
906 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

Design and Commissioning of the First
32-Tbit/s Event-Builder

Flavio Pisani , Tommaso Colombo, Paolo Durante , Markus Frank, Clara Gaspar, Luis Granado Cardoso,
Niko Neufeld , Member, IEEE, and Alberto Perro

Abstract— The large hadron collider beauty (LHCb) exper-
iment is a forward spectrometer, designed to study beauty
and charm quarks physics at the large hadron collider (LHC).
To exploit of the higher luminosity that will be delivered during
Run3, the full experiment needed a substantial upgrade, from
the detector to the data acquisition (DAQ) and high level trigger
(HLT). In this article, we will focus on the new DAQ system
for the LHCb experiment that represents a substantial paradigm
shift compared to the previous one, and to similar systems used by
similar experiments in the past and present times. To overcome
the inefficiencies introduced by a local selection implemented
directly with the readout hardware, the Run3 system is designed
to perform a full software reconstruction of all the produced
events. To achieve this, both the DAQ and the HLT need to
process the ∼30 MHz full event-rate. In particular, this article
will introduce the final design of the system; it will provide a
focus on the hardware and software design of the event building
(EB) and how we integrated technologies designed for the high
performance computing (HPC) world — like InfiniBand HDR
(200 Gb/s) — into the DAQ system; we will present performance
measurements of the full EB system under different operational
conditions; and we will provide a feedback from EB operation
during the beginning of the data-taking.

Index Terms— Computer networks, data acquisition (DAQ),
large hadron collider (LHC).

I. INTRODUCTION

THE large hadron collider beauty (LHCb) experiment [1]
has been completely upgraded for the so-called Run3 of

the large hadron collider (LHC), officially started the 5th of
July 2022. The upgrade process involved all the aspects of the
experiment, from the actual detectors to the full read-out and
data acquisition (DAQ) chain, a comprehensive description of
the process can be found in [2].

In this article, we will focus on the DAQ system, and
in particular on the event building (EB) system. The new
event-builder is designed to work at the unprecedented data
rate of 32 Tb/s sustained. We will first introduce the archi-
tecture of the new DAQ system with a strong focus on the

Manuscript received 16 November 2022; accepted 24 January 2023. Date
of publication 30 January 2023; date of current version 16 June 2023.

Flavio Pisani, Tommaso Colombo, Paolo Durante, Markus Frank,
Clara Gaspar, Luis Granado Cardoso, and Niko Neufeld are with CERN,
Meyrin, 1211 Geneva, Switzerland (e-mail: flavio.pisani@cern.ch).

Alberto Perro is with CERN, Meyrin, 1211 Geneva, Switzerland, also with
the Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, 10125
Turin, Italy, and also with the Department of Physics, Università degli Studi
di Torino, 10124 Turin, Italy.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2023.3240514.

Digital Object Identifier 10.1109/TNS.2023.3240514

Fig. 1. Architecture of the LHCb readout system for Run3. The blue
boxes in the upper part of the picture represent the various sub-detectors
FE electronics. The central part contains the EB servers interconnected via a
dedicated 200G InfiniBand network, and the GPGPU used for the first data
reduction. The lower part depicts the temporary disk buffer and the server
farm used to perform the final data reduction. The throughput numbers on
the left represent the aggregated nominal values at each stage. On the right,
a schematic representation of the ECS infrastructure is given.

EB process; then we will provide a detailed description on
how the EB functionality is implemented in software and how
it is integrated with the experiment control system (ECS);
we will describe the hardware architecture of the system and
the network topology of the EB network; and finally we will
present performance measurements of the EB system gathered
in a controlled test environment, and the first validation of the
full DAQ chain.

II. LHCbDAQ SYSTEM

The DAQ system of the LHCb experiment has been com-
pletely redesigned to perform: detector readout, EB, and event
reconstruction at the full nominal colliding bunches rate of
30 MHz.1 As depicted in Fig. 1, the full ∼32-Tb/s data-rate
is extracted from the sub-detectors front-end (FE) electronic
cards via ∼11 000 point-to-point multimode optical fiber links.
To ensure the correct operation of the links in a radioac-
tive environment, such as the LHCb experimental cavern,
the links use a radiation hard implementation of the GBT

1Because of the geometry and the filling scheme of the LHC, the
actual beam–beam collision rate at the experiment’s interaction point is
26.7 MHz, the 30 MHz design value includes also 2 MHz of beam-empty and
1 MHz of empty-empty data, which are used for calibration and luminosity
measurements.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7763-252X
https://orcid.org/0000-0002-1204-2270
https://orcid.org/0000-0002-5819-8684
https://orcid.org/0000-0002-1996-0496


PISANI et al.: DESIGN AND COMMISSIONING OF THE FIRST 32-Tbit/s EVENT-BUILDER 907

Fig. 2. Representation of the EB process. Event fragments generated by the
same source are identified by the same letter, while the various events are
identified by a unique event number. The event fragments flow from the RUs
to the BUs to build complete events. Every readout unit (RU)/builder unit
(BU) pair constitutes and EB node.

protocol [3]. Those links are terminated into 445 peripheral
component interconnect express (PCIe)-based read-out cards,
named Tell40; this custom FPGA-based card is responsible for
receiving data over up to 48 GBT links and making it available
for EB via the PCIe bus. Each card implements up to two
independent event streams, and each stream transfers data to
the host memory via a dedicated PCIe Gen3 × 8 interface.
To perform a full ∼32-Tb/s EB, a dedicated 200 Gb/s-based
InfiniBand network is used.

After the EB process is performed the complete events
are filtered by a two-step high level trigger (HLT) process;
the first step runs on general-purpose graphics processing
units (GPGPUs) hosted on the same servers used for DAQ
and EB, and it consists of a full track reconstruction with
nominal calibration and alignment [4]. The second step is a
full offline-like reconstruction with the most recent calibration
and alignment constants, and it is executed on a farm of ∼4000
servers. To absorb any possible fluctuation in the distribution
of the events, and to update the calibration and alignment
of the various sub-detectors, a temporary storage buffer of
∼40 PB is placed between the two HLT steps.

A more detailed description of the full system is beyond
the scope of this article and it can be found in [2]. In the
publication, we will focus on both the HW and SW details of
the EB system.

A. Overview of the EB Process

The EB process consists of gathering into a single place
all the fragments of a given event. In the LHCb experiment’s
DAQ system, this operation is performed by two logical units
as follows.

1) Readout Unit (RU): Collects the fragments from the
PCIe-based DAQ board and sends them to the BUs.

2) Builder Unit (BU): Receives and aggregates the frag-
ments into complete events.

The system uses a push DAQ model in which the RUs
are responsible for assigning a given event to a given BU;
this is done to reduce the transmission latency and to remove
the complexity and the potential bottleneck introduced by a
centralized event scheduler.

Fig. 2 shows the flow of the different event fragments
from the RUs to the BUs. Because the data flow only in
one direction, to take advantage of the full bidirectional
bandwidth of the EB network, we decided to implement a

Fig. 3. Example of a linear shifting scheduling. The arrows represent the
data exchange between the EB nodes during the various phases. Fragments
of the same event can be identified either by arrow color or by the matching
event number.

folded architecture, i.e., a BU and a RU share the same
network port and establish an EB node. This architectural
choice allows to reduce by a factor of two the number of
network ports required to perform the EB process, at the cost
of sharing other resources of the node, e.g., CPU and RAM.

Because every BU needs to gather data from all the RUs, the
EB network traffic tends to create an instantaneous N -to-one
over-subscription. This temporary over-subscription can lead
to severe performance degradation, especially for high link
usage applications [5]. On the other hand, the traffic generated
by the EB process is highly predictable, and if the scheduling
of the event across the BUs implements a fair policy, this
link over-subscription can be averaged out by an adequate
traffic shaping. In particular in the LHCb event-builder,
we implement a linear shifting traffic shaping algorithm [6]
which operates in the following way.

1) We build N events in parallel, and we split this process
into N phases, where N is the total number of nodes.

2) In every phase, every RU sends data to exactly one BU
and every BU receives data from one RU only.

3) During phase n RU i sends to BU (n + i) mod N .
4) When a previously agreed condition is met all the nodes

synchronously switch from phase n to phase n + 1,
usually the switching is triggered either by the number
of sent events or by a fixed time window. If the fragment
sizes differ, the larger fragments will dictate the actual
event rate.

A schematic representation of a five node linear shifting
scheduling is depicted in Fig. 3. The specific implementation
details of the linear shifting algorithm will be described in
Section III, including the extra complexity needed to maintain
the synchronism required by the algorithm.

In a large distributed system, like the EB network
of the LHCb experiment, the selection of nonconflicting
source-destination pairs of nodes is a necessary but not suf-
ficient condition to ensure the absence of link congestion
in the full network topology; a detailed description of the
HW and network layout of the system will be provided in
Section IV, including the additional constraints needed to
make the scheduling effective.

The typical fragment size in the LHCb experiment is
O(100) B. No multi Gb/s network technology is designed to
efficiently send messages of such a small size. To make the
network transmission more efficient, fragments from multiple



908 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

Fig. 4. State diagram of the DAQ components in the ECS. Each block
indicates a possible state of the system, while the edges show the transition
with the respective commands.

events are packed into a multiple-fragment packet (MFP). This
packed data structure contains a fixed number of contiguous
fragments from a given source, and it constitutes the minimum
unit of data that is exchanged over the network by the EB
nodes. In a similar way, the events on the BUs are assem-
bled in multiple-event packets (MEPs) which contain a fixed
number of contiguous complete events. All the considerations
made for events fragments and full events are still valid for
MFPs and MEPs, respectively; therefore, in the rest of this
article, we will consider an EB system that sends MFPs and
builds MEPs.

III. SOFTWARE ARCHITECTURE OF THE EB

The EB of the LHCb experiment is designed as a modular
application written in C++. The code base is fully inte-
grated into the experiment’s Online framework (DataFlow),
and it provides an object-oriented implementation of the
base-building block of an EB, i.e., the RU and the BU.

A. DataFlow Framework Overview

DataFlow is the framework used for most of the LHCb
online applications. It is implemented in C++, and it provides
easy to use interfaces to central online infrastructure: like the
finite state machine (FSM) used by the ECS or the centralized
monitoring infrastructure.

The base class of the framework is named
DataflowComponent, and it implements an FSM
which is steered by the ECS via a distribute information
managment system (DIM) [7]. Fig. 4 shows the states and
the transitions of the FSM used by the ECS to describe the
DAQ processes. The behavior of the FSM can be configured
thanks to a virtual interface which allows full customization
by overriding the default behavior.

In addition to the FSM implementation, the DataFlow
framework offers access to the configuration values set by
the ECS and to the centralized monitoring system. The latter
allows to gather and aggregate scalar values and histograms
via DIM.

B. Building Blocks of the Software

The core functionality of the EB software is provided
by the BU and RU classes, those two specializations of

Fig. 5. Flowchart of the main loop executed by the run thread of the (a) RU
and (b) BU.

the DataflowComponent implement the state machine
required to configure and to run the EB with the linear shifting
scheduling described in Section II-A. Because some of the
functionality needed to perform a linear shift is common
between the RUs and BUs, the two classes have a common
ancestor called Transport_unit which provides all the
commonly used functionality.

Fig. 5 shows the main loop flow for the RU and the BU.
It is important to note that prior to the actual exchange of the
MFPs more operations need to take place. In particular, the
RUs needs to prefetch all the data that will be exchanged in
the full round trip of the scheduling and to send the sizes of
the MFP to the corresponding BU; the BUs need to receive
all of the MFPs sizes and they have to calculate the offsets
in memory at which every MFP should be written within the
MEP. Those operations are necessary to write every fragment
at the right place in memory, avoiding subsequent memory
copies.

The interface to the low-level communication library is
provided by the Parallel_comm class – an abstraction layer
between the actual low-level network implementation and the
high-level description needed by the EB units. This approach
makes it possible to optimize the communication layer without
further modification of the RU and BU classes, and it allows to
change the low-level API without a major rewrite of the code.

The communication between the EB and the outside world,
e.g., the DAQ cards or the HLT input buffer – is handled via a
common object-oriented buffer interface. This buffer interface
consists of two distinct interface classes: Buffer_reader
and Buffer_writer. To read data from a buffer, the
user can request the next element via the corresponding
Buffer_reader object, and it will receive a pointer to the



PISANI et al.: DESIGN AND COMMISSIONING OF THE FIRST 32-Tbit/s EVENT-BUILDER 909

actual data. Multiple elements can be requested in subsequent
calls and all the needed bookkeeping is handled internally by
the library. After the data have been successfully processed,
the user can acknowledge the read as completed, and therefore
make the memory available to the buffer. In a similar way,
to write into a buffer, the corresponding Buffer_writer
object can be used to request a chunk of memory of a given
size. Multiple chunks can be requested via subsequent calls
and every time a pointer to the new chunk will be provided.
After the data have been successfully written, the user can
acknowledge the write as completed and therefore make the
data in the buffer readable. The EB software stack currently
provides multiple specialization of those two classes that allow
to read/write data in different configurations like: reading
data from the Tell40 cards, reading/writing from/to POSIX
shared memory regions, injecting previously collected data or
Monte Carlo simulated data and an interface to the central
buffer manager used by the other components of the DataFlow
framework. Thanks to a templated implementation, this buffer
interface can be used both for MFPs and MEPs.

The last building block of the EB software that we will ana-
lyze is the MFP_generator. This DataflowComponent-
based class provides a CPU data generator that can be used to
replace the Tell40 cards. This data generator outputs MFPs
with the same format as used by the Tell40, and can be
configured to generate data of different sizes and at dif-
ferent event rates. This particular data generator has been
used throughout all the development phase and it is still
used to perform specific code optimization in a controlled
environment.

C. Low-Level Communication Library: InfiniBuilder
We developed a custom interface library based on the

low-level InfiniBand API (ibverbs) [8], giving us complete
control over the InfiniBand network. This choice was driven
by some limitations we found using OpenMPI [9] to exchange
event data in the EB application.

OpenMPI’s opaque memory management causes an initial
performance degradation introduced by the memory set up for
remote direct memory access (RDMA) transfers, leading to a
significant increase in warm-up time. In InfiniBuilder, memory
management is straightforward: by leaving the user flexibility
on when and where buffers are allocated. Therefore, the warm-
up time is greatly reduced.

An OpenMPI application runs as a monolithic entity com-
posed of multiple processes, so if one process dies or encoun-
ters an irrecoverable error, the whole application needs to
be terminated and reexecuted from scratch. This approach
increases the dead-time caused by a local problem on one
of the EB processes. The InfiniBuilder library solves this
problem by only taking care of the InfiniBand communication,
enabling the application to reset and establish the network at
runtime.

InfiniBuilder provides network and memory management
through an OpenMPI-like interface, simplifying its integration
in the EB software. This approach gives us more flexibility
compared to a standard OpenMPI implementation, and it
allows for easier integration with the ECS.

Fig. 6. Time diagram of the two phases of a synchronization barrier. (a) All
the processes reach the barrier and they are not allowed to continue their
execution. (b) After all the processes have reached the barrier, the execution
can be resumed.

D. Synchronization Barrier
To synchronize the EB processes and therefore ensure a

correct execution of the linear shifting scheduling, we decided
to implement a synchronization barrier. This collective com-
munication service is commonly used in the high performance
computing (HPC) world to ensure the correct order of execu-
tion of distributed algorithms. This synchronization process is
implemented as a two step procedure: first all the processes
reach the execution of the barrier, this will send a notification
over the network and it will block the process execution until
the barrier is released; the second step takes place after all
of the processes have successfully reached the barrier, and
it consists of sending a notification to all the processes and
consequently releasing them as depicted in Fig. 6.

Implementing a barrier operation on a large network in
an efficient way is not a trivial task, and the way the
interprocesses messages are sent can heavily influence both
the execution time of the barrier and its scalability. The
InfiniBuilder library offers two different barrier implementa-
tions: 1) a centralized barrier and 2) a tree-based barrier [10].

1) Centralized Barrier: This implementation is the simplest
for a synchronization barrier, the previously described two-step
process is implemented in the following way.

1) One process is selected as master process, this can
be assigned statically during the configuration of the
application.

2) All the processes send a message to the master process
when they reach the barrier.

3) When the master process receives all the messages,
it starts releasing all the others in a sequential order.

This purely sequential implementation has an execution time
proportional to the number of processes in the distributed
application.

2) Tournament Barrier: These algorithms exploit the par-
allelism of the release phase of the barrier by implementing a
tree structure that can be represented as follows.

1) All the processes are inserted into a binary tree, equiv-
alent to the bracket of a tournament. For every pair of
nodes, a node is selected as winner. The selection is
made upon a predefined criterion, for example, the parity
of the node.



910 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

Fig. 7. Communication diagram of a tournament barrier. The black
arrows represent a message exchange between two processes, and the white
ones represent self-communication. The dashed line represents the transition
between the first and the second phase of the barrier.

2) The winners will be connected to the next level of the
tree.

3) This approach is repeated for all the layers of the tree,
and the root of the tree becomes the champion.

4) Every node will signal to its local winner when the
barrier is reached.

5) Each local winner will signal the next level winner,
when all the processes in its level have reached the
barrier.

6) This process is repeated at every layer until the cham-
pion is reached.

7) The champion will release the processes in its layer.
8) Every other winner process will propagate the release

following the tree structure.
A schematic representation of the communication between
the various processes is depicted in Fig. 7. This tree-based
algorithm offers better scalability than the centralized imple-
mentation, thanks to its logarithmic execution time.

IV. HARDWARE ARCHITECTURE OF THE EB

The EB infrastructure of the LHCb experiment is designed
to use off-the-shelf components as much as possible; to
reduce the significant costs of developing cutting-edge custom
solutions.

In this section, we will discuss in detail the network
configuration and the HW configuration of the EB servers.

A. Event-Builder Network Topology and Configuration

The EB network topology is constructed using 40-ports
InfiniBand HDR top-of-rack (ToR) switches; the switches
are arranged in a folded-clos/fat-tree [11] network topology,
as depicted in Fig. 8. We decided to use this particular network
topology because: it allows to fulfill all the requirements
introduced by the linear scheduling algorithm, i.e., the net-
work is nonblocking; it can be easily implemented with ToR

Fig. 8. Fat-tree network topology. The eight end nodes (terminals) are located
at the bottom, the four switches in the first layer are called leaf switches, while
the two switches at the top are called spine switches.

switches; there are optimized routing algorithms available for
this topology, and they are already implemented for InfiniBand
networks [12].

The actual network topology counts 18 leaf switches and
ten spine switches. The ports on each leaf switch are split into
two groups: 1) up to 20 ports are connected to the EB servers
via copper cables and 2) the other 20 ports are connected
via optical fibers to the spine switches. Each connection
between leaf and spine switches uses two dedicated links to
ensure the required bandwidth. Each spine switch is therefore
connected to all the leaf switches using 36 ports; the other four
ports are left unused for future expandability of the system.
In the current configuration, the network has a capacity of
360 network ports, and it could be expanded up to 800 without
loosing all the needed properties.

To fulfill the requirements imposed by a linear shifting
traffic shaping, the routing algorithm should be carefully
selected. If we limit ourselves to minimal distance paths, the
only degree of freedom when selecting the path between a
source and a destination port of the network is the selection
of the spine switch used. To ensure a conflict-free operation
with a linear shifting traffic, we need to verify, during every
phase, the following conditions: the nodes on the same leaf
are not using the same spine switch and on every spine switch
there is no traffic for the same leaf switch.

A routing algorithm with those characteristics has been
designed [12] and it has been implemented for the InfiniBand
network technology. This algorithm uniformly distributes the
traffic on the leaf-to-spine links according the port used on
the leaf switch by the destination. On a simplified network
topology like the one shown in Fig. 8, this routing function is
equivalent to selecting the spine switch via

S(pd) = pd mod Nspine (1)

where pd indicates the destination port and Nspine the total
number of spine switches. A more general description of the
InfiniBand architecture and routing can be found in [13].

To ensure the correct link utilization, we need to make
sure that the mapping between the EB nodes and the network
ports on the switches is consistent with the routing function.
In the example network depicted in Fig. 8, we could assign
node0 of the EB to run in the server T0, node1 on T1, and
so on. This correspondence between EB nodes and network
ports is not unique, and we can apply any permutation to
the node-port mapping on a given switch, as long as the



PISANI et al.: DESIGN AND COMMISSIONING OF THE FIRST 32-Tbit/s EVENT-BUILDER 911

Fig. 9. Software data-flow of one EB server. The Tell40 cards are distributed
across the two nonuniform memory access (NUMA) domains, and the six
MFP streams are then equally shared across the two RU. Every RU/BU pair
has exclusive access to one InfiniBand network card. After the MEPs are
assembled into the BUs, the data are made available to the HLT1 via two
dedicated output buffers.

same permutation is applied on all the switches. Moreover,
we need to make special consideration in case a node is
missing from one of the switches. In this case, to keep the
right scheduling phase, a dummy node must be inserted into
the scheduling. Dummy nodes are implemented in software
and they have the only purpose of maintaining the scheduling
and the routing in sync. Adding dummy nodes introduces a
performance penalty proportional to the fraction of dummy
nodes added. The ECS will therefore configure the mapping
and the addition of dummy nodes accordingly.

B. Event-Builder Server Architecture and Configuration

The heart of the DAQ system is a dual-socket AMD “Rome”
Epyc-based server solution, which can host up to 8 Gen4 ×

16 PCIe devices. Each of these servers is equipped with: up
to three Tell40 cards, two InfiniBand HDR network cards, and
one general-purpose graphics processing unit (GPGPU).

Fig. 9 shows the data-flow of the events inside of an EB
server. Each server will host two EB nodes, one on every
non-uniform memory access (NUMA) node. The processes
of every EB node have an exclusive access to one of the
two InfiniBand network cards. This nonconflicting resource
utilization keeps all the prior considerations about the network
topology and the traffic scheduling valid. Each RU reads data
from three MFP streams, and the stream-unit assignment max-
imizes NUMA locality. After the EB process is successfully
completed, each BU writes MEPs to its own output buffer, and
consequently the HLT1 processes the data on the GPGPU.

Thanks to the fact that the events are moved in MEPs and
that the current baseline packing factor for MFPs and MEPs is
30 000 events, we can ignore statistical fluctuations in the event
processing time of HLT1. Moreover, given that all the servers
have the same amount of compute power, we can assume
that the average processing time per MEP will be constant.
Therefore, we do not need to implement any load balancing
across the BUs. If a given server is not capable of coping with
the incoming event rate, for example because of a hardware
failure of the GPGPU, the affected BUs can discard events
locally. This mechanism prevents a global backpressure and a
severe reduction in the number of events processed.

If this condition cannot be recovered, it is possible to
reconfigure the EB to run in a partly unfolded way, therefore
moving the affected BUs onto a fully working machine.
Similar considerations apply to the RUs which can be moved
in case of a HW issue with one or multiple Tell40 cards.
It should be noted that using a spare Tell40 requires to move
the optical fibers connected to the front-ends (FEs). In our
data-center, we have multiple warm spare servers ready to be
used.

The architectural choice of buffering the events directly
into the servers’ RAM poses interesting considerations con-
cerning the latency susceptibility of the system. Given the
usually large amount of memory available on modern server
platform (O(100) GB), it possible to easily absorb latency
spikes generated in the EB or in the HLT. On the other hand,
the limited amount of memory on the Tell40 makes the PCIe
transaction latency critical. To reduce the FPGA-CPU com-
munication latency, the manufacturer provides a performance
guide [14].

It is important to note that such a dense system configuration
imposes a very high load on the I/O and memory of the
platform. To reduce the memory throughput the full system
is designed with a zero-copy paradigm in mind, the MFPs
are copied into the server RAM by the Tell40, the InfiniBand
network card sends the data into the output buffer via an
RDMA transfer, and finally the HLT1 software sends the data
from the server RAM directly into the GPGPU device memory.
This design choice, in conjunction with the eight memory
channels per socket provided by the server platform, allows
such a dense configuration, and results in fewer servers needed.

V. FULL SCALE PERFORMANCE MEASUREMENTS

In this section, we present two different sets of perfor-
mance measurements: 1) a scalability test performed using
the MFP_generator and 2) a full DAQ chain test reading
actual MFPs from the Tell40 cards.

A. Scalability Test

The aim of this test was to benchmark different config-
urations of the EB software in a controlled environment.
We performed two sets of tests in different conditions: using a
realistic event-size model, and by setting the highest data-rate
to all the generators. The goal of the first test was to measure
the overall performance of the system in a realistic scenario,
and to evaluate if a strict synchronization is needed at every
step of the scheduling. The second test was performed to
check the current absolute limit of the system, and to evaluate
different barrier implementation.

The plots in Fig. 10 show the event-rate and the aggregated
throughput across all the EB nodes. The system is tested at
three different scales.

1) 100%: full system.
2) 60%: only the tracking sub-detectors.
3) 10%: only two racks (20 server and two leaf switches).

The test has been performed using a Poissonian event-size
model. We used three different distributions to emulate the
behavior of different sub-detectors, as depicted in Fig. 11.



912 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 6, JUNE 2023

Fig. 10. EB scalability test using CPU-generated MFPs with a realistic
event-size model. The plot on the left shows the event rate while the plot
on the right the aggregated throughput. Both measurements are collected at
different system scales and with different synchronization barriers. (a) Event
rate. (b) Aggregated throughput.

Fig. 11. Probability distribution of the event fragment sizes for different emu-
lated sub-detectors. Sub-detectors with similar estimated fragment sizes share
the same distribution. The total event fraction for the rich, calo/velo/muon,
and SciFi/UT groups are: 0.28, 0.33, and 0.39, respectively.

Each MFP_generator uses a distribution appropriate for the
sub-detector that it is replacing. In particular, the three groups
contribute to the total even size with the following fractions:
0.28, 0.33, and 0.39 for the rich, calo/velo/muon, and SciFi/UT
groups, respectively. The average fragment size is 133 B, and
the total event size is 128 kB for the 100% configuration.

The test shows that when the size of the system is very
small the strong synchronization at every step of the linear
shifting is not needed, and the overhead introduced by the
synchronization barrier introduces a net performance penalty.
On the other hand, when the system scales up, the scheduling
violation generates a higher congestion level on the network,
resulting in a more significant performance degradation, which
can be up to ∼6% at full scale. Beside the importance of
the synchronization barrier, we can also confirm that the
system can sustain the 30 MHz event rate required by the
LHCb experiment, with an aggregated throughput greater
than 30 Tb/s.

The plots in Fig. 12 show the event-rate and the aggre-
gated throughput across all the EB nodes. The test has
been performed using the largest fragment size used by our
sub-detectors on all the MFP_generator instances. This
model uses a fragment size of 160 B and an event size of
154 kB for the 100% configuration.

This second test shows how different barrier implemen-
tations behave according to the size of the system. The
comparison between running with the tournament barrier and
without any barrier shows a similar behavior as the one seen

Fig. 12. EB scalability test using CPU-generated MFPs with the maximum
event size. The plot on the left shows the event rate while the plot on the
right the aggregated throughput. Both measurements are collected at different
system scales and with different synchronization barriers. (a) Event rate.
(b) Aggregated throughput.

Fig. 13. Full DAQ chain test, the plot on the left shows the event rate while
the plot on the right the aggregated throughput. (a) Event rate. (b) Aggregated
throughput.

in the previous test, the overall event rate is higher in both
configurations; this is due to the fact that now all the MFPs
have the same size, and therefore the time lost due to the
synchronization overhead is lower. The performance penalty
introduced by the lack of synchronization barrier is ∼10% at
full scale. This higher performance penalty is expected because
now the link utilization is higher, therefore the congestion
introduced by the less strict scheduling policy is more severe.
The maximum sustained throughput achieved in this test is
greater than 40 Tb/s.

By comparing the results obtained with the two different
barrier implementations, we found an event rate which is
∼40% lower for the centralized barrier compared to the tour-
nament one. The simpler centralized implementation performs
worse than not having any barrier at all, and it does not meet
the requirements imposed by the experiment.

Time-based code profiling shows that the time spent in the
synchronization barrier is 26% for the tournament barrier and
48% for the centralized one. The comparison between the two
values is in line with observed performance degradation. The
high value for the tournament implementation is due to the
high invocation frequency. With a packing factor of 30 000
events per MEP, the barrier rate required to build 30 MHz of
events is ∼1 kHz.

B. DAQ Integration Test

This integration test was performed to test the full DAQ
chain from the FE electronics up to the EB. Fig. 13 shows the
event rate and the aggregated throughput over time.2 The max-
imum achieved event rate in this configuration was 28 MHz,

2The actual run-time was longer than the one represented in the plot, and
the run has been stable for 1 h before we decided to stop the test.



PISANI et al.: DESIGN AND COMMISSIONING OF THE FIRST 32-Tbit/s EVENT-BUILDER 913

and this performance degradation is probably generated by
the combination of the Tell40 buffer not being large enough
and some latency spikes on the acknowledge of the PCIe
transaction. A new firmware and driver for the Tell40 are
currently under development, and they will include changes
to mitigate this issue. The aggregated throughput is 21 Tb/s
with a total event size of 95 kB.

VI. CONCLUSION AND FUTURE WORK

In this article, we presented the new DAQ system for the
LHCb experiment, and we provided a detailed description of
the hardware and software implementation of the new event
builder. The scalability of the system has been tested in a
controlled environment, and the EB can successfully process
an event rate greater than 30 MHz. The full DAQ chain has
been successfully tested and data from the entire experiment
can be read out at 28 MHz.

The results of the tests performed show that the sys-
tem is ready to readout the full collision rate produced at
the LHCb interaction point of 26.7 MHz. Further improve-
ments and optimizations to the firmware and the driver
of the readout cards will be done to run the system
at 30 MHz. Moreover further optimization of the EB
software will be done. In particular, we are working
on reducing the frequency of the synchronization barrier,
and we are evaluating hardware accelerated barriers like
SHArP [15].

REFERENCES

[1] The LHCb Collaboration, “The LHCb detector at the LHC,” J. Instrum.,
vol. 3, no. 8, 2008, Art. no. S08005.

[2] The LHCb Collaboration, “LHCb trigger and online upgrade tech-
nical design report,” Tech. Rep. CERN-LHCC-2014-016, LHCB-
TDR-016, May 2014, Accessed: Nov. 16, 2022. [Online]. Available:
https://cds.cern.ch/record/1701361

[3] P. Moreira et al., (2009). The GBT Project. Accessed: Nov. 16, 2022.
[Online]. Available: https://cds.cern.ch/record/1235836

[4] R. Aaij et al., “Allen: A high-level trigger on GPUs for LHCb,” Comput.
Softw. Big Sci., vol. 4, no. 1, pp. 1–11, 2020.

[5] T. Colombo et al., “Flit-level InfiniBand network simulations of the
DAQ system of the LHCb experiment for Run-3,” IEEE Trans. Nucl.
Sci., vol. 66, no. 7, pp. 1159–1164, Jul. 2019.

[6] D. P. Bertsekas, C. Özveren, G. D. Stamoulis, P. Tseng, and
J. N. Tsitsiklis, “Optimal communication algorithms for hyper-
cubes,” J. Parallel Distrib. Comput., vol. 11, no. 4, pp. 263–275,
Apr. 1991. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0743731591900336

[7] C. Gaspar, M. Dönszelmann, and P. Charpentier, “DIM, a portable,
light weight package for information publishing, data transfer and inter-
process communication,” Comput. Phys. Commun., vol. 140, nos. 1–2,
pp. 102–109, 2001. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0010465501002600

[8] Nvidia Corporation. RDMA Aware Networks Programming User
Manual. Accessed: Nov. 16, 2022. [Online]. Available: https://docs.
nvidia.com/networking/display/RDMAAwareProgrammingv17

[9] Open MPI. Accessed: Nov. 16, 2022. [Online]. Available: https://www.
open-mpi.org/

[10] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for barrier
synchronization,” Int. J. Parallel Program., vol. 17, no. 1, pp. 1–17,
Feb. 1988.

[11] C. E. Leiserson, “Fat-trees: Universal networks for hardware-
efficient supercomputing,” IEEE Trans. Comput., vols. C–34, no. 10,
pp. 892–901, Oct. 1985.

[12] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Opti-
mized InfiniBandTM fat-tree routing for shift all-to-all communica-
tion patterns,” Concurrency Comput., Pract. Exper., vol. 22, no. 2,
pp. 217–231, Nov. 2022. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.1527

[13] G. F. Pfister, “An introduction to the infiniband architecture,” High
Perform. Mass Storage Parallel, vol. 42, nos. 617–632, p. 102, 2001.

[14] A. Kashyap. (2020). High Performance Computing: Tuning
Guide for AMD EpycTM 7002 Series Processors. Accessed:
Nov. 16, 2022. [Online]. Available: https://developer.amd.com/
wp-content/resources/56827-1-0.pdf

[15] R. L. Graham et al., “Scalable hierarchical aggregation protocol
(SHArP): A hardware architecture for efficient data reduction,” in Proc.
1st Int. Workshop Commun. Optimizations HPC (COMHPC), Nov. 2016,
pp. 1–10.


