataset, the network will learn
to identify specific classes of objects. In the training phase,
the parameters of the network are modified in such a way that,
for each training input–output pair, the network response is as
close as possible to the ground truth. The distance measured
between true and predicted values is called the loss function.

The process of tuning the network parameters to fit
the dataset is called training and is usually performed via
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Fig. 4. Example of features extracted by the convolution layers from the
input image and the effect of ReLU and pooling. Taken from [24].

Backpropagation of the output error from the last layer all the
way back to the input one. First, a batch of data is forwarded
through the network, and the output is compared with the
ground-truth labels by means of a loss function, e.g., cross-
entropy or L2. Since neural networks implement differentiable
operations only, it is possible to compute the gradients of the
loss with respect to the network weights. Given the gradients,
an optimizer, e.g., stochastic gradient descent [23], updates the
weights in order to minimize the loss function. These forward
and backward steps are repeated for each batch of training data
for a certain number of epochs (i.e., a complete pass over the
whole training set). It is of the utmost importance to use as
a training set a highly heterogeneous set of data because this
enhances the generalization capabilities of the model. Indeed,
DNNs generally suffer a significant performance drop when
deployed to scenarios that they were not trained for. For this
reason, it is standard practice to use heavy data augmentation
strategies to obtain a more varied training set that can contain
useful information not present in the original data, e.g., change
light conditions if the original training set presents day scenes
only. As discussed in Section VI-C, a similar approach can be
efficiently applied to mitigate the effect of transient faults.

Interestingly, even if the training phase is very long and
computationally demanding, the radiation impact during the
training of large DNNs is unlikely to impact the final model
accuracy. In fact, even if a transient fault occurs during
training, its impact on the DNN parameters would be smoothed
with the other (thousands) frames. Nonetheless, faults during
training can impact the time required to reach convergence,
and in small models, the radiation-induced fault may impact
accuracy. In the following, we will focus on inference (i.e.,
the execution of a trained ANN) only. However, the design
choices, together with the methods that are used to train the
network, strongly impact the overall performance of the model
in solving the desired task.

The network design is responsible for the expressivity
and the trainability of the architecture, i.e., its capability to
encode the knowledge required by the task. The training
oversees an effective tune of all the network parameters. Only
a judicious combination of proper techniques can result in
a neural architecture capable of solving the task with good
performance. In addition, as we show in this article, only a
proper design/training can make the DNN intrinsically more
reliable to transient faults.

Fig. 5. Example of max pooling and average pooling. Max pooling
propagates only the element with the highest value, while average pooling
propagates the average value of the elements in the window.

Each network design has a specific set and organization of
layers. Convolutional layers have different hyperparameters,
specifically kernel size (the number of rows/columns in the
convolution kernel), stride (amount of movement over the
image), and padding (how many zeros to add to the input
image borders to perform convolution in the edges). Each
kernel is independent and produces a different feature map,
with as many output feature maps as the number of filters [24].

Besides convolutions (that are layers that are most com-
putationally demanding and, thus, vulnerable to radiation),
activation functions are used for ensuring a nonlinear
input–output relationship in DNNs and are very often imple-
mented through rectified linear units (ReLUs) [25] ReLU(x) =

max(0, x), where x stands for the input tensor. This definition
for activation layers enables an easy gradient flow, which is
fundamental for the training [26]. Building upon this function,
several other ReLU-like activations have been developed, e.g.,
the scaled exponential linear unit (SELU) [27], the Gaussian
error linear unit (GELU) [28], and ReLU6 [29]. Normaliza-
tion layers play a role in the stabilization of neural architecture
training by smoothing the optimization landscape [30] and pre-
venting the weight and gradient explosion. The most common
normalization layer is BatchNorm that learns, at training time,
an approximation of the first and second statistical moments
of each feature map to normalize the input tensors. After
the normalization, it is standard practice to apply an affine
transform, namely, an additive bias β and a scale parameter γ .
The normalization operation can then be defined as

BatchNorm(x) =
x − E[x]

√
Var[x] + ϵ

∗ γ + β (1)

where E[x] is the expected value of the input tensor x , Var[x]

is its variance, and ϵ is a correction to improve stability [26].
The output of a DNN is a vector of tensors containing

the probability of eligible objects. Objects identified with a
sufficiently high probability are classified. The DNN, then,
detects several objects with different probabilities. A filter
needs to be applied to select the objects that have a sufficiently
high probability of being actually detected. The probability
threshold selection is a critical choice that should be carefully
engineered. A threshold that is too high can lead the system
to miss an existing object, exposing the vehicle to the risk of
hitting it. A threshold that is too low is likely to induce the
system to provide a high number of false positives (nonexist-
ing objects are detected), leading the vehicle to unnecessary
sudden stops. In object detection DNNs, a tensor also contains
the coordinates of a bounding box (BB, i.e., potential object),
which is then used to describe the detected object.
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Given their high computational cost, DNNs and CNNs,
in particular, efficiently map in parallel processors and, there-
fore, benefit from the heavy usage of GPUs or dedicated
accelerator computation for both the training and inference
processes. An overview of these computing architectures will
be presented in Section II-B.

B. Accelerating Hardware for ANNs

The inference (i.e., execution) of an ANN and a DNN,
in particular, is highly computationally demanding. The filters
defined in the training process need to be convolved with
each window of each convolutional layer to extract features.
In most applications, such as autonomous vehicles, object
detection needs to be performed in real time (i.e., at least
40 frames/s). This requires the use of parallel and complex
hardware devices for DNN execution. In this section, we will
describe the main characteristics of the devices used for DNN
inference, highlighting the characteristics that can increase
their vulnerability to radiation.

The complexity and performance requirements of the hard-
ware to execute DNNs are so high as to make the design
of dedicated, rad-hard, devices extremely challenging. The
only available devices that can execute DNNs at speed are
commercial chips, not specifically designed for safety-critical
or space applications. It is then of utmost importance to
measure their radiation response before adopting them in a
product or a mission. As we will discuss in Section III,
the difficulty of the reliability qualification of modern COTS
devices for DNNs is exacerbated by the limited information
available about the hardware. Usually, the information about
the technology, the implementation, and the architecture is
sparse, which requires reverse engineering the COTS product
to investigate its reliability.

The market offers various available hardware devices that
are efficient in executing DNNs. GPUs are the most common
and adopted, mostly for their flexibility and the software
framework availability that eases the training, design, and
inference of DNNs. FPGAs or application-specific integrated
circuits (ASICs) can also be adopted to implement a specific
DNN, reducing the inefficiency that comes from a general-
purpose device, such as the GPU. In addition, low-power and
low-cost EdgeAI accelerators have been designed to improve
the efficiency of DNN executions. EdgeAI devices are nor-
mally dedicated to process specific operations (convolutions,
mainly) and need to be coupled with a host device that
manages the DNN execution. Moreover, analog devices that
resemble the human brain, as known as neuromorphic chips,
have lately been tested with exciting results in terms of perfor-
mance and efficiency [6]. While this novel technology is not
detailed in this article, interesting reliability data [single event
upset (SEU) and total ionizing dose (TID)] on neuromorphic
devices are reported in [31], [32], [33], and [34].

1) Graphics Processing Units: GPUs were designed specif-
ically to accelerate the image rastering that was incredibly
inefficient using sequential CPUs. Then, GPUs have evolved
from being devices dedicated to gaming, graphics, and
video rendering to flexible accelerators for a variety of

Fig. 6. Simplified view of the architecture of modern GPUs that are composed
of an array of SMs that share L2 cache. Each SM has several computing cores
with different precisions. The view is based on NVIDIA CUDA devices but
can be applied to any GPU architecture.

high-performance computing (HPC) and safety-critical appli-
cations, such as autonomous vehicles. The introduction of
general-purpose programming languages for GPU [OpenCL
and Compute Unified Device Architecture (CUDA)] enables
programmers to exploit GPU parallelism for computation.
In particular, GPUs are the reference architecture for the
training and inference of DNNs, which are required to detect
and classify objects in a scene. The main reasons for the
success of GPUs in DNN acceleration are the high efficiency in
executing matrix operations (convolution can be translated into
a matrix multiplication [35], [36]) and the availability of easy-
to-use frameworks to map the DNN training and inference in
GPUs. This market shift led to a burst in the GPU’s computing
capabilities and efficiency, significant improvements in the
programming frameworks and performance evaluation tools,
and a sudden concern about their hardware reliability.

Modern GPUs are divided into various computing units,
named streaming multiprocessors (SMs) in CUDA architec-
ture, each of which has the ability to execute several threads in
parallel [see Fig. 6 (left)]. Each basic computing unit (named
CUDA core in NVIDIA devices) in the SM executes one
thread with dedicated registers, avoiding complex resource
sharing or the need for long pipelines [37] [see Fig. 6 (right)].
Each of the thousands of CUDA cores in a GPU disposes
of hundreds of functional units of different precision (64-bit
floating point, 32-bit floating point, and integer) and tensor
cores, which are used to speed up convolutions. The instruction
and data caches are shared among all the active parallel
processes in the SM.

It is the programmer’s task to divide the instantiated parallel
threads into a grid of blocks when designing a kernel. It is
easy to modify the thread distribution, as the block size and
the grid size are both parameters that have to be specified
when launching a CUDA kernel to be executed on a GPU.
The number of blocks assigned to an SM in the GPU will
depend on the number of registers, the amount of shared
memory available in the SM, and the resources required by
each block to be executed. The number of blocks assigned to
an SM varies based on the architecture (hundreds of blocks can
be scheduled in modern GPUs). Some blocks will be queued
for later computation if the grid size exceeds the number of
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blocks that can be dispatched among the SMs available in the
GPU. Before dispatching a queued block to the first SM that
becomes available, the GPU’s block scheduler needs to check
if some SM completed the current block execution and, if so,
it transfers the results to the onboard DDR memories. The
queued block is then assigned to the SM, the input data are
eventually read from the DDR, and, finally, the queued block
execution is triggered and synchronized [38].

The GPU allows each SM to execute warps (groups) of
hundreds of parallel threads in a single computing cycle.
If the block size exceeds the number of available CUDA
cores, the execution of some threads will be delayed until
the computation of the preceding warps of the block has been
completed. It is worth noting that the next block to be treated
will be assigned to the SM only when all threads in the current
block have been processed. Therefore, if the number of threads
in a block is not a multiple of the warp size, in the last
cycle, the SM will execute fewer threads, wasting parallel
capabilities. The trend followed by NVIDIA is to increase
the parallel capabilities of the SM more than increasing the
number of SMs available in the GPU.

Each SM disposes of hardware schedulers that manage the
parallelism (see Fig. 6). At every instruction issue time, the
first scheduler issues one instruction for some warp with an
odd ID, and the second scheduler issues one instruction for
those with an even ID. When double-precision floating-point
instructions have to be executed, the second scheduler cannot
issue any instruction.

A parallel code to be executed on a GPU is typically com-
posed of several independent threads, all executing the same
set of instructions on a dedicated memory location. Increasing
the number of threads brings then higher throughput to the
application. To do so, the programmer can choose either to
increase the block size, which will require more computational
effort in each SM and delay the assignment of the next
blocks, or to increase the grid size, thus having more blocks
to be dispatched. The GPU parallel management is strictly
related to the chosen thread distribution. The scheduling and
computational load required for block and warp assignment,
as well as resource distribution, are strictly related to the
chosen grid and block sizes, which is then likely to influence
also the GPU radiation response.

From a radiation test point of view, the computing units
are isolated such that a single radiation-induced event in one
computing unit will only corrupt the thread assigned to it.
Threads that follow the corrupted one or threads assigned
to computing units near the struck one will not be affected.
Nonetheless, the corruption of shared resources (like the
caches) or critical resources (like the schedulers) can impact
the execution of several processes. In addition, the corruption
of functional units can have nontrivial outcomes in the code
execution. In most HPC and high-end GPUs, a single error
correction double error detection (SEDEC) error correcting
code (ECC) protects the main memories. As experimentally
shown in Section IV, the ECC can reduce by one order of
magnitude the error rate of GPUs but is not very effective in
reducing the number of radiation-induced misclassifications in
CNNs.

Fig. 7. Simplified view of the architecture of FPGAs, showing the
programmable elements used to define a circuit to be executed [39].

2) FPGAs: FPGAs are flexible devices that allow the user
to define a circuit to be executed [39]. Logic blocs, memory,
and interconnections can be programmed by the user, taking
advantage of synthesis tools, as shown in Fig. 7. The high
number of available logic blocks allows the user to create
large parallel circuits.

Due to their intrinsically high level of parallelism and num-
ber of connections, ANNs map efficiently also on FPGAs [40],
[41], [42]. In addition, ANNs are also very modular, meaning
that the description of a given network, using a hardware
description language (HDL), becomes fairly straightforward
once the neuron component has been developed. Nonetheless,
while GPUs and CPUs have efficient functional units that
can execute high-precision complex operations, the FPGAs
are more efficient when simple operations are implemented.
Thus, to map an ANN in an FPGA, some simplifications
are normally adopted. For instance, the neuron function is
normally described with a sigmoid, which is mathematically
expressed with an exponential function as

sigmoid(x) =
1

1 + e−x
. (2)

The sigmoid output is comprised between 0 and 1. The
implementation of the exponential, for fixed point data,
in HDL is not trivial and leads to inefficiencies in the FPGA.
A few solutions have been proposed to efficiently implement
the exponential function in hardware [43], [44]. The most
adopted solution is to discretize the sigmoid, as in [45] and
[46]. The higher the number of discrete steps, the higher the
complexity of neurons, and the higher the precision of the
ANN output. However, higher complexity is likely to increase
the sensitivity of the ANN to radiation since a larger area is
needed for the implementation.

An alternative solution to reduce the amount of FPGA
resources to implement an ANN is to reduce the precision
of data and operations. In fact, as mentioned, while CNNs
can be very effective, they also require extremely high com-
putational power. In order to achieve lower execution times
and, thus, higher throughput, a number of techniques have
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been developed, such as weight trimming [47] and weight
quantization [48]. When it comes to the latter, the main idea
is to reduce the precision in which we choose to represent
the trained weights (which are originally in 32-bit floating
point format, as a standard for training frameworks). Such
reduction can be completely arbitrary, going as far as utilizing
a single bit to represent the weights in a model. These are
called binary neural networks (BNNs) [49], where both the
filters in the convolutional layers and the neurons in the fully
connected layers use weights constrained to {−1, 1}. The
adoption of BNNs instead of CNNs essentially eliminates
all multiplications for a hardware implementation of a given
neural network, which decreases resource utilization, but also
brings down the model’s accuracy.

Independently of the chosen precision and activation func-
tion, the implementation of the full ANN requires a great
number of connections and processing elements (PEs). Thus,
researchers have been working to reuse the resources of
the FPGAs to execute various layers. This is the case of
the systolic array implementation of ANNs. In the specific
case of CNNs, most operations are matrix multiplication
related. Matrix multiplication algorithms are inherently expen-
sive, mostly for FPGAs. Assuming squared matrices of
size N, we need to perform a total of N 3 multiply-and-
accumulate (MAC) operations. Since there are no data
dependencies between output elements, matrix multiplication
is also extremely parallelizable, but input elements must still
be read from memory multiple times, reducing efficiency,
particularly on FPGAs. Systolic arrays have then been intro-
duced to establish specific interconnection and data movement
patterns between computing units to reduce memory accesses,
ultimately having an edge over any other architecture in matrix
multiplication computation.

A systolic array is simply a network of PEs that work
together to accomplish some higher level computation. The
term systolic is a reference to the functioning of a biological
heart since the computation is performed in a rhythmic fashion,
with input data being pumped in and output data being pumped
out, at every clock cycle. These ideas were first introduced
in [50], as the authors showed how systolic systems could be
viable as application-specific hardware. In fact, depending on
geometry and interconnect, systolic arrays can also be used
to solve problems such as linear unit (LU) decomposition and
Fourier transform.

Recently, there has been an increased interest in systolic
computation due to the rise of neural networks. Since the
workload of a modern CNN is dominated by convolution
(which can be translated as an equivalent matrix multiplica-
tion [35], [36]) and inner product operations, weight-stationary
systolic arrays became the perfect fit for these workloads.
Fig. 8 is a generic illustration of a systolic array structure and
gives an idea of how a matrix multiplication can be performed
on it.

Note that the interconnected nature of the architecture, and
the systolic pattern of dataflow, makes it so that multiple
PEs are used to compute each output element. At the same
time, each PE contributes to the calculation of multiple output

Fig. 8. Functioning of a generic N × N weight-stationary systolic array for
matrix multiplication. The calculation in this example is A × B = C . The
values of B are preloaded into the array. Then, the values of A flow from left
to right, while accumulations are propagated from top to bottom. The timing
for inputs and outputs is specified as tx.

elements. This characteristic makes systolic array implemen-
tations particularly efficient in FPGAs.

The process of tailoring the ANN to an FPGA can be
particularly complex and discouraging for the user who prefers
easier frameworks that map on GPUs. Thus, the FPGA vendors
have been working to ease the translation of the ANN, even
of DNNs of great complexity, to the FPGA fabric. Modern
high-level synthesis (HLS) tools, in fact, are compliant with
ML developing frameworks. The user can design, train, and
tune the DNN and then use HLS to translate the resulting
network in the FPGA, without caring about the specific
implementation. While this solution is definitely easier, it does
not allow any control over the final circuit implementation
and can potentially increase the challenge of evaluating its
reliability.

3) EdgeAI: Lately, vendors have developed low-cost accel-
erators for CNN execution, named EdgeAI devices, such as
NeuroShield or Google Coral TPUs. These EdgeAI devices are
only able to execute elementary operations (i.e., convolutions
and some other matrix operations) in low precision (16-bit
floating point or even 8-bit integer). Coupled with a good
software framework (e.g., Tensor Flow) that runs on a host
device, EdgeAI devices significantly reduce the time and
power consumption of the convolution, which is the most
computationally demanding operation of CNNs.

Fig. 9 shows the high-level architecture of the Coral TPU,
which is mainly composed of a systolic array fed by a large set
of input buffers, not necessarily protected by error correction
code (ECC). The array outputs the product of the model
weights and each layer’s input into the activation unit, where
the partial sums are accumulated and the activation function is
applied. Therefore, this device can perform a set of operations,
mainly convolutions, which are a fundamental block for ML
applications, in an extremely power- and performance-efficient
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Fig. 9. High-level schematic of the Coral Edge TPU architecture that is
basically composed of a hardwired systolic array. Adapted from [5].

manner, i.e., the Google Coral TPU delivers 2 tera operations
per second (TOPS) per watt.

To minimize data transfers and storage and to speed up
calculations, all data that are computed and stored within
the TPU are represented as 8-bit unsigned integers (UINT8).
The device is capable of performing the quantization and
dequantization steps for interfacing with the host floating-point
representations.

Since the Coral TPU is simply an accelerator, it must be
connected to a host device. Google provides two versions of
the accelerator: one that interfaces with the host via PCIe and
the other uses USB 3.0. The software layer of the Coral TPU
is based on TensorFlow Lite, which is a light version, opti-
mized for embedded devices, of the TensorFlow framework
developed by Google for ML. Most of the development effort
is very similar as if the ML model would run on a normal
central processing unit (CPU); however, there is an EdgeTPU
compiler that is responsible for deploying the TensorFlow Lite
model targeting the Coral Edge TPU architecture.

C. Radiation Effects in Computing Devices for DNNs

Radiation is a naturally occurring phenomenon. Due to
the radioactive emissions of stars and major celestial events,
charged ions are constantly released and gain energy as they
wander around in the universe. Luckily, Earth’s magnetic field
acts as a shield, deviating the majority of particles (including
most of the solar wind) away, but sufficiently energetic cosmic
rays collide with nuclei in our atmosphere, producing a variety
of secondary particles, including alphas, protons, gammas,
and, mainly, neutrons. A flux of about 13 neutrons/((cm2)

× h) can reach ground. The flux exponentially increases with
altitude [51].

The energy, mass, and kind of radiation (and, thus, of radi-
ation effect) to which the device will be exposed are strictly
related to the environment in which the device will operate.
In this article, we will just briefly introduce the possible

radiation effects based on the radiation source. For more detail
about specific radiation effects, we suggest referring to the
vast literature in this field [52], [53]. In particular, while
cumulative, permanent, or destructive effects, such as TID
or single-event latchup (SEL), are of extreme importance for
the deployment of a device in a space mission, they are not
considered in detail in this article. This choice is made since,
while these effects are fundamental to qualify a device’s reli-
ability (mostly for space applications), the radiation response
is not directly related to DNNs or to the specific architecture,
but rather to the technology implementation. In other words,
a device can be or not be compliant with space reliability
standards for TID and SEL independently of the executed
code.

Radiation is a threat to computing devices for the very basic
reason that they are made out of silicon. Ionizing particles
generate electron–hole pairs within the transistor’s oxide,
eventually releasing and depositing charge [53]. A charge
can also be generated in the semiconductor material, which
influences border traps [54]. The charge can accumulate, mod-
ifying the electrical characteristics of the transistor possibly
reducing the operation frequency of the device or even causing
a permanent failure. This is the basic issue caused by TID and
is particularly critical for space applications (neutrons, which
are the main radiation source at sea level, deposit negligible
charge) [55].

If the particle hit deposits enough charge, it can force
a transistor state to change from ON to OFF (or the other
way around) [56]. Nonionizing radiation (neutrons) does not
deposit any charge but, instead, hits the silicon lattice, gener-
ating secondary particles on the silicon as it passes through
the device, creating charged particles (e.g., alphas) that then
lead to state changes [57].

A particle strike that perturbs a transistor’s state can gener-
ate bit flips in memory, activating the inverter loop, or current
spikes in logic circuits that, if latched, lead to an error [58],
[59]. A radiation-induced transient error in a computing device
executing a code leads to: 1) no effect on the program output
(i.e., the fault is masked or the corrupted data are not used);
2) a silent data corruption (SDC), i.e., an incorrect program
output; or 3) a detected unrecoverable error (DUE), i.e.,
a program crash or device reboot.

It is worth recalling the nomenclature to avoid confusion
during the discussion. In this work, we will use the taxonomy
defined by Avizienis et al. [60]. When the particle deposits
sufficient charge to modify the state of a transistor, a fault is
generated. The fault can be masked or propagated to a visible
state, becoming an error (see Fig. 10). A visible state can
be a register or a flip-flop. If the corrupted visible state is
used for computation and the error further propagates till the
software output, it becomes a failure. SDCs or DUEs are, then,
failures.

The advances in fabrication processes and overall scaling of
technology have allowed for reduced transistor sizes, increased
transistor density, and reduced operating voltages. Given the
shrinking dimensions of CMOS transistors, the pursuit of
lower power consumption, and the integration of several
resources in a single chip, the probability of neutron-induced
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Fig. 10. Possible effect of a single-event effect corrupting critical or shared
resources of a parallel device. As a result of the impact, multiple parallel
processes can produce a wrong output.

faults, in both memory and logic resources, has increased
significantly [53].

Since the hardware accelerators required to execute at
speed DNNs have a large area with high availability of
computing resources, they are particularly likely to experience
radiation-induced faults. In addition, the hardware parallelism
management and control units of parallel computing sys-
tems are particularly critical since their corruption affects
multiple parallel processes [7]. As shown in Fig. 10, when
a single-event effect occurs in the fetch, decode, scheduler,
or shared resources, it is possible that multiple software threads
(managed by the struck resource or using the shared resource)
produce wrong output. What makes the reliability evaluation
of complex hardware particularly challenging is the fact that,
while the fault occurs in the hardware, it can only be observed
once it reaches the software output. As discussed in Section III,
the combination of dedicated benchmarks and fault injection
is necessary to understand the sources of the observed errors.
When performing a beam experiment, it is important to log
all the necessary information from the output to reconstruct
the error model. A simple correct/wrong flag might not be
sufficient.

Single versus multiple corruptions are particularly critical
in DNNs and image processing algorithms in general. Intu-
itively, a single thread corruption can be seen as a single
wrong pixel, while multiple thread corruptions can lead to
the wrong computation of several pixels. In the former case,
a misdetection is unlikely, while, in the latter, the probability
of missing an object or having a false positive increases. The
peculiar parallelism of hardware accelerators, which provides
unquestionable benefit in terms of performance, is, then, one of
the most vulnerable parts of the device in terms of reliability.

In the specific case of DNNs, the fault propagation from
the corrupted transistor to the detection/classification output is
extremely hard to track. The DNN output is, by itself, prob-
abilistic (details in Section II-A) and not deterministic as in
most computing. A fault can modify the low probabilities that
are, in any case, not selected in the final detection/classification
or can completely change the output vector. Despite the
applied filters (pooling; see Section II-A) and the redundancy

Fig. 11. Example of (a) expected output of a classification DNN, (b) tolerable
errors (more than 50% of the original object is still detected in the BB,
(c) misdetection (the existing object is not detected, thus reducing recall),
(d) false positive (a nonexisting object is identified, thus reducing precision),
and (e) classification error (misclassification).

in computation, it is unquestionable that transient faults can
propagate through DNNs. Luckily, not all the SDCs are critical
in object detection/classification frameworks. If the SDC (then
the radiation-induced fault reaches the DNN output) does not
impact detection and classification, the SDC could be con-
sidered tolerable. The question is how to distinguish between
tolerable and critical error.

As shown graphically in Fig. 11, SDCs that modify the
object probability (the tensor output; see Section II-A) with
respect to the expected output [see Fig. 11(a)] such that they
do not impact an object’s rank or, for a detection framework,
change the coordinates of a low-probability (BB, i.e., the
object coordinates in the frame), are not considered critical.
Errors that only slightly modify the coordinates of an object,
still allowing a sufficiently good detection for not modifying
the vehicle behavior, are also to be considered tolerable [see
Fig. 11(b)]. On the contrary, SDCs that induce a misdetec-
tion [see Fig. 11(c)], a false positive [see Fig. 11(d)], or a
misclassification [see Fig. 11(e)] are to be considered critical.

One way to distinguish between critical and tolerable errors
is to measure the precision and recall of the corrupted output.
Recall is the fraction of existing objects that were detected
(or classified), even in the event of a radiation-induced error
(Recall < 1 means that some objects were not detected).
Precision measures the fraction of the detections produced
by the classifier that actually relate to an existing object
(Precision < 1 means that some not existing objects were
detected, i.e., a false positive occurred). To distinguish between
critical and tolerable SDCs for classification, we should con-
sider just the probability vector. When an SDC modifies an
object’s rank in a frame, it is necessary to count the number
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Fig. 12. Fault propagation and reliability evaluation methodologies in complex computing devices. The fault originates in the physical transistor and then
propagates to the circuit, the microarchitecture, and eventually to the software output. Beam experiments evaluate the probability for a fault in the physical
layer to be generated and propagated till the software output. Fault injection at different levels of abstraction can be used to better understand fault propagation.
Evaluations closer to the physical layer are more realistic, while evaluations closer to the software layer are more efficient.

of objects in the fault-free execution, which are not correctly
classified (i.e., false negatives, reducing recall) and how many
objects that should not be classified appear in the corrupted
eligible objects list (i.e., false positives, reducing precision).

A correct classification is not sufficient to guarantee correct
detection; it is also necessary to consider the position of the
object. To evaluate error criticality for detection, it is necessary
to consider the BB’s area, adopting the methodology used in
the image processing community [61]. We can consider an
object i in a radiation-corrupted output as correctly detected
if, for any object j of the radiation-free output, the following
condition on the Jaccard distance (a measure of how dissimilar
two sets are) can be verified:

Jaccard(i, j) > TJ (3)

where TJ is the acceptance threshold. Otherwise, we can con-
sider i as a false positive [reducing precision; see Fig. 11(d)].
If, for a given object j of the radiation-free output, there is no
BB i in the corrupted output, which satisfies this condition,
a false negative is detected [reducing recall; see Fig. 11(d)].
Some studies also show that transient faults can result in a
correct detection (the BB area and position are correct) but in
a wrong classification [62], as depicted in Fig. 11(e).

In the image processing community, TJ is an arbitrary
threshold, with 0 ≤ TJ ≤ 1. Values of TJ close to 1 force
the classifier to be very precise. In a reliability context,
TJ = 1 imposes any radiation-induced modification to BB
coordinates to be marked as critical. We adopt TJ = 0.5 to
compare a CNN’s corrupted output with the radiation-free
output, following the TJ tradeoff discussion presented by
Fawcett [61], which is valid, independent of the source of
detection imprecision (intrinsic algorithm detection impreci-
sion or radiation-induced corruption).

In Section III, we will review the possible methodologies
adopted to investigate the reliability of DNN hardware and
software.

III. RELIABILITY EVALUATION METHODOLOGIES

As discussed in Section II-C, when evaluating the reliability
of complex computing devices executing DNNs, we need to
consider that the radiation-induced fault occurs in the physical

transistor and then, possibly, propagates through the (parallel)
architecture, reaching the software and eventually modifying
the output. As shown in Fig. 12 and listed in Table I, there
are various reliability evaluation methodologies available to
understand fault propagation in computing devices, from the
gate level to the architectural level and the system level. It is
worth noting that memory errors are the easiest to model at
the software layer. Since the fault simply flips a (or multiple)
bits in the memory word(s), to model the fault, it is sufficient
to modify the value in software variables. With a simple static
memory beam test, it is possible to understand the number
of bits to be corrupted. However, when it comes to faults
in computing resources (such as the pipelines, the control
units, functional units, or the scheduler), the impact on the
software is not trivial. The operation output is corrupted with
a syndrome that depends on the operation executed and its
input. If the fault impacts shared or critical resources, multiple
operations can be corrupted. A software fault-injection, then,
needs to be carefully engineered so as not to have unrealistic
results.

Each evaluation methodology has some benefits and limi-
tations, which will be detailed next. We also discuss why the
complexity of hardware accelerators exacerbates the limita-
tions associated with the available methodologies. In general,
methodologies that act closer to the fault’s physical source
(i.e., the silicon implementation) are more realistic (and costly
in terms of processing time), while methodologies closer to the
output manifestation of the fault are more efficient (but less
realistic in terms of the fault effect in real applications). In the
following, we give an overview of all the available reliability
evaluation methodologies for focusing on the two most widely
adopted ones (beam experiments and fault injection). Further
details about the testability and dependability of AI hardware
can be found in [9] and [10].

Field test studies expose the computing device to the
natural flux of particles, counting the number of observed
errors. While field tests are probably the most accurate and
realistic way to measure the sensitivity of a device, they have
to be based on statistically significant amounts of data and,
thus, require a huge number of devices and, obviously, are
very time-consuming (because the natural error rate is very
low) [63], [64], [65].
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TABLE I
RELIABILITY EVALUATION METHODOLOGY CHARACTERISTICS

Beam experiments induce faults directly in the transistors
by the interaction of accelerated particles with the silicon
lattice, providing highly realistic error rates [53]. Accelerated
particle beams reduce the cost and time of field tests taking
advantage of a high particle flux intensity [53], [66], [67].
Since errors are observed only when they appear at the
output, generally, beam experiments do not allow tracking
fault propagation. This prevents one from associating observed
behaviors with the fault source and, thus, identifying the most
vulnerable device resources. In addition, results are valid only
for the specific codes and configurations that have been tested.
On parallel devices, the number of configurations that should
be tested increases significantly. For instance, even a slight
change in the code’s degree of parallelism can impact the code
error rate [7].

Software fault injection is performed at the highest level
of abstraction, and it was proven efficient in identifying those
code portions that, once corrupted, are more likely to affect
computation [68], [69], [70], [71], [72], [73]. However, the
analysis is limited as faults can be injected only on that
subset of resources, which is visible to the programmer.
Unfortunately, critical resources for highly parallel devices
(i.e., hardware scheduler, threads control units, and so on)
are not accessible to the programmer and, thus, cannot be
characterized via high-level fault injection. In addition, the
adopted fault model (typically single-/double-bit flip) might
be accurate for the main memory structures (register files,
caches) but risks being unrealistic when considering faults in
the computing cores or control logic, as also shown in [74].
In fact, as shown in Fig. 12, while a fault in the memory array
directly translates into a corrupted value, the single transient
fault in a resource used for the execution of an operation
(pipelines, arithmetic logic unit (ALU), scheduler, and so on)
can have not-obvious effects on the operation output. We call
this not-obvious effect a syndrome. The syndrome induced in
the instruction output by faults in the computing core depends
on the operation, its input, and the corrupted resource. The
only possible way to find this syndrome is to perform lower
level fault injection or dedicated beam experiments targeting
a single operation or functional unit.

Microarchitecture fault injection provides a higher fault
coverage than software fault injection as faults can, in princi-
ple, be injected in most modules. A preliminary work, based
on Multi2Sim, presented microarchitectural fault injection data
on GPUs, but the analysis is limited to just memories [75].
One of the issues of microarchitectural fault injection in
AI accelerators is that the description of some modules
(including the scheduler and pipelines) is behavioral and their
implementation is not necessarily similar to the realistic one.
Recent work has demonstrated that microarchitectural fault

injection provides a sufficiently accurate reliability evaluation
on ARM-embedded CPUs [76]. On AI parallel accelerators,
such a demonstration is still missing and is likely to be more
challenging due to the complexity of the hardware underneath
the microarchitecture.

Register-transfer level (RTL) fault injection accesses all
resources (flip-flops and signals) and provides a more realistic
fault model, given the proximity of the RTL description
with the actual implementation of the final hardware [74],
[77], [78]. However, the time required to inject a statistically
significant number of faults makes RTL injections impracti-
cal. The huge amount of modules and units in a complex
parallel accelerator and the complexity of modern HPC and
safety-critical applications exacerbate the time needed to have
an exhaustive RTL fault injection (hundreds of hours for small
codes), making it unfeasible. Previous work that evaluates
GPU reliability through RTL fault injection is limited to naive
benchmarks [78].

Circuit- or gate-level simulations induce analog current
spikes or digital faults in the lowest abstraction level that
still allows tracking fault propagation (not available with
beam tests). There are two main issues with the level of
detail required to perform this analysis on AI accelerators:
1) a circuit- or gate-level description of the device is not
publicly available and 2) even if it was, the time required to
evaluate the whole circuit would definitely be excessive (the
characterization of a small circuit takes weeks [79]).

Hybrid or combined fault injections at different levels
of abstraction have been adopted to increase the reliability
evaluation efficiency without jeopardizing its accuracy. Some
works have proposed to use a detailed RTL fault injection
in specific portions of the circuit and a fast fault simulation
in others [77], [101]. Recent works combined an extremely
detailed gate-level fault injection in tandem with a faster (but
still impracticable for complex devices) RTL evaluation [79],
[102]. Cho et al. [103] used high-level simulation (not using
real hardware) triggering an RTL model when the fault needs
to be injected. Subasi et al. [74] focus on RTL injection to
provide a more detailed fault model but are limited to embed-
ded processors ALU. Recent studies have also proposed to
combine software fault injection with beam experiments [104],
[105] or RTL and software fault injection [8] showing that
accurate details about fault propagation in the system can be
achieved.

A. Radiation Experiments

Accelerated beam experiments are the primary way to
accurately measure the radiation sensitivity of a device. This
also applies to AI accelerators, with a possible more complex
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setup and a higher risk of designing a less-than-optimal setup,
wasting beam time. The goal of this subsection is to provide
some suggestions and advise, based on the author’s experience,
on how to prepare a good radiation experiment setup.

The first choice to make regards the facility to select for the
experiments. This choice is clearly dictated by the radiation
you want to simulate and the characteristics of the facility and
the available beam.

For TID studies, following the European Space Agency
test standard [106], the device should be exposed to Cobalt-
60 sources or, eventually, X-rays [107]. In the latter case,
it is essential to ensure that the energy deposition of the
X-rays actually occurs in the active region of the device [108].
As mentioned earlier, in this article, we will mainly focus on
single-event effects since the TID response does not depend
on the executed code or the device architecture but mainly on
the device technology [55].

Single-event effects evaluation can be done for space or
terrestrial applications. Given the importance of AI reliability
for safety-critical terrestrial applications (e.g., self-driving
cars), it is fundamental to measure the error rate of AI
accelerators and also for the Earth’s radioactive environment.
Space reliability studies require the test of the device with
heavy ions and/or protons, while terrestrial reliability studies
require the test of the device with neutrons.

There are various facilities available for the test of electronic
components with heavy ions. Each facility provides a cocktail
of ions with different energies. The first choice to make regards
the sample preparation [109], [110], [111]. COTS devices have
plastic or ceramic packages that eventually should be removed
to allow the interaction between the ions and the silicon active
area. Moreover, most of the available AI accelerators are flip-
chip, which means that the silicon substrate possibly needs
to be thinned. This choice normally needs to be made based
on a device’s physical study since the information about the
package and the silicon thickness of COTS AI accelerators
is sparse. To measure the thickness of the device, it is then
necessary to cut the device and look at its cross section. Such
a procedure can be particularly challenging for high-end GPUs
that are installed in complex (and thick) printed circuit boards
(PCBs).

Another important issue to consider when testing
power-hungry devices with heavy ions is the cooling.
Removing the package (and, consequently, the built-in fan
and thermal heat sink) and thinning the substrate significantly
reduce the chip’s ability to dissipate heat. This issue is
exacerbated in the facilities that require operating the device
under test in a vacuum. Edward J. Wyrwas, NASA Goddard,
designed and presented an interesting cooling system,
based on thermoelectric cooling plates, which is effective in
dissipating heat in modern GPU during a heavy ion test [112].

Most of the neutron/heavy ion/proton beams are pulsed.
This means that particles are not delivered continuously, but
packets of particles are produced with a given frequency. When
testing codes with a critical timing issue, such as ANNs, it is
fundamental to ensure that the particle production frequency
is much higher than the operation execution frequency or that
the execution is not synchronized with the beam. Otherwise,

there is a risk not to have all the operations executed, while
the device is hit by particles or to have the particle hitting the
device always on a specific portion of the execution. State-
of-the-art ANNs normally process 40 frames/s, which can be
comparable with the frequency of particle production in some
facilities (10–100 Hz at ISIS). Nonetheless, the time required
to start the inference depends on the frame since the time to
load the frame depends on its size and on the state of memory
(caches are free or not). Thus, it is highly unlikely to have the
execution and particle production synchronized, intrinsically
reducing the timing issue.

It is worth noting that most of the AI accelerators require
a host device to be controlled. This host device can be a
motherboard (for stand-alone GPU), a Raspberry Pi, or other
low-power systems (for EdgeAI). The radiation experiment
setup needs to consider the interface between the host and
the device under test. The former should be placed in a
position sufficiently far from the beam to consider negligible
the probability of having a radiation-induced corruption on the
controlling hardware. If the device under test needs to operate
in a vacuum, the interface to control it could be complex to
be designed. Modern stand-alone GPUs are controlled from
a host device through a high-speed PCI Express interface,
EdgeAI devices are controlled via USB 3.0 or higher, and
the Systems on Chip (SoCs) that embed an accelerator can be
controlled via Ethernet. All these communication interfaces
need specific cables and plugs in the vacuum chamber, which
are not necessarily available.

What is challenging in the radiation experiment of complex
devices executing ML applications is to decide what to log and
to automatize the detection of crashes or system hangs. The
details of a possible software and hardware setup, adopted in
various radiation test campaigns, are presented in Section IV.

B. Fault Injection

One of the limitations of beam experiments is that
the radiation-induced fault is observed only when it reaches the
software output. This limitation is actually not an issue if the
test targets memory. In fact, as depicted in Fig. 10, a fault in
the hardware that implements a memory bit simply manifests
as a bit flip. Thus, with a static (or dynamic) memory test,
we can measure the probability of faults and the fault model
(how many bits are corrupted). This does not apply to logic
and computing resources. A fault in an adder, for instance,
can have a syndrome that depends on the stuck register or on
the inputs. If the add operation is used as part of a complex
algorithm (such as DNNs), this error can propagate (or not)
till the output and can (or not) modify the object detection.

To better understand how a fault propagates in the com-
puting device, it is necessary to rely on fault injection that,
as shown in Fig. 12 and listed in Table I, can be performed at
different levels of abstraction (circuit, RTL, microarchitecture,
and software). The lower the abstraction layer (i.e., the fault is
injected closer to the physical implementation), the higher the
accuracy of the results, but the higher the computation time
required to perform the evaluation.

RTL fault injection requires the gate-level description of the
computing device. This is, unfortunately, a sheer illusion for
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TABLE II
RELIABILITY EVALUATION METRICS DEFINITIONS

COTS AI accelerators. To protect business-critical informa-
tion, in fact, the vendor does not release the internal circuit
description, thus preventing the RTL fault injection. In fact,
an RTL description of a GPU core exists [113] but is based on
an old NVIDIA architecture (G80). Nonetheless, as discussed
in Section V, this RTL description was fruitfully used to
understand the effects of faults in peculiar GPU resources,
such as the scheduler and control units.

Microarchitectural fault injection modifies the values of
signals in the description of the computing core. This level
of abstraction does not include the implementation details of
the RTL circuit, and often, it only disposes of behavioral
descriptions. A fault injection in the microarchitecture, then,
allows studying how a fault in a computing resource (such
as the pipelines, the scheduler, and the memories) impacts the
software execution. It is clear that, without the implementation
details of the computing resources, it is impossible to predict
the error rate of the device. Nonetheless, some preliminary
studies showed that the fault injection at the microarchitecture
level of ARM devices can predict the radiation-induced error
rate of a code, given some information about the technology
sensitivity [114]. As said for RTL fault injection, also, the
microarchitectural fault injection requires the availability of
the microarchitecture details of the computing device, which
is, once again, not easy to get.

Software fault injection is the easiest possible fault injection.
The experiments are performed on live hardware and rely
on dedicated procedures to modify the values of variables
or instruction output. Since the experiments are performed
on the COTS hardware, there is no need to have details
about the device. However, software fault injection risks being
unrealistic if not properly designed. Software fault injection
is normally used to understand critical software operations
or algorithm procedures more than to estimate the error rate
of the device. When performing a software fault injection,
as detailed in Section V, it is important to profile the code
executed. This step allows counting the number and type of
instructions and the input used by the code. A statistical fault
injection should target the various instructions and the final
result normalized with the probability for an instruction to be
actually executed [105].

C. Evaluation Metrics
There are various metrics to measure and describe the

reliability of a computing system running DNNs. Table II lists
the most common metrics, their measurement unit, definition,

and an indication of how they are calculated. Other metrics,
derived from the automotive and safety-critical domains and
their evaluation, are discussed in [115].

The primary metric to measure the radiation sensitivity of
a device is the cross section. The cross section measures the
probability for a particle to generate a fault in the device.
In the case of computing devices, the fault is observed when
it becomes an error, which can be a DUE or an SDC, i.e., the
fault must be generated in the hardware layer and propagate
until being observed. Thus, the faults that are masked are
not counted. The higher the complexity of the hardware and
software, the harder to understand how many faults have not
been counted. When it comes to DNNs, the SDC can be critical
or tolerable (as discussed in Section II-A). It is then a good
practice to distinguish the critical and tolerable SDC cross
section. Please note that, given the dependence of the fault
propagation through the abstraction stack of the device and the
software, the cross section can vary significantly depending on
the executed DNN and even on the processed frame (an empty
frame can be less susceptible than a busy frame).

In the case of automotive, avionics, or industrial applica-
tions, the metric to evaluate the reliability of a device (running
an application) is the failure in time (FIT), i.e., failures in
109 h of operation. Depending on the criticality of the action
performed by the device, there are different maximum FITs
allowed. In the case of automotive applications, according to
ISO2626-2, devices used in the Automotive Safety Integrity
Level (ASIL) D level (the most strict level) must have an error
rate lower than 10 FITs [18]. If the (neutron) cross section has
been measured by an experimental beam with a spectrum of
energies that resemble the natural one, the FIT rate can be
measured by multiplying the cross section by the natural flux
(13 n/cm2/h at the sea level [51]) and by 109. The mean time
between failure (MTBF) indicates the average time during
which the device is correctly operating. By definition, the
MTBF is simply the inverse of the error rate (i.e., of the FIT).
Alternatively, one can use the mean fluence between failure
(MFBF) that indicates the average fluence necessary for the
device to experience an error [116].

The cross section of a device executing a code depends on
the number of resources used for computation, i.e., the sensi-
tive area or cross section [53], and their corruption probability
of affecting the output. The probability for a fault to propagate
from the transistor to the software visible state (see Fig. 12)
is called architectural vulnerability factor (AVF) [117].
The AVF assumes that a fault has occurred and measures its
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probability of reaching a register, a memory, and an operation
output. When a code is running, the probability for an error
to affect the output is the program vulnerability factor
(PVF) [118]. The PVF assumes that the fault has reached
the software’s visible state (thus becoming an error) and
measures its probability to modify the software execution (thus
becoming a failure, such as an SDC or DUE). The AVF and
PVF are measured with fault injection, which tracks fault prop-
agation to the output. Fault injection, then, assumes that a fault
occurred and identifies if the fault affects the output or not.

The cross section does not depend on the execution time.
The cross section, in fact, is measured, with accelerated beam
experiments, dividing the number of observed application
output errors by the particle fluence (n/cm2). The fluence
is given per cm2 to ease the calculation, as measuring the
exact area of the transistors/device would be unfeasible. This
implies that, when testing a code, the execution time and
the performance are not considered. The impact on some
applications is that a very slow code that uses only few
resources for a long time could be evaluated more reliably than
a highly efficient code that uses a lot of resources to speed
up the execution. In other words, what influences the cross
section is the amount of resources used for computation and
not the execution time. In fact, if the same amount of memory
is exposed for a time interval t or 2t , its cross section will not
change since, under a constant flux (neutrons/cm2/sec), in 2t ,
we expect twice the errors and a double fluence (n/cm2) to hit
the device, resulting in the same error rate. This is under the
assumption that the flux of particles is constant and sufficiently
low not to have two corruptions from two different particles
in 2t . On the contrary, if we double the amount of memory
exposed for the same time interval t , we expect twice the
number of errors but the same neutron fluence (n/cm2) to hit
the device: we are doubling the error rate. Similarly, executing
x or 2x sequential (independent, for simplicity) instructions
does not change the code cross section. On the contrary, if the
additional x instructions are executed in parallel with the
original sequence, the error rate is expected to double (same
execution time and same fluence but doubled error rate).

The interesting aspect, only apparently playing against
parallel devices, is that a slower execution does not increase
the FIT rate, while using more parallel resources or bigger
hardware cores, with a potential benefit on performance,
increases the FIT rate. To combine error rate and performance,
the mean instructions, executions, or work between failure
metrics (MIBF, MEBF, and MWBF) were introduced [7],
[119], [120]. The idea is to consider how many instructions,
executions, or workloads can be correctly completed before
the output error occurrence. Considering a constant error rate,
then the faster configuration will have a higher MIBF, MEBF,
or MWBF. It is clear that these metrics are useful only if what
is important for the mission is the amount of data correctly
produced. If what matters is simply the error rate, then the
cross section is the main metric to use.

IV. RADIATION EXPERIMENTS

In this section, we will review the requirements of a
radiation test setup for AI accelerators. We will consider

Fig. 13. Scheme of a beam experiment setup mounted at the ChipIR facility
at Rutherford Appleton Laboratory in the U.K. The devices under test are
placed in the irradiation room and aligned with the neutron beam of ≈3.5 ×

106 n/(cm2/s). The DUTs (GPUs) are controlled by the host motherboard,
which is connected to a private network. The power given to the motherboards
is controlled with an Ethernet-controlled power switch. The network server is
composed of a set of Python scripts, which controls the devices through the
Ethernet and performs power cycles through a power switch.

both the hardware and software setups, including the choice
of the algorithm, the code, the input, and the output to
check and log. All the presented discussion is the result of
several years of beam experiments on AI accelerators, and
thus, it is not meant to be theoretical but practical. The test
setup that we present in this article, including the scripts to
generate the logs, several benchmarks, the watchdog, and some
easy examples, is publicly available in the UFRGS CAROL
radiation benchmarks repository [121].

A. Experimental Setup

Most of the available AI accelerators require a host to
operate. A host can be a motherboard, for GPUs, a PC or
Raspberry Pi, for EdgeAI devices, or an embedded CPU, for
SoCs. The host has the role of stimulating and controlling the
AI accelerator but also of checking the output correctness.
The host itself should then be controlled by a server that
controls the entire experiment, tracks the test being performed,
maintains a time stamp, counts errors, and determines, using
watchdogs, if the host or the device under test needs to be
rebooted or power-cycled. Thus, an experimental setup for AI
accelerators, as shown in Fig. 13, is composed of: 1) the device
under test; 2) the host; and 3) the server.

Normally, while the DUT should be aligned with the particle
beam, the host and the server should be placed as far as
possible from the beam spot. As shown in Fig. 13, in the
case of GPUs that need to be connected to a motherboard
using the PCIe interface, we use PCIe bus extensions to
increase the distance between the DUT (thus the beam spot)
and the host device. We also include boron plastic bricks to
protect the host devices and the power sources from scattered
neutrons. We suggest using high-end devices for the host
device (server motherboards, DDR memories with ECC, gold
power sources, and so on) since the stress imposed by a beam
experiment, together with the effect of neutrons, can jeopardize
the functionality of the controlling hardware. According to
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our experience, the power source is particularly critical when
testing power-hungry GPUs. Moreover, the DDR memories are
highly susceptible to scattering neutrons. Unfortunately, after
hours of testing, it is not unlikely to experience permanent
or intermittent errors in the DDR. These errors corrupt the
input/output vectors in the host, which are used for the exper-
iment, making the test output completely useless. When an
error occurs in the host DDR, we expect most (if not all) of the
executions to generate an error. These errors should obviously
not be considered when calculating the DUT cross section.
The same applies to the host hard drive. It is fundamental to
protect it from scattered neutrons and avoid excessive writing
operations. An error in the host DDR, for instance, can have
the side effect of inducing several subsequent log (write)
operations in the hard drive, either saturating the available
space or inducing a disk failure.

The setup should include both software and hardware
watchdogs to monitor the experiments (see Fig. 13). These
watchdogs are used to monitor the experiment and automati-
cally detect when the application or the DUT stops responding.
In these events, the watchdog should be able to relaunch
the application, reboot the host, or power cycle the system.
The watchdogs are particularly useful for overnight shifts of
experiments when multiple boards are tested in parallel so as
to quickly detect malfunctioning, thus improving the accuracy
of the measurement and reducing the waste of beam time.

The software watchdog is executed either on the host (the
motherboard) or the server (external control system). The
software watchdog is a script that checks if the application
under test is running, and if it stops responding in a predefined
time interval, the kernel is killed and relaunched. This watch-
dog detects kernel crashes or software hangs, i.e., application
crashes or control flow errors that prevent the DUT from
completing assigned tasks (e.g., an infinite loop). The best way
to implement the software watchdog is to let the host and the
server communicate (with signals). It is a good practice to
avoid infinite loops or to continuously ping the host since this
would unnecessarily stress the setup.

The hardware watchdog is an Ethernet-controlled switch
that performs the host computer’s power cycle if the host
computer itself does not acknowledge any ping requests in a
predefined time interval. The hardware watchdog is necessary
to detect operating system hangs. To implement the hardware
watchdog, it is necessary to include in the setup a power
switch that can be controlled with a script via Ethernet.
The hardware watchdog is particularly critical and should
be carefully designed. Some events can make the watchdog
continuously perform host power cycles, risking to damage (or
destroy) the power unit, the host itself, or the power switch.
Damage to the power switch can actually destroy all the hosts
and DUTs connected to it. This has actually happened during
one of our beam experiments. We suggest to place also the
power switch far from the beam and protect it from scattered
neutrons.

A critical decision when performing a radiation experiment
of AI accelerators regards the data to log. The obvious
answer would be to log everything and eventually parse data
after the experiment. Unfortunately, this choice is impractical

when DNNs or portions of a DNN (a layer) are tested since
the output is vast and might contain a lot of unnecessary
information. Even when testing a matrix multiplication or a
convolution, the data to log should be carefully engineered.
If a single element of the output matrix is corrupted, it is not
necessary to log the whole output matrix. The need to reduce
the data to log is not only necessary to avoid saturating the
hard drive but also to reduce the time required to write the
log.

An effective strategy to reduce the log size is to log only
the differences between the expected output and the corrupted
output, ensuring that the position of the corrupted element is
logged, too. This solution can help to reconstruct the corrupted
vector without storing it all. In the case of DNNs, not all the
outputs matter. As discussed in Section II-A, the tensor vector
at the output of a DNN contains the information about all the
objects detected or classified, regardless of their probability.
The output is then filtered, and only objects detected with a
sufficiently high confidence are considered. It can be sufficient
to log only the faults that modify the outputs that have a
probability higher than the confidence threshold. Considering
all the objects can actually lead to false positives since the very
low-confidence object characteristics can change even without
radiation due to the intrinsic probabilistic nature of DNNs.

An essential element of information that must be maintained
when logging data during beam experiments is the time stamp.
It is fundamental to correlate the observed event with the
beam status or flux intensity. To do so, for every observed
error, we need to track also the time stamp, ensuring that the
server clock is synchronized with the facility counter clock.
Losing the synchronization between the data acquisition and
the facility clock can result in useless data since, while we have
information about the number of events, we cannot calculate
the cross section as the particle count is out of sync.

To measure the cross section, as detailed in Table II, we need
to divide the number of observed events by the fluence, i.e., the
number of particles per cm2 that hits the DUT while computing
the code. Thus, we need to discard, from the fluence count,
all that time during which the DUT is irradiated, but it is not
performing the calculation. Otherwise, we risk (significantly)
underestimating the DUT cross section (we consider a longer
exposure time, thus a higher fluence, reducing the cross
section). Since the AI accelerator interacts with the host (not
irradiated), it is not always easy to have a fine-grain estimation
of the effective time the DUT spends in computing.

What we suggest is to log, per each DNN (or code)
execution, the actual execution time in the DUT. Thus, besides
logging the observed events, we are logging also, for each
execution (correct or not), the execution time in the DUT. After
the experiment, we can calculate the accumulated execution
time, summing the execution times of all the executions
in the DUT. Then, the cross section is calculated by dividing
the error rate (observed events/accumulated execution time) by
the average flux (particles/cm2/s) during the experiment. The
length of the experiment should be sufficient to reduce the
experimental error that comes from particle count uncertainly
and flux fluctuations. In most neutron facilities, experiments
that last for 1 or more hours are suggested.
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A very critical aspect of the setup for the AI accelerator
radiation test is the execution versus setup time. To test a
DNN, it is necessary to load the input (that can be a big image
or even a video) to the host or DUT, execute the DNN, and
then check for errors. The useful time for the experiment is
only the DNN execution in the DUT. Thus, the load/download
of data and error checking should be much faster than the
code execution time in the DUT. Otherwise, most of the
particles hitting the DUT would be wasted. As a general
rule, the time required to setup the execution and check
errors should be less than 10% of the code execution time
in the DUT. This is not always easy to achieve, mostly
when testing parallel devices. For example, testing matrix
multiplication (or a convolution) on a GPU can be challenging.
The execution of matrix multiplication is O(N 3), where N is
the size of the (square) matrix, since, for each of the N ×

N elements, we need to perform 2N operations (sums and
multiplications). However, if the parallel DUT has sufficient
parallel resources (one functional unit per element, which is
normally the case), the computing complexity becomes O(N )

since each of the elements is computed in parallel with the
others. If, as normally is, the host is a CPU, the time required
to check the output correctness is O(N 2) since each output
element needs to be compared with the golden copy. As a
result, the time spent in checking for correctness risks to
be asymptotically longer than the actual test time. To solve
this issue, it is important to engineer solutions to speed the
correctness check, eventually using memory comparisons and
checksum, or even to let the DUT itself perform the check
(ensuring this lasts a negligible fraction of the actual code
execution time).

The postprocessing of experimental data is fundamental to
understand the reliability of DNNs. Besides the cross section
calculation, in fact, it is necessary to identify the effect of the
faults in the output, eventually distinguishing between critical
and tolerable errors (see Section II-C).

B. Facilities and Setup Criticality

There are several facilities that can be used to test AI
accelerators; the choice depends on the evaluation of interest.
One fundamental aspect of AI accelerators is that most of
them are available only on big boards (GPUs) or as embed-
ded in SoCs. In both cases, the beam is likely to irradiate
both the DUT and the supporting hardware. For the specific
case of stand-alone GPUs, for instance, a focused beam
(up to 3 × 3 cm) is to be preferred to avoid the irradiation of
the onboard power control circuitry.

One of the critical challenges that we have addressed in the
radiation experiments of GPUs is the errors in the onboard
DDR. The GPU board has several gigabytes of DDR installed
close (or even over) the GPU chip. This device memory is fun-
damental to avoid costly host-device memory transfer. When
it comes to radiation experiments, DDR corruption needs to be
avoided or reduced as much as possible. An issue that we have
experienced with modern devices is that the onboard DDR
experiences also permanent and intermittent faults, risking
bias in the measured cross section. Unfortunately, since the
DDR is close to the GPU chip, it is difficult not to have

it irradiated, and since the GPU chip needs to dissipate a
lot of heat, the DDR temperature risks are very high (thus
increasing the aging and permanent faults occurrence). The
suggestion, when testing modern stand-alone GPUs, is to
select devices that include ECC on the DDR; otherwise, the
data risk being useless and the device unusable after a few
hours of experiment.

The permanent errors’ effect is a severe issue also for
some SoCs, in particular, those with the system boot-loader
stored in flash memory. The radiation-induced corruption of
this memory risks preventing the system to boot. Some SoCs
that we have tested experienced these failures after a few hours
of neutron irradiation.

There might be other critical aspects for the experiment,
specific to the device under test. The fact that we are testing
commercial devices normally used for AI model prototyping
intrinsically requires attention and experience.

In Section IV-C, we will list the most interesting experi-
mental results obtained by irradiating AI accelerators. There
are various facilities used for these experiments. The facilities
that have been most frequently used to measure the error
rate of AI accelerators are the Los Alamos Neutron Science
Center (LANSCE) in the Los Alamos National Laboratory
(LANL), USA, and ChipIR at the ISIS neutrons and muons
source at the Rutherford Appleton Laboratory, U.K., for neu-
trons. Brookhaven’s Booster accelerator at the NASA Space
Radiation Laboratory (NSRL), USA, the Lawrence Berkeley
National Laboratory (Berkeley Lab), USA, and the Particle
Therapy Research Center (PARTREC), The Netherlands, has
been used for heavy ions and the Massachusetts General Hos-
pital (MGH) for protons. All these facilities have been shown
to have beam characteristics that suit the radiation experiment
of AI accelerators. It is definitely of extreme importance to
discuss your setup with the instrument scientists to check
possible criticalities. Discussing with users who have already
performed experiments on similar devices is also extremely
helpful.

C. Experimental Results

There are several documented datasets about AI accelerator
reliability available in the literature (listed in Table III); here,
we just provide an overview of the most interesting results. The
scope of this data survey is to help the reader in finding the
data of interest and understand the data collection and parsing.
Most of the available data refer to neutron experiments, while
some preliminary results with protons and heavy ions are
being published. We will first consider GPUs that have been
extensively studied. Then, we will also list the available data
on FPGAs and EdgeAI accelerators for AI. It is fundamental
to recall that when testing an ML application, the input frame
(how many objects of how many classes are present in the
picture), the dataset (what is the network doing), the training
(how has the network been trained), and the accuracy (how
well the network behaves without faults) of the model are all
factors that can significantly bias the error rate.

1) Neutrons: GPUs have been tested extensively since
2012 when the first Radiation Effect Data Workshop paper
appeared [122]. Most of the first papers regarding GPUs
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TABLE III
AVAILABLE EXPERIMENTAL DATA OVERVIEW

consider neutron radiation, given the importance of GPUs for
terrestrial applications (mainly autonomous vehicles).

A key criticality highlighted by the reliability evaluation
of GPUs is that, besides the high error rate caused by the
large device area, there are some additional vulnerabilities
that come from the device parallelism management. Since
GPUs have hardware schedulers (in CPUs, the scheduling is
performed, in software, by the operating system) that need to
orchestrate the execution of thousands of threads, they can be
corrupted by radiation and their corruption can have catas-
trophic outcomes. In [7] and [123], neutron beam experiments
demonstrate that increasing the number of parallel processes
imposes a higher scheduler strain that increases the GPU error
rate.

It has been shown that the corruption of shared resources
(like caches) or the scheduler affects the execution of multiple
parallel processes [124], [125]. Interestingly, the number of
parallel processes that can be corrupted and the impact of
the corruption (how different the corrupted value is from the
expected one) depends both on the parallel architecture and
the executed algorithm [67], [126], [127]. The corruption of
multiple parallel processes is particularly critical for CNNs,
as shown in [11]. Multiple parallel process corruption, in fact,
modifies a portion of the feature map (output of a convolution
layer), which can induce the network to misclassifications.
Faults during convolution in GPUs manifest at the output as
corrupted row(s)/column(s) or huge corrupted block(s).

Novel architectural solutions to improve the efficiency of
convolutions, such as tensor cores (hardware that performs
up to 16 × 16 matrix multiplication in one clock cycle)
and mixed-precision cores (dedicated functional units for low
precision data and operations), have also been tested with
neutrons [128], [129]. Tensor cores, having a large area, have

a higher error rate compared to the software execution of
the matrix multiplication, while mixed-precision hardware has
a smaller error rate. In contrast, a fault in a low-precision
operation has a higher impact on the output correctness since
a corruption in a 16-bit value is likely to have a higher
impact than a corruption in a 64-bit value. This trend has
been confirmed also on dedicated accelerators for multi-bit-
width CNNs implemented on a flash-based FPGA [136].

Some effort has also been carried out to identify the
causes for DUEs, i.e., application crashes or device hangs.
The comparison of beam data in GPUs, FPGAs, and CPUs
executing different algorithms highlights that DUEs have a
strong component that is independent of the executed code and
is, then, related just to the hardware [127]. A more detailed
analysis, on GPUs, presented in [130], categorizes the DUE
by analyzing the Syslog that records GPU errors combining
beam experiments and fault injection experiments that disturb
the control flow. Graphics engine exception, GPU memory
page fault, GPU processing stop, and internal microcontroller
halt are observed (the latter only during beam experiments).
This result suggests the hardware that is not disclosed to the
users contributes to DUE errors substantially. An independent
study, purely based on beam experiments, confirmed most of
these findings [149].

During radiation experiments of modern computing devices,
it is of paramount importance to pay particular attention to the
onboard DDR. Unfortunately, shrinking DDR technology is
prone to experience permanent or intermittent failures [131].
This risk is exacerbated with temperature, and the DDR in
most modern devices is placed in close proximity to the
computing core (that can reach high temperatures). Boards
with ECC in the DDR are to be preferred when deciding which
device to test.
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Various AI accelerators have lately been tested, both
implemented on FPGAs or EdgeAI chips. On an FPGA,
as mentioned in Section II-B, the neural network can be
implemented as a whole pipeline or using systolic arrays. The
former implementations have been shown to be particularly
susceptible to neutrons. In addition, reducing data precision
and simplifying the sigmoid function (2) reduce the neural
network error rate [132], [133]. Systolic array implementation
allows to map larger models in the FPGA since the same
hardware is used to process various convolutions [150]. The
drawback of systolic array implementation is that, once the
circuit is corrupted, all convolutions mapped on it will produce
a wrong output, reducing the reliability of the network.

EdgeAI accelerators, such as the NeuroShield or Google’s
TPU, have been tested [13], [134]. According to the reported
experience, the setup for EdgeAI accelerator testing is easy
since the device is connected via USB to a host CPU (to
be placed out of the beam). Reported data highlight that the
setup hardly fails (while GPU setup fails quite often), and once
mounted, it does not require to replace any failing parts. The
test on the NeuroShield and the TPU shows a lower error rate
compared to GPUs and a simpler error model since few output
elements are corrupted and the corrupted value is similar to
the expected one. As a result, also, the misclassification rate
of neural networks on EdgeAI devices is lower than on other
devices.

2) Protons: GPUs have also been tested with protons,
showing similar trends and behavior as neutron tests [137],
[138], [139]. In particular, three different strategies to imple-
ment matrix multiplication have been tested. Results highlight
that the slower memory-bound algorithm is more error-
prone, while the most efficient algorithm has a smaller cross
section [137]. Parallel strategies reliability has been tested on
lower–upper decomposition and a comparison of a memory
bound, and a compute-bound implementation of the decompo-
sition has been proposed. Results show that more intensive use
of the resources of the GPU increases the cross section [138].

3) Heavy Ions: Heavy ion experiments have been per-
formed on AI accelerators to evaluate at which level they
can be used as part of a space mission [142], [143]. Particular
attention is given to the device preparation and the setup to be
sure that the experiment can be carried out. AI accelerators
are normally powerful devices that need to dissipate heat
efficiently. If the chip needs to be delidded for allowing ions
to penetrate or if the test must be performed in vacuum, this
might not be possible, requiring the use of cold fingers or other
thermal solutions [142].

The vision processing unit (VPU) embedded in the Myriad
SoC has also been exposed to heavy ions [144], [145]. The
promising news is that no Latchup was observed in any of
the tested chips up to an effective LET of 110 MeV×cm2/mg.
The measured single-event functional interrupt cross section
of the SoC is about 10−4 cm2/device. In addition, a side exper-
iment on the onboard DDR3 reveals the possible presence of
an error correction scheme in the memory.

An overview of the reliability and power/performance of
various commercial devices for space application attests suf-
ficiently positive results, paving a path toward low Earth orbit

trials and the complete life cycle for space-based AI classifiers
on orbital platforms and spacecraft [148].

V. FAULT INJECTION AND FAULT PROPAGATION

Fault injection is a fundamental step in the understanding of
AI framework reliability. By injecting faults at different levels
of abstraction, it is possible to track how faults propagate,
identifying the most critical procedures or code portions.
Fault injection is, indeed, a complementary approach to beam
experiments that can be particularly useful when dealing with
complex hardware. In fact, if the fault propagation path is short
or naive (as in the case of memories), beam experiments can be
used to correlate the observed fault (wrong data) with the fault
source (memory cell corrupted). On the contrary, if there is a
significant pipeline of stages and abstraction levels from the
fault origin and the observable points (the network output),
it is impossible, with beam experiments alone, to have full
visibility of the fault propagation limiting the understanding
of the critical portions of the hardware and software. A neural
network is normally described in python, which is a very
high-level programming model. This description is then imple-
mented in C, VHDL, or CUDA for then being compiled (or
synthesized). Each executed machine instruction involves the
use of complex hardware resources (multiplier, tensor core,
and systolic array) that can be corrupted. The way the fault in
a gate of such complex hardware affects the whole abstraction
stack is very hard to reverse engineer observing just the final
output (see Fig. 12).

Instead of exposing the manufactured chip to radiation,
fault injection is based on models of the system and artifi-
cially injects faults through simulation at different levels of
abstraction: from RTL to architecture, microarchitecture, and
software. The main difference between fault injection and
beam experiments is that, in the latter, faults are generated by
the particles and then propagate, while, in the former, the fault
is assumed to have modified the resource (gate, memory, code,
and operation—depending on the chosen abstraction level).
In other words, fault injection does not include the information
regarding the probability for the fault to be generated but
just measures the probability for the fault to propagate. This
probability for a fault to propagate to the output of an
application is measured by injecting faults in the accessible
resources of each level’s model (gates, registers, hardware
arrays, variables, instructions, and so on).

Fault injection is interesting since it provides complete
observability of the abstraction layer details but has two main
limitations: 1) the fault model and fault injection probabilities
are synthetic (i.e., defined/modeled by the user and/or the
simulator), and thus, the obtained results may not correspond
to the physical phenomena and 2) faults can be injected only
in that subset of available resources that are accessible at each
abstraction layer, and thus, the evaluation may not be complete
nor exhaustive. Depending on the abstraction level at which
the fault injection is performed, the limitations can be more
or less critical [151].

When SRAM-based FPGA is considered, fault injection
becomes a primary evaluation tool. In fact, since the config-
uration memory is accessible and represents the most critical
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resources of the device, in FPGAs, fault injection can draw
accurate evaluations [152], [153] and is highly suggested for
ML applications.

To inject an error at the software level (source code)
executed on a chip, it is necessary to have characterized
the fault model, i.e., how the hardware corruption modifies
the software being executed. Injecting a single bit flip in a
variable is simply wrong [151] since corruption in a complex
AI accelerator can hardly be translated in such a naive fault
model. Injection of a single transient fault in a gate at RTL
might be accurate, though, since the propagation is performed
in the downstream simulation. It is obvious that the more
accurate the injection, the longer the process time. Just to put
this time in perspective, an accurate RTL fault injection of a
simple CNN as LeNet can take hundreds of years [154].

In addition, it is fundamental to perform a sufficiently high
number of injections to guarantee good accuracy [71], [155].
Otherwise, the results risk being misleading, given the high
amount of operations executed and data processed.

In the following, we will list some of the available
frameworks for fault injection at different levels of abstrac-
tion, from RTL (see Section V-A) to microarchitectural
(see Section V-B), software (see Section V-C), and hybrid
approaches (see Section V-D). The goal of this list is to
highlight the benefits and problems associated with each level
of abstraction and to summarize the main observed results.

A. RTL Fault Injection

RTL fault injection, by simulating the circuit of the device
under test, potentially allows observing the propagation of the
fault from the gate to the software output. Nonetheless, inject-
ing faults at this low level of abstraction comes with two main
limitations. The first one is the high simulation time. A single
fault injection can take hours, depending on the complexity
of the hardware and the executed application [8], [78]. The
second limitation is the availability of detailed descriptions
of COTS circuits. Most available RTL descriptions are either
obsolete (based on G80 NVIDIA chip) or lack significant
details [156].

Some interesting fault injection campaigns on GPUs’ RTL
description highlighted that the criticality of functional unit
corruption depends on the executed instructions, and a single
transient fault in the GPU hardware can hardly manifest as a
single output corruption at the neural network output. On the
contrary, when convolution is executed on a GPU, the single
fault is likely to spread affecting various or several elements of
the feature map (convolution output) [154]. With the insights
derived from the RTL fault injection, it is, indeed, possible to
identify the most vulnerable and critical resources of GPUs.
However, given the complexity of the computing architecture,
the challenge of implementing effective selective hardening
solutions for those critical resources is still unsolved.

RTL descriptions are available also for systolic-array-
like accelerators, such as the NVIDIA DL Accelerator
(NVDLA) [157]. Again, the availability of the low-level
description of the circuit allows a fine-grain reliability
evaluation. A fault-injection framework dedicated to ML

models executed on the NVDLA accelerator is publicly avail-
able [158].

Despite the potential high accuracy, RTL injection should be
carefully engineered since the injection time can easily become
prohibitive. An exhaustive campaign that considers all injec-
tion sites and possible executed operations and inputs is simply
unfeasible. Some strategies to reduce the characterization time
have been proposed [154], [159], dividing the layers of the
network and composing the propagation in a later stage, for
instance. However, it is necessary to evaluate at which level the
introduced simplifications reduce the fault injection accuracy.

B. Microarchitectural Fault Injection

Microarchitectural fault injection acts at a higher level of
abstraction compared to RTL. The device is described using
performance models, significantly simplifying the circuit to
simulate. This simplification, on the one hand, speeds up the
fault injection (by orders of magnitude) but, on the other
hand, can potentially reduce the accuracy of fault injection.
This latter aspect is particularly critical when only behavioral
models are available, as in the case of GPUs [68]. As a
result, the microarchitectural fault injection can potentially
quickly indicate the high-level module that is more critical
for the neural network execution but can hardly be accurate in
predicting the error rate or defining the error model (i.e., how
the hardware corruption modifies the operation output).

Lately, an effort has been carried out to evaluate how close
the error rate prediction based on microarchitectural fault
injection is to that measured with beam experiments [76],
[114]. On ARM devices, the correlation is proven to be
very strong, with the fault-injection SDC prediction being
inside one order of magnitude of difference from the beam
experiment result, even when the CPU is embedded in a
SoC or an operating system is employed. Unfortunately, the
functional interrupt cannot be predicted with just microarchi-
tectural fault injection [76], [114]. In addition, a comparison
between microarchitectural fault injection prediction and beam
experiment is not yet available for more complex devices.

C. Software Fault Injection

The fastest way to simulate fault propagation is by injecting
errors directly into the source code. With an interruption-based
approach, it is possible to freeze the code execution, modify
a memory location, and then restore the execution, checking
the effect of the corruption at the output. Since the injection
is purely software, the execution can be performed on the live
hardware, significantly reducing the injection overhead (one
fault injection takes as much time as a normal execution) and
the fault injection design (no need to simulate and control
the circuit). The ease of use and efficiency of software fault
injection makes it popular among research groups evaluating
the reliability of neural networks [62], [69], [70], [100], [160],
[161], [162]. However, the very high level of abstraction at
which software fault injection is performed imposes a need
to carefully select the error model. Injecting a single bit flip
in a random variable at a random time risks being unreal-
istic. In other words, injecting a single-bit flip in software
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assumes that the propagation of the particle interaction from
the transistor all the way through the circuit, architecture,
and operation is manifestly a single corrupted bit, which is
clearly very unlikely. In addition, very high-level frameworks
designed in Python are now available to ease the development
and execution of AI models. The model is then translated
into machine code with complex compile stages. Injecting
a single-bit flip at the Python level worsens the accuracy
loss. As discussed in Section V-D, one way to combine the
efficiency of software fault injection with the accuracy of
lower level evaluation is to perform hybrid fault injection,
characterizing the fault model to inject.

Despite the intrinsic limitation of software fault injection,
it can be a useful tool to have a first understanding of how
the model behaves when corrupted. A detailed analysis of
the distribution of errors in matrix multiplication (essential
operation in DNNs) has been performed in [160]. The low
cost of software fault injection allows authors to evaluate the
effect of modifying the size of the matrix and the thread-block
size, which would have been highly costly to be performed
with beam experiments or lower level fault injection. The
flexibility of software fault injection also allows us to under-
stand the effect of data precision on the reliability of neural
networks [136], [161]. These results confirmed data obtained
previously with beam experiments [11], [128], [129], [133],
adding more details and configurations.

A tentative comparison between software fault injection
and beam experiments has been proposed for ARM pro-
cessors [105]. Nonetheless, unlike microarchitectural fault
injection (limited to simple ARM architectures), a good and
accurate way to predict the realistic error rate of a device from
the results of a software fault injection has not been found,
yet. This tool, then, should be used carefully.

D. Hybrid Approaches

Several attempts have been proposed to combine the flex-
ibility and efficiency of high-level fault injection with the
accuracy of low-level evaluations. The common idea of these
approaches is to characterize the effect of low-level faults
in the higher abstraction layers. In other words, the fault
propagation is split in two. The low-level injection is used
to build a database of possible fault manifestations, typically
considering a limited set of instructions and inputs. Then, the
injection at a higher level is performed taking the error to
inject from this database. It is clear that the challenge is to
build a representative database.

There are two main hybrid approaches that have been
applied to AI accelerators.

1) Beam and Software Fault Injection [104]: Beam exper-
iments are used to measure the fault probability of
basic GPU instructions. This has been done by exe-
cuting microbenchmarks composed of a list of machine
instructions in the GPU. By also checking the output
correctness, it is also possible to understand what is
the impact of the hardware fault in the instruction
output. As shown, a radiation-induced fault in computing
resources hardly produces single-/double-bit flips [104].

Then, a fault model has been injected in software,
picking from errors observed with the beam, the one that
is most suitable for the instruction to be corrupted (based
on the opcode and input values). Interestingly, a beam
experiment validation proved that this methodology is
quite accurate in predicting the error rate of applications
executed on GPUs [104]. Thus, it might be sufficient to
characterize the radiation effects on basic and common
instructions for then predicting any code error rate.

2) Low Level and Software Fault Injection [154], [163],
[164]: Similar to the previous hybrid approach, the RTL
fault injection or low-level fault simulation is used only
to characterize the fault effect at the output of basic
machine instructions. These effects are then propagated
in software. Interestingly, GPUs have particularly critical
resources, such as the scheduler, whose corruption can
modify the output of various threads. These multiple
corruptions are then the ones more likely to induce a
misclassification in CNNs [154]. This has also been
validated for permanent faults caused by aging of the
GPU control and parallelism management units [164].

VI. AVAILABLE HARDENING SOLUTIONS

Improving the reliability of complex AI accelerators is a
challenging task. Building a fault-tolerant AI or HPC system
is possible [165] but requires a great effort. Modifying the
fabrication technology or the device layout would be way
too costly, and even if it was feasible from a budget point
of view, it would risk jeopardizing the device’s performance
and efficiency. Adapting software or circuit traditional error
mitigation approaches, such as replication, might not be the
best option, either. In fact, the overhead of duplicating or
triplicating the DNN operations can be very high. In addition,
since not all the errors are critical for the functionality of the
network, full replication imposes unnecessary overhead (we
are duplicating even operations whose corruption can have a
minor impact on the classification output).

Interestingly, embedded solutions such as SECDED ECC
have been shown to be less effective for neural networks
compared to traditional HPC algorithms [11], [16], [166].
In particular, enabling ECC only slightly reduces the number
of misdetections, suggesting that most faults causing critical
errors do not originate in memory.

Luckily, the probabilistic nature of neural networks and
their intrinsic redundancy and computational flexibility (the
same accuracy can be achieved in various ways) allow the
designing of innovative dedicated mitigation solutions. Lately,
various strategies have been proposed to improve the relia-
bility of neural networks executed on accelerators. However,
as discussed in Sections IV and V, a hardware fault can
corrupt various bits of various elements in the computation of
convolutions and AI-related operations. Thus, when designing
or validating a hardening solution, special attention must be
given to the adopted fault model. A very efficient and effective
solution to protect the neural network from single-bit flips
might be ineffective when adopted in the field. As a general
rule, only hardening solutions that have been designed with
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Fig. 14. Description of the basic concept of ABFT applied to matrix
multiplication (top) and smart pooling (bottom). These hardening solutions are
highly effective in reducing the impact of radiation in CNNs’ execution [11].

an experimentally obtained error model or have been validated
with experiments should be adopted in the field.

Hardening can be applied at various levels. In this work,
we will focus on software and architecture hardening. The
former is highly flexible and, if properly designed, can be
very effective in reducing the failures in neural networks. It is
worth noting that the cost–benefit of software hardening can
be much higher for neural networks than for traditional codes
since neural networks have intrinsic redundancies that could be
exploited. Architectural hardening can be also efficient, mostly
in modern accelerators that include several heterogeneous
resources. By using the idle hardware concurrently with the
neural network execution, it is possible to implement cheap
replication. As a final note, we will also discuss how it is
possible to exploit ML potential to train the neural network
to deal with transient faults. This latter solution is extremely
powerful and promising.

A. Software

Modifying the software, adding replication or checksum,
is one of the easiest ways to increase the reliability of a code.
This also applies to neural networks. Full duplication has been
shown to be effective but highly costly [168], [169]. Some
works have proposed selective replication in order to save
overhead by protecting only the most critical layers or portion
of the neural network [12], [170], [171], [172]. Interestingly,
the overhead of duplication can be lowered by up to 50%, yet
maintaining comparable error detection capabilities.

Fig. 15. Structure of the error detection framework implemented comparing
subsequent input images and the correspondent detection. Similar input frames
should provide similar detection [167].

Since most operations in current neural networks are matrix-
multiply related, some interesting works have proposed to
adapt existing algorithm-based fault-tolerant (ABFT) solutions
to CNNs, as shown in Fig. 14. ABFT adds invariants to the
code and takes advantage of those for quick error detection
or correction. For matrix multiplication in GPUs and paral-
lel accelerators, in general, ABFT is particularly effective,
efficient, and able to detect and correct more than 80% of
errors in linear time [124]. When adapted to CNNs, ABFT
has been shown to outperform ECC or even duplication [11].
Lately, smart light-ABFT solutions have been introduced to
further reduce the overhead of the mitigation solutions for
GPUs [173] and FPGAs [150]. Other light-weighted solutions
have also been proposed for generic image processing appli-
cations [174].

A smart solution to filter errors propagating in CNNs is
to check whether the propagated values during MaxPooling
layers are reasonable. Max pooling, as depicted in Fig. 14,
selects only the element with the highest value to be propa-
gated in downstream layers. Rather than simply propagating
the element, it is possible to check if the value of the element
is inside a range of possible values. This strategy is promising
since most of the values propagated in neural networks are
restricted to a narrow range, while the effect of radiation
corruption can be wide. This solution can detect up to 85%
of critical errors in CNNs [11].

Moreover, the time correlation between input frames and
output detection can be exploited to identify errors. A CNN
processes each frame independently of the previous ones.
However, when looking at a scene, we know that there is
a strong correlation between subsequent frames. The same
correlation should hold for the detection, as shown in Fig. 15.
Thus, one way to detect errors is to compare the subsequent
input frames and the corresponding detection output. If the
two frames are very similar, then the resulting detection should
also be similar. Otherwise, an error flag can be triggered. This
correlation has been shown to detect about 70% of critical
errors while incurring some false positives [167].

B. Architecture

The computing architecture of AI accelerators, in partic-
ular, GPUs, has unused resources that can be exploited to
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implement duplication. Novel GPUs, as shown in Fig. 16,
include dedicated functional units to execute operations in
64, 32, or 16 bits and specific units for the execution of
matrix multiplication (tensor cores). When a functional unit
of a given precision is used, the others are idle, opening
the possibility to implement architectural duplication. The
fact that the redundant copy needs to operate in a different
precision forces the comparison not to be bit-by-bit (the two
copies are naturally different) but rather to use a threshold
of acceptable difference. Reduced precision duplication with
comparison (RP-DWC) has been implemented and experi-
mentally validated in GPUs [175], showing promising error
detection capabilities (75%, on average) and exiting overhead
(less than 20%). It is worth noting that the undetected faults
fall in the intrinsic difference between the two copies and,
thus, are likely to be precision errors with little impact on
neural network detection. A similar approach has been later
applied to image processing pipelines [176], [177] with similar
performances.

The other option to improve the accelerator architecture
reliability is to include specific fault detection mechanisms.
For instance, a built-in self-test (BIST) that allows monitoring
the performance of the inference engine hardware has been
embedded on the Myriad VPU [145]. The in-flight diagnostics
tests for the VPU inference engine indicate that the device
performed as expected, without experiencing any functional
upsets, or any functional degradation effects due to radiation.

C. Exploiting AI Potential for Error Mitigation

All the hardening solutions presented so far adapt to
ML application mitigation strategies derived from traditional
computing. Still, AI has an intrinsic potential that can be
exploited for error mitigation. A preliminary study focused
on reducing the number of object classes to be classified by
the model [179]. The intuition is that the higher the number of
classes, the smaller the Hamming distance between two dif-
ferent classes. Thus, with a high number of classes, a smaller
variation in the output tensor can induce a wrong classifica-
tion. Normally, models are trained on standard datasets that
include hundreds or thousands of object classes from different
domains. By tuning the number of classes to the specific appli-
cation need, we can spread the object probabilities halving
the change of misclassifications [179]. This solution can be
particularly effective in space applications, for which only few
objects are of interest.

Neural networks are highly adaptable to different scenarios,
as long as sufficient structured information is provided at train-
ing time. In other words, DNNs are powerful tools to perform
the tasks that they have been trained for, but DNNs usually
perform poorly when deployed in scenarios not seen during the
training phase. For instance, a model trained exclusively with
day scenes will experience a significant drop in performance
when tested on night scenes with poor illumination. A solution
to this problem is the use of data augmentation to allow the
network to also experience situations not present in the original
training data. As depicted in Fig. 17, we can impose on the
DNN to still provide correct output even if we inject faults

Fig. 16. Redundant low-precision functional units can be used to implement
efficient DWC strategies. On GPUs, when a code is executed in a given
precision, the functional units of different precision are idle and can be
leveraged for duplication [175].

at training time. If the DNN is trained to classify objects cor-
rectly, even with some selected transient faults, it is possible to
produce a more reliable model while maintaining the original
accuracy. The idea is to allow the network to familiarize itself
with the occurrence of neutron-induced errors by injecting
noise (transient faults) during training. In particular, while
performing the forward pass of the DNN training, a random
corruption is imposed on the feature maps (convolution output)
in a given layer of the network, injecting an experimentally
observed fault model. As a result, the model autonomously
learns how to properly deal with these kinds of faults by
adjusting the learned weights to reduce the likelihood of a
misprediction. This solution has been introduced for quantized
DNNs [180] and extended to complex CNNs executed on
GPUs [178].

The challenge that needs to be addressed is the selection of
the faults to be injected into the network during the training
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Fig. 17. Fault-aware training is a promising solution to make the DNN more reliable [178].

phase. Considering a high number of faults could increase
the network experience in dealing with faults but risks to
prevent the training convergence. A low number of faults will
result in quick training but might be ineffective. Moreover,
it is not possible to ensure that a particular random fault in a
given layer will lead to an error (thus, the model will learn
how to deal with it). Injecting single-bit flips, for instance,
is transparent to the network training. The best approach is
to identify the fault models that are more likely to induce
mispredictions and inject these faults in the majority of the
training samples.

As a very promising result, fault-aware training has been
shown to reduce by up to one order of magnitude the number
of critical faults in DNNs without reducing performance
(nearly zero overhead).

VII. CONCLUSION

ML is becoming the new computing paradigm. The
potentiality and performance of the available models allow
incredible flexibility. With neural networks, it is possible to
quickly identify patterns or objects, train the system to make
a decision, and extract hidden information from data. This
potentiality is extremely useful in a variety of applications
for which reliability is paramount, from self-driving vehicles
to space exploration. Nonetheless, there are various critical
aspects that must be considered before integrating ML in a
safety-critical application.

First, the model is intrinsically probabilistic. There is no
deterministic output, but the decision needs to be made based
on probability. The accuracy of such a probability is a function
of the training and the conditions in which the code is
executed. It is very hard (if not impossible) to estimate the
accuracy of an ML model when employed in the field.

Second, the hardware necessary to execute the ML model
is highly complex. A single fault can have unpredictable
effects on the software execution. Simply considering memory
errors or single-bit flip is too naive and is likely to largely
underestimate the impact of faults in the field. The complexity
of the hardware is such that requiring a full understanding of
radiation effects from the transistor to the tensor output could
be impractical (if not impossible). Novel strategies to bind the
error rate and the fault effects are then required.

The hardening solution designed for ML accelerators cannot
be adapted from classical computing. In fact, since not all the

error matters in a neural network and since the computing
power required to perform inference is extremely high, pro-
tecting everything will introduce unnecessary (high) overhead.
To implement an efficient and effective hardening solution,
it is necessary to study the model implementation and the
hardware response to radiation. By identifying the faults that
are more likely to cause misdetections or misclassifications,
it is possible to design specific mitigation solutions reducing
the overhead. In addition, exploiting ML potential is likely
to significantly reduce the impact of faults in the network
prediction, maintaining performance unaltered.

There are numerous unexplored aspects of ML reliability,
from both the software and hardware sides. Various commu-
nities are considering neural network reliability from different
perspectives. Nonetheless, it is the belief of the author that
the radiation reliability community needs to take the lead
in the quest for efficient ML reliability. In fact, without
an experimentally validated fault model, it is impossible to
understand the problem that we need to address, and without
an experimental validation of the hardening solution, it is
impossible to ensure its effectiveness. It is clear that the
challenge is not trivial, but it is about time to build a new
generation of reliable computing, going beyond the traditional
devices that we are used to dealing with.
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