
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023 993

Using FPGA-Based AMC Carrier Boards for FMC
to Implement Intelligent Data Acquisition

Applications in MTCA Systems Using OpenCL
Mariano Ruiz , Senior Member, IEEE, Antonio Carpeño , Daniel Rivilla,

Miguel Astrain , Graduate Student Member, IEEE, A. Piñas, and Victor Costa

Abstract— The micro telecommunications computing architec-
ture (MTCA) standard is widely used in developing advanced
data acquisition and processing solutions in the big physics
community. The number of applications implemented using
commercial advanced mezzanine cards (AMC) using AMD-
Xilinx and Intel field-programmable gate array (FPGA) systems
on chip is growing due to the flexibility and scalability of
these reconfigurable hardware devices and their suitability to
implement intelligent applications using artificial intelligence and
machine learning techniques. This article presents the specific
design methodologies for hardware acceleration proposed by
both FPGA manufacturers. Comparative results are obtained
from two different software/hardware setups using two different
AMCs, one based on Intel FPGA Arria 10 and another based
on Xilinx ZynqMP. This article illustrates the process of how to
modify the board support package, required by the hardware
acceleration methodology, to implement the JESD204B and low-
voltage differential signaling (LVDS) interfaces with the FPGA
mezzanine card (FMC) modules containing the ADCs, to prepare
the AMC cards to implement such kind of applications. The data
acquisition and processing implementation inside these reference
designs, with both languages OpenCL and high-level synthesis
(HLS), is described. An important feature, needed for many
applications in the big physics field, is the interface with the
Experimental Physics and Industrial Control System (EPICS)
software framework using the ITER Nominal Device Support
(NDS) framework, which is briefly described.

Index Terms— Field-programmable gate array (FPGA), hard-
ware acceleration techniques, high-level synthesis (HLS), micro
telecommunications computing architecture (MTCA), OpenCL,
system on chip (SoC).

I. INTRODUCTION

TWO emergent technological factors favor the develop-
ment of advanced data acquisition and processing solu-

tions on micro telecommunications computing architecture
(MTCA) platforms [1], [2]. On the one hand, integrated
devices are based on field-programmable gate arrays (FPGAs)

Manuscript received 13 February 2023; accepted 7 March 2023. Date
of publication 10 March 2023; date of current version 16 June 2023.
This work was supported by the Comunidad de Madrid under Grant
PID2019-108377RB-C33, Grant MCIN/AEI/ 10.13039/501100011033, and
Grant PEJ-2019-AI/TIC-14507.

The authors are with the Instrumentation and Applied Acoustic Research
Group, Universidad Politécnica de Madrid, 28031 Madrid, Spain (e-mail:
mariano.ruiz@upm.es).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2023.3255554.

Digital Object Identifier 10.1109/TNS.2023.3255554

[3], [4], which may or may not include an embedded pro-
cessing system (typically an ARM-Cortex-based hard-core).
On the other hand, the growing potential of development
tools and languages must be considered for implementing
digital signal processing and machine learning applications in
FPGA-based systems [5], [6]. These factors are of maximum
utility when designing advanced data acquisition and process-
ing systems in the MTCA standard [7], [8], [9], [10] and are
commonly implemented in advanced mezzanine card (AMC)
carrier boards [11].

The core of these boards is a medium-sized FPGA family
device connected to an FPGA mezzanine card (FMC) module
VITA 57.1 compliant [12] and to one or more Peripheral
Component Interface Express (PCIe) lanes available in the
backplane connector of the chassis. The manufacturers provide
two kinds of solutions. First, some systems use a conventional
FPGA, which receives the data from one or more FMC
modules and send the processed samples to the main computer
or host through PCIe or Ethernet interfaces. Second, systems
also feature a processing element of one or several ARM
cores inside the device next to the programming logic, the so-
called system-on-chip (SoC) devices. It is in the programmable
logic fabric of these devices where the logic in charge of
performing more complex operations with the data received
from the FMC module is implemented, while the use of an
embedded processor relieves the system of the need for an
external processor. Both architectures have advantages and
drawbacks and are intended for specific fields of application.
Moreover, several commercial AMC cards are now available
that mount both Intel1 FPGA and AMD-Xilinx devices. This
article aims to demonstrate the development of advanced data
acquisition systems in MTCA using the hardware acceleration
methodologies proposed by both manufacturers. The suggested
design cycle is based on the following:

1) the use of FPGAs or SoCs available in the AMC boards;
2) the integration of high-speed analog-to-digital converter

(ADC) modules in FMC format connected to the
FPGA by low-voltage differential signaling (LVDS) [13]
and JESD204B standard interface defined by JEDEC
organization [14];

1Registered trademark.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1337-0110
https://orcid.org/0000-0001-6824-0455
https://orcid.org/0000-0003-3486-0941
https://orcid.org/0000-0003-2994-8420


994 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

Fig. 1. MTCA hardware platform and software tools used for the application
development.

3) the development of data acquisition control and process-
ing tasks developed using OpenCL [15] and/or high-
level synthesis (HLS) [16];

4) the implementation of software layers interfacing with
the Experimental Physics and Industrial Control System
(EPICS) framework [17].

II. HARDWARE AND SOFTWARE SETUP
AND GENERAL VIEW

Fig. 1 shows the MTCA platform implemented using
commercial-off-the-shelf elements (COTS). The Linux host is
connected to the MTCA Carrier Hub (MCH) using a PCIe ×16
card. The chassis includes the power supplies and two AMC
carrier cards with an FMC board installed in each one. One
of them mounts a Xilinx SoC device, and the other mounts
an Intel FPGA device. The software environment needed for
the development is based on Vitis, Vivado, and Petalinux
2021.1 for the Xilinx design cycle; and Quartus Pro 2019.4 and
OpenCL SDK for the Intel design cycle. The Linux platform
used for the implementation of the system is the ITER Control
and Data Acquisition (CODAC) Core System and the ITER
Nominal Device Support (NDS) framework [16].

The MTCA chassis contains the following.
1) The MCH carrier board (NAT-MCH-PHYS80).
2) AMC carrier card for FMC mounting an Arria10-SoC

device (NAMC-ARRIA10-FMC), with an AD-
FMCDAQ2-EBZ from Analog Devices (High-speed
ADC 1.0 GSPSs. JESD204B interface) installed.

3) AMC carrier card for FMC mounting a ZynqMP Ultra-
scale device (NAMC-ZYNQMP-FMC), with a custom
FMC mounting an Analog Devices AFE5808 (ADC
eight channels, 65MSPS LVDS interface) installed.

4) The MTCA chassis (PowerBridge RackPak/M4-2) and
the host PC are connected by an optical fiber (NPCIEx8-
Opt-QSFP-uplink).

Each AMC carrier contains FPGA-based hardware that
allows two possible approaches for the hardware acceleration
methodology implementation depending on the use or not of
the embedded ARM processor. Fig. 2 shows the simplified
solution diagram that does not use the internal processor, while
Fig. 3 shows the opposite case. In both configurations, the
programmable logic fabric contains the board support package
(BSP, using Intel terminology) or the platform (using Xilinx
terminology), which is the hardware that implements the

Fig. 2. Block diagram of the hardware implemented in the AMC using an
FPGA device. BSP and kernels.

Fig. 3. Block diagram of the hardware implemented in the AMC using an
SoC device. BSP and kernels.

necessary logic to support the kernels execution and the data
movement and implement the physical interface with the FMC
module using hard-core elements such as GigaBit Transceivers
and PCIe. The blocks responsible for the double data rate
(DDR) memory management are also implemented here, with
Hardware Description Languages (HDLs), such as VHDL or
Verilog, or by intellectual property (IP) integration. The fabric
also implements the hardware to acquire and process the data,
which, in our use cases, is implemented using pieces of code
written in c-like languages, such as HLS or OpenCL, which
are known by the name of kernels. The design of the high-
speed serial interfaces available in the FMC, or the memory
management blocks, is usually a complex operation. This fact
could hamper the intended goal of speeding up the design
cycle. However, this does not represent a major problem
because this task is carried out only once when the platform
is created and then used by the final user as a black box.

The differences between both approaches come when cop-
ing with the design of the software part of the application.
The host implements the OpenCL Runtime to support the
configuration process and the data retrieving, together with
the user code, which is application dependent. This runs in the
ARM processor connected to the architecture by the Advanced
eXtensible Interfaces (AXI) for SoC devices or in an external
computer connected to the architecture by PCIe interface for
the FPGA-only devices.



RUIZ et al.: USING FPGA-BASED AMC CARRIER BOARDS FOR FMC TO IMPLEMENT INTELLIGENT DATA ACQUISITION 995

Fig. 4. Intel FPGA hardware acceleration design cycle using OpenCL SDK
for FPGA devices interfacing with the host using the PCIe interface.

It is worth highlighting the use of the hardware acceleration
model proposed by Intel FPGA and Xilinx to develop the
kernel in charge of data acquisition and processing. This part
of the process mainly improves the development time because
it is designed using c-like code instead of HDL. Furthermore,
the communication with the host is also resolved on the BSP
or the platform. Therefore, the final user is not aware of the
complexities of this part of the application and can focus on
the processing algorithm design.

III. DESIGN CYCLES USING THE HARDWARE
ACCELERATION APPROACH

Intel FPGA uses different design cycles, shown in
Figs. 4 and 5, to create the BSP depending on whether the
solution is for an Arria SoC device (SX subfamily) or an
FPGA-only device (GX subfamily). In both cases, a BSP is
provided as a reference design. These basic BSPs contain all
the elements needed to manage the kernels execution and
data movement between the host and the device, although
they can be extended or adapted to any hardware platform
after a porting process [18], [19], and this is a common need
for advanced acquisition designs. The goal is to create the
minimum hardware, with the support infrastructure to add
hardware acceleration elements (kernels) and specific user
logic. This logic must correspondingly include PCIe or Avalon
interfaces with the external or embedded processor, and other
elements such as clock generators, reset controllers, clock
domain crossing bridges, standard programmable interface
(SPI) the preferred standard for ADC configuration, and the
digital lines for FMC circuits control and status overseeing.
To carry out the transportation of samples from the ADC to
the FPGA, high-speed serial interfaces, such as JESD204B

Fig. 5. Intel FPGA hardware acceleration design cycle using OpenCL SDK
for SoC devices.

or LVDS, are used and placed inside the BSP. Finally, the
hardware to access the global DDR memory and other memory
management elements, such as the snoops and coherency
control logic, must be placed in the BSP. All these elements are
created and compiled with Quartus Prime Pro and are placed
in a fixed partition of the FPGA.

Then, the rest of the application-dependent acceleration
logic, comprising one or several kernels, is added to the fixed
partition using incremental compilation and partial reconfig-
uration strategy. Kernels are connected to the static part of
the programmable logic through Avalon-Streaming interfaces
and receive the acquired samples through these high-speed
interfaces and perform the data processing algorithm. All these
operations are transparent to the final user and performed
by the OpenCL compiler, whose result is a bitstream with
extension “.aocx.”

Regarding the software part of the cycle, shown to the
left of the figures, Intel FPGA adds a set of software layers
that allow the management of this hardware, called run-time
environment (RTE) and the API for ×86 and ARM platforms.
Both solutions share the process to create the user application
responsible for the application-specific system control and
management, though with the use of an ARM cross-compiler
in the case of SoC targets. When designing an SoC solution,
however, it is also necessary to create the embedded Linux dis-
tribution to be executed by the embedded processor. As shown
in the bottom part of Fig. 6, Intel provides a Yocto-based
tool [20] to help in the development of these software layers
as well.

Regarding Xilinx FPGA families, the manufacturer provides
two design cycles: one for SoC-based solutions and another for



996 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

Fig. 6. AMD-Xilinx design cycle for hardware acceleration using the VITIS
environment for embedded systems.

Xilinx’s PCIe-based platform. However, only the former can
be adapted to custom applications because PCIe architectures
are not open and only work with Alveo boards, which do
not allow the platform customization to include hardware to
address application-specific needs. Thus, only the SoC-based
design cycle is shown in Fig. 6. The reference platforms
for SOC-based solutions are provided for some commercial
hardware [21], although they can be modified to be used
with user designs. There are two variations, one that uses the
conventional configuration and the other that allows partial
configuration through the Dynamic Function eXchange fea-
ture.

The device contains ZynqMP UltraScale+, which embeds
an ARM-based processor system that runs the user soft-
ware application installed in an embedded Linux distribution.
Within the programmable logic fabric of the FPGA there is
an architecture with components similar to those available for
the Arria10 BSP. All these elements are created and compiled
with Vivado and are placed in an FPGA fixed partition. The
kernels implement the specific configuration of the system and
the data acquisition and processing and are connected to the
static part of the programmable logic via AXI-streaming buses.
As shown in the right of Fig. 6, the kernel code is designed,
written, and debugged by using the Vitis tool. The whole
system is compiled with Vivado, guided by the Vitis linker,
and a bitstream file is generated with an extension “.xclbin,”
in a transparent manner for the user.

The Xilinx Dynamic Function eXchange (DFX) feature
allows changing some blocks of logic, while other areas of the
system are still working. This allows configuring the FPGA
with new kernels on the fly without requiring reprogramming.

The software cycle, shown in the left of Fig. 6, is similar
to Intel with only two differences; first, the API interacts with
the Xilinx Run Time (XRT); second, to create the embedded
Linux distribution, Xilinx provides the Petalinux tool [22].

To manage and communicate with the kernels implemented
in the FPGA, the user application running in the host must use
de functions contained in the OpenCL standard API, which
is part of the specification. In this regard, Intel implements
the 1.2 version of the standard but not completely. However,
the API implemented by Xilinx is a complete 1.2 version.
The most important feature affected by this fact is that
Xilinx OpenCL application can make use of “out of order”
commands, allowing the design of easier parallelism of kernel
execution, thus increasing the throughput and reducing the
latency of operations.

Another important feature inherent to OpenCL or HLS
applications is using “pragmas” or “attributes” to lead the
compilation toward faster kernels. These elements are mixed
with the c-like code and allow the user to determine more
closely how the hardware is implemented in the FPGA. To this
regard, it is important to note that the attributes used by the
Intel SDK for OpenCL are oriented explicitly to OpenCL,
while the Xilinx pragmas are shared by HLS and OpenCL
applications. As a result, the code is less portable to other
OpenCL hardware platforms, such as CPUs or GPUs.

IV. IMPLEMENTATIONS FOR THE NAMC ARRIA10
AND NAMC ZYNQ BOARDS

This section illustrates the application of the acceleration
design cycle for both manufacturers by means of two paradig-
matic use cases. Fig. 7 shows a slightly simplified block
diagram of the hardware implementation for the NAMC-
ARRIA10-FMC use case. This example meets two objectives:
first, it supports using the Analog Devices AD-FMCDAQ2-
EBZ [23] module containing two ADC and DAC chan-
nels accessible through the JESD204B interface, and second,
it implements the BSP using the Intel FPGA methodology to
deploy acceleration hardware kernels developed in OpenCL.

Inside the dotted red square are the modules comprising the
BSP. Blocks in green are available in the OpenCL reference
model for Arria10-GX provided by Intel FPGA [18], [19]. This
part comprises the elements needed to allow the management
and control of kernel execution and the movement of data
from the host to the global memory and vice versa. Among
these blocks is the “Kernel Interface,” which allows the control
of kernels from the host application. The “Mem Controller”
includes the External Memory Interface (EMIF) to manage
the external DDR memory (global memory shared by the
host and the device) and elements to manage arbitration
such as the snoop to ensure coherency between the host and
device writings and readings. The “PCIe” block performs
the communication between the host and the device through
the PCIe interface, together with the necessary blocks to
construct Avalon-MM transfers to the rest of the elements
of the BSP and to ensure safe clock domain crossing. The
“JTAG” block allows user interaction with the system with the
System Console in Quartus, mainly for debugging purposes.



RUIZ et al.: USING FPGA-BASED AMC CARRIER BOARDS FOR FMC TO IMPLEMENT INTELLIGENT DATA ACQUISITION 997

Fig. 7. Details of the hardware implementation for the NAMC-ARRIA10-FMC card.

This basic OpenCL reference design has been ported to meet
the specific configuration of the AMC board and to allow the
management and control of the FMC module. Considering that
the resources available in most acquisition modules are very
similar, a set of generic hardware blocks has been developed
aiming at reusing them with other commercial cards.

These blocks can be found in yellow in Fig. 7.

1) The JESD204B Rx and Tx block receives and sends a
high amount of data at a very high speed from/to the
FMC.

2) The SPI interface to configure the common resources in
an ADC FMC module (low jitter clock generator, ADC,
and DAC).

3) Several GPIO lines controlling some specific FMC mod-
ule signals.

This part of the BSP, as stated in previous sections, should
only be designed once during the process of porting. Due to the
use of RTL code and IP integration skills, this task demands
an engineer with expertise in low-level FPGA design. There
are several points that must be considered while designing this
logic. The kernel-related logic uses its specific clock domain,
while the FMC module, SPI interfaces, and JESD204 interface
use their respective clocks. Therefore, safe clock domain cross-
ings must be implemented. This task is not difficult because
it can be achieved by using Avalon Clock Bridge IPs. Kernels
can only communicate with the IO elements through resources
included in the OpenCL specification, namely, IO channels
or pipes, which Intel implements by means of Avalon-ST
interfaces. Therefore, Avalon-MM to Avalon-ST adapters must
be used [24]. All these resources are accessible, for control
and management, via PCIe from the host, JTAG, or the kernel

itself. This allows a very versatile way of controlling the FMC
module according to the necessities of each application.

The kernels developed in the use case can be found in
orange. One is in charge of the configuration of the FMC
module; the other is responsible for receiving samples from
the ADCs and sending them to the host, taking the samples
from the host, and sending them to the DACs. The OpenCL
developer generates these kernels without knowing the BSP
details.

Fig. 8 shows a simplified block diagram of the hardware
implementation for the NAMC-ZYNQ-FMC use case. This
example meets two objectives: supports the use of a custom
FMC module including the ADC device, an AFE5808A by
Analog Devices [25], and implements the platform using
Xilinx methodology to deploy acceleration hardware kernels
developed in HLS or OpenCL code.

Inside the dotted red square can be seen the modules
comprising the platform. Blocks in green are available in the
reference model for ZynqMP provided by Xilinx [21], and
blocks in yellow are the responsibility of the platform designer.
This part includes the processing system interacting with the
block responsible for the DDR global memory management.
Other generic blocks are clock generators, reset controllers,
and AXI4 interconnects used to communicate kernels with the
host for control and data movement. Two additional blocks
are needed: the LVDS interface with the ADC and the SPI
controller (to configure both the ADC and other specific
resources in the FMC). The necessary logic to control the
kernel execution and the movement of data from the host to
the kernels and vice versa is more straightforward than the one
of Intel FPGA. The reason is that while Intel introduces in the
BSP blocks performing the complex task of control of kernel



998 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

Fig. 8. Details of the hardware implementation in the NAMC-ZYNQ-FMC card.

execution or direct communication between kernels and mem-
ory, Xilinx prefers to perform these control tasks in the host
through the XRT library [26]. In the FPGA part, it is enough
to implement AXI-MM interfaces regardless of whether the
kernels are implemented in HLS or OpenCL. In fact, one
advantage of the Xilinx design cycle is that the same platform
can be used for kernels written in HLS or OpenCL, which
adds flexibility for the algorithm development. In both cases,
the fixed part of the design, the whole system except for the
kernels, should not be modified when implementing different
applications, though this cannot be surely stated in this case,
as explained later in this section.

The advantage of an HLS/OpenCL design is that the appli-
cation developers can focus on the algorithm implementation
in a c-like code, forgetting about complexities, such as the
communication with the host, the FMC module management,
or the LVDS/JESD204B interface implementation.

The design of the JESD204B block can be accomplished
by using Intel or Xilinx-licensed IPs. These IPs are very
powerful and flexible, and thus easily configurable to match
the FMC module needs. However, Analog Devices provides an
open-source solution to implement the interface, the JESD204
framework [28]. Though cheaper, it is more difficult to create
an OpenCL-compatible system using this option because it
demands deeper FPGA and JESD204B specification knowl-
edge.

Once both systems have been reviewed and the elements
that make up the BSP or the platform have been described,
it is necessary to highlight an important difference between
both design cycles regarding the final user, the OpenCL or
HLS developer. In the case of Intel FPGA, once the BSP has
been ported, it can be used to develop acceleration applications

based on OpenCL without modification. Thus, there is no
need for the final user to know FPGA details or complex
tools such as Quartus Prime. In the case of Xilinx, the
platform needs small modifications in the hardware, even
for common issues such as the use of additional buffers to
communicate kernels among them, without the intervention of
the host, for example. This is easily achieved by Intel using
channels or pipes, resources contemplated by the standard
but which are not implemented by Xilinx. This prevents the
use of the methodology from being completely unaware of
the hardware that is working behind the scenes running in
the FPGA. Ultimately, this circumstance has a significantly
negative impact on the portability of the OpenCL code to be
run on other hardware platforms.

V. ACQUIRING DATA USING OpenCL AND
HLS-BASED KERNELS

As mentioned above, the acceleration methodology focuses
on implementing the kernels that are added to the BSP hard-
ware in the final implementation. The following paragraphs
describe the solutions implemented for both AMC boards
using a ping-pong scheme for continuous data acquisition and
processing and a second implementation for single-event data
acquisition and processing.

A. Ping-Pong Solution Using Intel FPGA OpenCL for
AD9680

The ping-pong implementation (see Fig. 9) mechanism uses
a set of pipes or channels [24] (a resource available in OpenCL
to communicate kernels efficiently) to notify the interested
kernels that the operation is finished, and a buffer is ready



RUIZ et al.: USING FPGA-BASED AMC CARRIER BOARDS FOR FMC TO IMPLEMENT INTELLIGENT DATA ACQUISITION 999

Fig. 9. Kernel logic implemented to support the ping-pong strategy for
continuous data acquisition and processing.

for use. The producer reads a new data packet from the ADC,
comprising eight samples (128 bits), every kernel clock cycle
at a rate of 140 MHz, and stores it on global memory. The
global memory buffer is divided into subbuffers, and a token
is generated when a subbuffer is filled. The consumer kernel
reads the data from global memory, takes the samples out
of the packet, and distributes the proper samples to as many
pipes as processing kernels expecting these subbuffers. The
consumer kernel runs at max kernel clock speed, while the
producer is bound JESD204B link clock, at a rate of 125 MHz.
This is an advantage because the processing kernels can
process data at higher speeds than they are produced. The
processing kernels read data from the consumer and write the
results to global memory, from which they are sent to the host;
a banked memory architecture ensures enough throughput for
the data to reach the host memory. There is a specific kernel
synchronizing the producer–consumer mechanism that waits
for the consumer to send the token of the buffer just used to
send this token (which is the offset that marks the beginning
of the buffer) to the producer, so it can be filled with new
data.

The resources used by this ping-pong implementation inter-
facing with the ADC at a sampling rate of 1 GS/s are given
as follows:

1) 15% of logic elements and 9% of memory blocks for
the BSP;

2) 2% of logic elements and 3% of memory blocks for the
consumer–producer kernels logic.

B. Acquiring Data From AFE5808

Implementing single-event data acquisition using the HLS
language in Vitis is straightforward in the platform generated
for the NAMC-ZYNQ-FMC (see Fig. 10). This application
only requires two kernels. One kernel configures the ADC
parameters through the SPI interface (LNA, PGA gains, and
other front-end analog parameters), and a second kernel waits
for the specific number of samples received through the
AXI stream. The samples acquired are saved in the global
DDR memory to be analyzed by the HOST application. The
resources needed in this application are given as follows:

1) 7% of LUT, 1.44% of LUTASMEM, 7% of REG, and
18% of BRAM for the BSP;

2) 2% of LUT, 0.5% of LUTASMEM, 1.21% of REG, and
20% of BRAM for the configuration and data acquisition
kernels.

Fig. 10. Kernel logic implemented to support single-event data acquisition.

Fig. 11. Software layers implemented to manage the hardware implementa-
tion from EPICS.

VI. INTERFACING THE HARDWARE IMPLEMENTATION
WITH EPICS USING NDS

The software layers developed (see Fig. 11) to manage
the functionally deployed with the kernels in both AMC
solutions have been implemented using EPICS and the NDS
framework [7]. Using the NDS layer, there is a specific
software driver, NDS-IRIO-OpenCL [9], to manage the kernels
implemented in the hardware with the help of the OpenCL
Runtime. The NDS driver connects with EPICS SCADA using
the NDS-EPICS layer.

VII. CONCLUSION

The main conclusion derived from the implementation and
the methodology followed are given next.

1) Simplification of the development of advanced ad com-
plex hardware applications using OpenCL and HLS.
Comparing the effort to implement the whole solu-
tion using RTL design using HDL languages, using



1000 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

OpenCL/HLS notably reduces the development time.
The effort to develop the BSP is related to the inter-
face to the specific hardware elements (FMC interface,
basically) and still needs the use of a design flow based
on HDL. However, the data movement and processing
implementation is eased due to the functionality pro-
vided by HLS and OpenCL.

2) Simplifying the development of specific software mod-
ules to manage the transfers to move data from the
host to the device and vice versa, and synchronize
each system element’s operation. In addition, the use
of OpenCL runtime avoids the use of custom Linux
kernel modules and API to interface with the FPGA
programmable logic.

3) There are reference designs maintained and updated
by Xilinx and Intel FPGA for the BSPs. This has
an impact on the maintenance cycle and the man-
agement of hardware obsolescence. In addition, these
reference designs can be easily adapted to add custom
interfaces, according to the needs of a specific use
case.

4) The performance obtained and the resources used are
expected and acceptable for the use cases implemented
in this work.

REFERENCES

[1] MicroTCA Base Specification, PICMG, Wakefield, MA, USA, Jan. 2020.
[2] R. S. Larsen, “PICMG xTCA standards extensions for physics: New

developments and future plans,” in Proc. 17th IEEE-NPSS Real Time
Conf., May 2010, pp. 1–7.

[3] S. M. Trimberger, “Three ages of FPGAs: A retrospective on the
first thirty years of FPGA technology,” Proc. IEEE, vol. 103, no. 3,
pp. 318–331, Mar. 2015, doi: 10.1109/JPROC.2015.2392104.

[4] J. Hasler, “The rise of SoC FPAA devices,” in Proc. IEEE
Custom Integr. Circuits Conf. (CICC), Apr. 2022, pp. 1–8, doi:
10.1109/CICC53496.2022.9772732.

[5] T. Leppanen, P. Mousouliotis, G. Keramidas, J. Multanen, and
P. Jaaskelainen, “Unified OpenCL integration methodology for FPGA
designs,” in Proc. IEEE Nordic Circuits Syst. Conf. (NorCAS), Oct. 2021,
pp. 1–7, doi: 10.1109/NorCAS53631.2021.9599861.

[6] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, “Efficient FPGA
implementation of OpenCL high-performance computing applications
via high-level synthesis,” IEEE Access, vol. 5, pp. 2747–2762, 2017,
doi: 10.1109/ACCESS.2017.2671881.

[7] M. Astrain, M. Ruiz, A. Stephen, R. Sarwar, A. Carpeo, and
S. Esquembri, “Real-time implementation of the neutron/gamma dis-
crimination in an FPGA-based DAQ MTCA platform using a con-
volutional neural network,” IEEE Trans. Nucl. Sci., vol. 68, no. 8,
pp. 2173–2178, Aug. 2021, doi: 10.1109/TNS.2021.3090670.

[8] M. Astrain, M. Ruiz, A. Carpeño, S. Esquembri, E. Barrera,
and J. Vega, “A methodology to standardize the development of
FPGA-based high-performance DAQ and processing systems using
OpenCL,” Fusion Eng. Des., vol. 155, Jun. 2020, Art. no. 111561, doi:
10.1016/j.fusengdes.2020.111561.

[9] M. Astrain, M. Ruiz, A. Carpeño, S. Esquembri, and D. Rivilla, “Devel-
opment of deep learning applications in FPGA-based fusion diagnostics
using IRIO-OpenCL and NDS,” Fusion Eng. Design, vol. 168, Jul. 2021,
Art. no. 112393, doi: 10.1016/j.fusengdes.2021.112393.

[10] S. Esquembri et al., “Application of heterogeneous computing techniques
for the development of an image-based hot spot detection system
using MTCA,” IEEE Trans. Nucl. Sci., vol. 68, no. 8, pp. 2151–2158,
Aug. 2021, doi: 10.1109/TNS.2021.3087124.

[11] Advanced Mezzanine Card Base Specification, PICMG, Wakefield, MA,
USA, Nov. 2006.

[12] FPGA Mezzanine Card (FMC) Standard. Stan-
dard ANSI/VITA 57.1-2019, 2021.

[13] “Understanding serial LVDS capture in high-speed ADCs,” Texas
Instrum. Incorporated, Dallas, TX, USA, Appl. Rep., SBAA205,
Jul. 2013.

[14] AN 803: Implementing Analog-to-Digital Converter Multi-Link Designs
With Intel Arria 10 JESD204B RX IP Core, Intel, Santa Clara, CA, USA,
Feb. 2020.

[15] Intel FPGA SDK for OpenCL Proedition Best Practices Guide, docu-
ment UG-OCL003, Intel, Santa Clara, CA, USA, May 2016.

[16] Vitis High-Level Synthesis User Guide, document UG1399, San Jose,
CA, USA, Dec. 2022.

[17] R. Lange et al., “Nominal device support (NDSv3) as a software
framework for measurement systems in diagnostics,” in Proc. 18th Int.
Conf. Accel. Large Exp. Phys. Control Syst., Shanghai, China, Oct. 2021,
pp. 1–6, doi: 10.18429/JACoW-ICALEPCS2021-TUBR01.

[18] SDK for OpenCL Intel Arria 10 GX FPGA Development Kit Reference
Platform Porting Guide, document UG-OCL010, Intel FPGA, San Jose,
CA, USA, 2022.

[19] FPGA SDK for OpenCL Intel Arria 10 SoC FPGA Development Kit
Reference Platform Porting Guide, document UG-20052, Intel FPGA,
San Jose, CA, USA, 2019.

[20] RocketBoards Embedded Design Site. Intel. Accessed:
Feb. 10, 2022. [Online]. Available: https://www.rocketboards.
org/foswiki/Main/WebHome

[21] Xilinx Vitis Embedded Platform Source. Accessed: Mar. 15, 2022.
[Online]. Available: https://github.com/Xilinx/Vitis_Embedded_Platform
_Source.Vitis_Embedded_Platform_Source/Xilinx_Official_Platforms

[22] Petalinux Tools Reference Guide. document UG1144, Xilinx, San Jose,
CA, USA, Jun. 2021.

[23] Analog Devices. AD-FMCDAQ2-EBZ Documentation. Accessed:
Apr. 5, 2022. [Online]. Available: https://www.analog.com/en/design-
center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad-
fmcdaq2-ebz.html

[24] Avalon Interface Specifications, Intel, Santa Clara, CA, USA, Jan. 2022.
[25] AFE5808A.8-Channel Low Noise Analog Front End With Passive CW

Mixer for Ultrasound, Texas Instruments, Dallas, TX, USA, Jan. 2022.
[26] XILINX. XRT Github. Accessed: Feb. 10, 2022. [Online]. Available:

https://github.com/Xilinx/XRT
[27] JESD204 Interface Framework. Analog Devices. Accessed:

Dec. 22, 2023. [Online]. Available: https://wiki.analog.com/
resources/fpga/peripherals/jesd204

http://dx.doi.org/10.1109/JPROC.2015.2392104
http://dx.doi.org/10.1109/CICC53496.2022.9772732
http://dx.doi.org/10.1109/NorCAS53631.2021.9599861
http://dx.doi.org/10.1109/ACCESS.2017.2671881
http://dx.doi.org/10.1109/TNS.2021.3090670
http://dx.doi.org/10.1016/j.fusengdes.2020.111561
http://dx.doi.org/10.1016/j.fusengdes.2021.112393
http://dx.doi.org/10.1109/TNS.2021.3087124
http://dx.doi.org/10.18429/JACoW-ICALEPCS2021-TUBR01

