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An Efficient Method for the Experimental
Characterization of Periodic Multilayer Mirrors:

A Global Optimization Approach
Mingfeng Li , Said Mikki , Member, IEEE, Paul C. Uzoma , and Oleksiy V. Penkov

Abstract— This study proposes a new approach to peri-
odic multilayer mirrors (PMMs) characterizations based on
measured X-ray reflectivity (XRR) data. Here, XRR data
are used to reconstruct the internal structure of PMMs
using grazing incidence XRR (GIXR). A mathematical model
of electromagnetic wave reflection by PMMs is employed
to implement forward prediction, which will then be used
iteratively in a global optimization framework in order to
reconstruct the PMM unknown structure parameters. A typical
simulation of PMM often includes tens to thousands of
unknown structure parameters, rendering standard curve fitting
methods cumbersome and impractical. To make the PMM
characterization method computationally feasible, this study
combines implementation of the Levy flight particle swarm
optimization (LFPSO) algorithm with a parallelized version of
the electromagnetic solver X-Ray Calc in order to simplify the
model parameter reconstruction process. Levy flight, a random
walk wherein the Levy distribution is used to determine step size,
is a more efficient search strategy for global optimization because
of the long jumps made by the particles. It is demonstrated that
a PMM model with up to thousands of structure parameters can
be reconstructed within several seconds on a regular workstation.
The algorithm is tested with both measured and theoretical XRR
data using in-house fabricated PMMs with known structures.
Excellent agreement with the actual structures is observed,
which is attained in short computation time. The new approach
avoids manual curve fitting and simplified GIXR analysis and is
observed to scale linearly with the size of the PMM structure,
making it attractive for X-ray optics systems involving large-and-
complex reflecting mirrors.

Index Terms— Grazing incidence X-ray reflectivity (GIXR),
Levy flight particle swarm optimization (LFPSO), periodical
multilayer mirrors.

I. INTRODUCTION

X-RAY optics are used in various scientific and tech-
nological applications, such as X-ray photoelectron
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spectroscopy, free-electron lasers, X-ray astronomy [1],
magnetic imaging [2], biomedical imaging, atomic physics [3],
and new-generation lithography [4]. The performance of all
these applications crucially relies on the reflectivity of periodic
multilayer mirrors (PMMs) [5]. These PMM structures are
coatings composed of tens or hundreds of alternating layers
of “light” and “heavy” materials [6]. They are artificial Bragg
crystals that reflect X-rays owing to constructive interference
on periodically aligned interfaces. In particular, parameters
such as interface roughness, layer thickness, density, and
interlayer structure are used to define the overall structure
of PMMs and predict their reflectivity [7], [8]. Reliable
methods for characterizing PMM structures are therefore
crucial for developing X-ray optics technology, which despite
numerous advances is still a challenging active research
topic [7], [9], [10].

Here, we focus on one particular approach, the grazing
incidence X-ray reflectivity (GIXR) framework, which is a
typical nondestructive PMMs characterization method. It is
based on the analysis of characteristic reflectivity patterns in
the area of grazing angles of 0◦–5◦. The objective of our
method is to feed measured X-ray reflectivity (XRR) data
into a postprocessing module that would allow the user to
reconstruct some or all the internal structural parameters of the
PMM under X-ray illumination. However, this process, which
is a nonlinear inverse problem, requires intensive calculations
both in the forward and inverse problems. Indeed, the forward
problem involves reflection and transmission of waves through
multiple layers, a process that is essentially recursive and is
sensitive to fine details such as wave polarization [11]. For the
forward problem, the computation of XRR is based on Parratt’s
exact recursive method [12], while the inverse problem is
the reconstruction of the multiple layers’ structure based on
XRR curve by using global optimization. Since Windt [13]
presented one of the first XRR simulation software packages
called IMD in 1998, other XRR computational tools have been
developed, such as GenX [10], JGIXR [9], REFLEX [14],
Multifitting [15], XOP [16], and X-Ray Calc [7]. In any
case, all XRR parameters reconstruction (inverse scattering)
processes that employ any of these methods in their forward
iterative loop are similar in the sense of being computationally
challenging ill-posed nonlinear inverse modeling problems.
While this inverse problem is hard, it is necessary to automate
the process of PMM structure parameters extraction using
X-ray optics XRR measurement because manual curve fitting
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Fig. 1. Reflection and transmission of an incident beam (λ = 1.54 Å) from
a PMM, j and k j represent layer j and its wavevector, respectively.

becomes impractical with complex PMM configurations.
In this article, we describe a possible such method with special
emphasis on the ease of implementation and reduction of
computational complexity.

For X-ray-optics-based PMM structure characterization
methods, a PMM parameter structure model is first initiated,
which includes the interface roughness, density, and interlayer
thickness (see Fig. 1). Next, XRR data are simulated using
a proper electromagnetic model and then compared with
the XRR measurement within the framework of an iterative
process. In every iteration, the parameters of the model are
updated. The iterative process is considered complete when
the discrepancy between the theoretical reconstructions of the
electromagnetic model and the experimental data becomes
minimal [17]. The fitting of the XRR curves of the PMMs
can be simplified because the curves are periodic; therefore,
the number of optimization parameters in the iterative process
can be reduced. However, such parameter reduction is not
always possible because the real structure cannot be exactly
periodic. For example, unstable deposition conditions during
the manufacturing process can cause deviations in layer
thickness and interface roughness [8], [18], [19]. Hence, each
layer is different and should be calculated independently.
Interlayer mixing further complicates the structural model; in
this case, a single stack in the PMM comprises two “primary
layers” (light and heavy) and two other interface layers.
Thus, the number of parameters described in a single stack
is doubled. Therefore, if a stack comprises four layers, with
each layer having three parameters (thickness, density, and
roughness) and the PMMs having 300 or more stacks, a total
of 4 × 3 × 300 = 3600 parameters must be optimized.
However, such an extremely high-dimensional optimization
space requires a significant amount of user effort to manually
refine the starting search guess for the optimization to converge
in a reasonable time. Consequently, manual adjustment of
thousands of parameters is impractical, and proper fitting
cannot be realized.

As mentioned above, the optimization algorithms are a
crucial part of the iteration process that are needed in order to
minimize the discrepancy between theoretical reconstructions
and experiment. Over the years, intelligent algorithms, such as

differential evolution [10], genetic algorithms (GAs) [17], [20],
and various swarm intelligent [9] algorithms, have been
proposed for integration into software to solve various
cumbersome inverse modeling problems. The least-square and
gradient (hill-climbing) methods are unreliable owing to the
stochastic search of the extremum in the solution domain.
In contrast, intelligent algorithms combine the advantages
of stochastic search with a smart solution-finding strategy,
exhibiting better performance. However, without improvement,
these intelligent algorithms are similar to classical algorithms
and tend to converge prematurely [21], [22], resulting in the
slow and unfavorable completion of a fitting. In addition, they
are built-in software and fail to enhance their performance,
typically requiring hours to complete a fitting.

There exists a large literature on solving this problem,
which includes both specialized iterative algorithms [23],
global optimization methods [24], and electromagnetic
machine learning [25]. In this article, we follow the second
path, where a recently developed variant of the global
optimization method known as the Levy flight particle swarm
optimization (LFPSO) [22], [26], [27] is integrated with a core
electromagnetic model to solve the forward problem within an
optimization-based iterative approach. Here, a mathematical
model of the reflecting X-ray mirror is developed and exploited
in order to compute the theoretical GIXR data based on any
given PMM structure parameters. Afterward, an LFPSO is
developed using an in-house code that is integrated with the
electromagnetic solver. Based on the measured XRR data,
an optimization cost function is formed and is used to train
the direct (forward) electromagnetic model with the objective
of predicting the optimum set of PMM structure parameters
that yield a minimum curve-fitting cost function (lowest fitting
error). Upon comparing the reconstructions of the theoretical
model with the results of the optimization process, it is found
that they fit well with experimental data.

This article is structured as follows. In Section II, we pro-
vide an outline of the electromagnetic model to be utilized for
XRR calculations within the optimization process. The global
optimization method itself is outlined in Section III. We choose
particle swarm optimization (PSO) and concentrate on the
recent modification known as Levy flight method LFPSO.
In Section IV, we combine the forward model of Section II
with the search algorithm of Section III in order to iteratively
solve the inverse modeling (PMM structure characterization)
problem (the code of LFPSO with X-Ray Calc is available
online [28]). Finally, we end up with conclusion.

II. COMPUTATIONAL MODEL FOR XRR DATA

We first start by describing the method employed for
computing the forward electromagnetic solution of the
problem of X-ray wave scattering by PMMs, which is
based here on the X-Ray Calc program. The computational
framework X-Ray Calc is a fast and easy-to-use open
access code available for simulating XRR in X-ray optics
scenarios [7]. It was originally developed in order to simplify
and facilitate structural parameters determination based on
measured XRR and is equipped with a user-friendly interface.
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The method implements a recursive computational procedure
based on full-wave solution of Maxwell’s equations [11] in
order to estimate XRR data, while myriad dynamic scattering
and absorption effects are also taken into consideration [7].

We briefly summarize the forward wave algorithm. First,
the Fresnel equation [29] is used to calculate the reflectivity
amplitude of the ( j + 1)th interface through the fundamental
electromagnetic reflection coefficient formula

r ′

j, j+1 =
Q j − Q j+1

Q j + Q j+1
(1)

Q j =

{
(4π/λ)n j cosθ j , s polarization(
4π/λn j

)
cosθ j , p polarization

(2)

where λ, n j , and θ j are the radiation wavelength, complex
refractive index of layer j , and propagation angle in layer j ,
respectively (see Fig. 1). The angle θ j is obtained from the
angle θ0 in the incident medium of index n0 using Snell’s law
n j sinθ j = n0sinθ0. It can be expressed as

cosθ j =

√
1 −

(
n0/n j

)2sin2θ0 (3)

where n j = 1−δ + iβ is the refractive index of the j th layer,
a complex number that depends on the wavelength. These may
be estimated using the following formula [7]:(

δ

β

)
= 0.54 × 10−5 ρ

µ
λ2
(

f1
f2

)
(4)

where ρ is the density of a layer (g/cm3), µ is the atomic
weight, λ is the wavelength (in Angstroms), and f1 and f2
are the real and complex parts of the atomic scattering factor,
respectively [30].

The reflectivity coefficient for a multilayer structure with
N layers as a function of the incidence angle is calculated
recursively using the following relation:

r j−1, j =
r ′

j−1, j + r j, j+1e2iϕ j

1 + r ′

j−1, jr j, j+1e2iϕ j
(5)

where i is the imaginary unit and j = 0, 1, . . . , N . The
ordered pair ( j − 1, j) represents the interface between the
( j − 1)th and j th layers, and ϕ j is the phase delay produced
by the propagation of the wave through the j th layer, which
depends on the total distance traveled and can be estimated as

ϕ j =
2π

λ
d j cosθ j (6)

where d j is the thickness of the j th layer (see Fig. 1).
The first step in the recursive algorithm involves calculating

reflectivity from the interface between the bottom of the
N th layer and substrate. Since the bottommost substrate is
presumed infinitely thick, there are no multiple reflections to
consider there. Consequently, we have

r ′

N ,∞ =
QN − Q∞

QN + Q∞

. (7)

On the other hand, reflectivity from the top of the N th layer
is evaluated using (5), yielding

rN−1,N =
r ′

N−1,N + r ′

N ,∞e2iϕN

1 + r ′

N−1,N r ′

N ,∞e2iϕN
. (8)

This process is repeated recursively until the total reflectivity
amplitude r0,1 at the interface between vacuum and the first
layer is obtained. Subsequently, the reflectivity of the entire
structure as a function of the illumination angle θ may be
determined as R(θ) = |r0,1|

2. Finally, reflectivity losses caused
by interface roughness or intermixture can be evaluated using
the Debye–Waller-like correction factor [8]

R′

j, j+1 = r ′

j, j+1exp

(
−

16π2σ 2
j, j+1cos2(θ)

λ2

)
(9)

where σ j, j+1 is the effective interface thickness.
In order to form a proper optimization cost function,

we need to measure how close is XRR simulation to the
measured XRR data. Here, we utilize the χ2 cost parameter,
which quantifies the relation between reconstructed and
experimental data. In our optimization scheme, this measure
will be minimized and is expressed as

χ2
=

1
M

M∑
i=1

(
log
[
Rexp(θi )

]
− log[Rcalc(θi )]

log
[
Rexp(θi )

] )2

(10)

where M denotes the total of measured (experimental) data
points Rexp(θi ) in the range of incident angles from θ0 to θM .
Typically, M is in the range of 1000–4000. The theoretical
value for a particular angle Rcalc(θi ) is obtained through
relation (5).

Owing to the use of complex numbers for the description of
the refraction coefficient and the large number of iterations that
are typical for frequency-domain solutions of electromagnetic
waves in multilayered structures such as PMMs [11], the
simulation of an XRR curve, i.e., (1)–(10), as performed in the
original X-Ray Calc code, is still computationally demanding
even though the formulas are analytical. This is due to the
recursive nature of the theory and the fact that typical X-ray
mirrors are complex and involve many structural parameters.
Moreover, in the iterative process of the global optimization
algorithm to be used in this article (see Section III), for
the search process to converge in a reasonable number of
iterations, a very large number of cost function evaluations,
i.e., computing (10) for all trial PMM structure parameters,
must be attempted. Therefore, the computational cost of
executing each iteration in the optimization process is very
high and must be reduced. To accelerate the computation, the
original X-Ray Calc code was modified as follows.

1) A parallel computation scheme was implemented,
whereby the entire angular data range M was divided
into n segments. Afterward, n is set equal to the number
of central processing unit (CPU) cores available on the
given computer platform.

2) A specialized in-house GUI-free implementation of the
X-Ray Calc electromagnetic framework was developed.
Avoiding GUI commands can accelerate the implemen-
tation of the overall scheme.

Consequently, the reflectivity in every segment is effectively
computed in parallel, leading to an increase in the overall
system computational speed almost linearly proportional to
the number of available CPU cores. The use of a GUI-less
application further improved the performance. For example,
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the modified electromagnetic code could compute XRR curves
for 20 different models within 0.2 s when launched on a
regular six-core Intel CPU. To the best of our knowledge, such
performance is superior to other tools stated previously. The
parallelized in-house code performed batch processing of the
PMM models and then generated and exported them to a data
file for communication with the global optimization module
described in Section III. After computing the χ2 for every
model in the batch, the PMM model with the lowest value of
χ2 was returned to our in-house code for further processing
(optimization).

III. GLOBAL OPTIMIZATION FRAMEWORK
(THE LFPSO ALGORITHM)

The crucial part of the X-ray-based PMM structure
characterization method is the optimization algorithm, which
is needed in order to find the proper structure parameters by
minimizing the cost function χ2 given by (10). In fact, it can be
shown that this optimization cost function is highly nonlinear
in terms of its optimization parameters. Therefore, efficient
optimization methods such as the gradient descent method
will not in general converge to the right solution unless the
initial guess was already close to a global optimum. In fact,
the cost function (10) suffers from the existence of multiple
local minima, rendering the use of any local optimization
algorithm challenging. On the other hand, standard heuristic
optimization algorithms such as the GA require numerous
fitness function calls (evaluations of the cost function), leading
to high computational overhead per optimization iteration.
For these reasons, we turn in this article toward using a
global optimization method that is intermediate in complexity
between the GA and the gradient descent method [31], [32].

PSO [33] is a population-based and resilient stochastic
optimization approach originally inspired by the mobility and
intelligence of swarms [34]. Several variations on the original
PSO method have been proposed throughout the years and
applied to numerous applications [27], [35], [36], [37], [38].
Due to its structural simplicity, robustness, ease of implemen-
tation, and convenient parameter settings, PSO has become
very popular in engineering and science applications requiring
cost-effective global optimization solution in a reasonable
time. It is currently being used in various optimization
problems, particularly for continuous objective functions and
high-dimensional optimization problems [22].

We explain very briefly the key idea of the PSO framework,
with focus on how the method is adapted to our X-ray-
based PMM characterization method. Initially, all particles
(solutions) are scattered randomly in the search space within
preset bounds. Subsequently, the velocities and locations of
the particles are updated during the computation step, and the
particle velocity and location updates are computed as follows:

V t+1
i,d = ωV t

i,d + c1rand1(pbestti,d − X t
i,d)

+ c2rand2(gbesttd − X t
i,d) (11)

X t+1
i,d = X t

i,d + V t+1
i,d (12)

where V t+1
i,d is the velocity of particle i at iteration t + 1

with respect to the dth dimension. Here, X t
i,d is the position

value of the i th particle with respect to the dth dimension.
The parameter c1 is the cognitive weighting factor, whereas c2
is the social weighting factor. Furthermore, rand1 and rand2 are
uniformly distributed random variables supplying the purely
stochastic components of the algorithm, which are in the
interval [0, 1]. The quantities pbest and gbest represent the
best local positions for the current populations and the global
best positions among particles, respectively. In addition, ω is
the inertia weight, which is also added to PSO [35] to improve
the global search ability of particles. According to [27], the
adaptive formula of ω was chosen as follows:

ω = 0.1 + 0.8
(

1 −
iteration

T

)
(13)

where T denotes the total number of iterations to be used in
the optimization process.

All unknown structural parameters of the PMM will be
encoded into the particle’s position. Let the i th particle
(solution) describing the information of a PMM be denoted as

X i = [Hσρ] (14)
Xu = [Hui σui ρui ] (15)
Xl = [Hli σli ρli ] (16)

where H is a 1 × Ll row vector representing the thickness,
σ is a 1 × Ll row vector representing the roughness, and ρ is
a 1 × Ll row vector representing the mass density. If a stack
includes L layers and the PMMs consist of l stacks, the total
number of parameters to be optimized is L ×3l. For example,
it was 4 × 3 × 300 for the Mo/B PMMs described in [18].
Subsequently, the upper and lower bounds of (14) must be
set, see (14) and (16), which constitutes the solution domain.
Consequently, an m-sample set matrix can be defined as

X = [X1, X2, . . . , Xm] (17)

where m (i ≤ m) denotes the number of particles (possible
solutions) defined by users. Theoretically, the larger the
number of particles, the better the fitting results. According
to the results of our numerous trials, increasing the particle
number will result in a longer fitting time but only a little
improvement in the fitting effect. To ensure efficiency and
good fitting results, we set m to 20. Naturally, users can also
set larger parameter as necessary.

However, despite the simplicity of the basic PSO method
with respect to other global optimization methods such as the
GA, the PSO scheme continues to be too computationally
demanding for the X-ray-based PMM structure determination
problem considered in this article. This is mainly due to the
very large optimization space associated with complex but still
typical X-ray mirrors encountered in practice. To improve the
PSO performance and further reduce the computational load,
we deploy a very recent modification on the PSO algorithm
known as the Levy flight framework. Levy flight algorithms
are a new addition to the recently proposed PSO family
[22], [27]. As shown in Fig. 2, the Levy flight is a variation
on the theme of random walk based on executing Brownian
motion with non-Gaussian randomly distributed step sizes of
the distance traveled. As shown in Fig. 2, the axes represent
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Fig. 2. Three-dimensional Levy flights of 200 sequential steps. The distance
traveled in three dimension (thickness, roughness, and density) is indicated by
the scale on the axe, and the scale on the axes represents the solution domain.

the search step size for each dimensional velocity separately.
A negative value of velocity indicates that the reverse of
the search motion. Levy flight method, see relation (18),
is deployed as a strategy for updating the particle’s velocity,
resulting in the particle taking a long walk toward its local
pbest and global gbest centers, hence increasing the swarm’s
variety and making it easier for the algorithm to execute global
exploration throughout the search space. The dimensions
represent the parameters (thickness, roughness, and density)
for each layer. Here, we display a 3-D graphic. In unknown
environments, Levy flight can increase the effectiveness and
accuracy of PSO. In fact, such a modification may effectively
prevent particles from falling into local optima [39].

According to (14), the search domain should be initialized to
contain L × 3l Levy flights for each dimension. The relations
(11) and (12) update the particle velocity and position with a
probability greater than or equal to 0.5. However, if it is less
than 0.5, the velocity of the particle is updated according to
(18) and converted to its position as follows:

V t+1
i,d = ωLevy_walk

(
X t

i,d

)
+ c1rand1

(
pbestti,d − X t

i,d

)
+ c2rand2

(
gbesttd − X t

i,d

)
(18)

X t+1
i,d = V t+1

i,d (19)

Levy_walk
(
X t

i,d

)
= X t

i,d + 1X ⊗ Y (20)

where Y is a vector with dimension equal to X i,d and elements
as uniformly distributed random numbers in [0, 1]. The symbol
⊗ implies entrywise multiplication operation of two vectors.
For the random walk’s step size 1X , this is given by

1X = S ⊗ X t
i,d . (21)

The step size S samples are given by

S = 0.01
u

|v|1/β

(
X t

i − gbestt
)

(22)

Fig. 3. (a) Flowchart of the main XRR-based PMM characterization
algorithm. (b) Flowchart of the LFPSO algorithm.

where β is the Levy distribution index, bounded as (0, 2].
Here β = 1.5; u and v are drawn from normal distributions

u ∼ N
(
0, σ 2

u

)
v ∼ N

(
0, σ 2

v

)
(23)

with

σu =

{
0(1 + β)sin(πβ/2)

0
[
(1 + β)/2

]
β2(β−1)/2

}1/β

, σv = 1 (24)

where 0 is the standard gamma function. Fig. 3 shows the
workflow of the LFPSO algorithm.

IV. IMPLEMENTATION AND VERIFICATION

The proposed XRR-based PMM structure determination
method was implemented in an in-house code, and real-
life measurement of XRR data of several PMMs fabricated
in our laboratory was carried out. The accuracy of the
LFPSO algorithm was verified by the reconstruction of the
known PMMs structures. For this, several theoretical PMMs
models were created in X-Ray Calc software and their
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Fig. 4. Example of XRR-based PMM characterization applied to XRR
data generated by X-Ray Calc (dark dots). The model consisted of
16 × B/MoB2/Mo/MoB2 stacks (192 optimization variables in total); Mo
thickness was changed gradually as shown in the inset.

XRR was simulated. Then, these simulated XRR dates were
used as an input to reconstruct these theoretical models
using the LFPSO method. The latter calls the X-Ray Calc
electromagnetic source core iteratively within the global
optimization process. Subsequently, optimum PMM model’s
structure parameters were obtained when the LFPSO algorithm
converged. For all examples involving the LFPSO algorithm,
a swarm population of a total of 20 particles (see relation 17)
was considered, while the number of iterations was set
to 20. The last choice of the number of iterations was
dictated by trial-and-error method and was found to be
sufficient to allow the reconstruction algorithm to accurately
reconstruct the PMM structure parameters. The user can also
set iterations lager if necessary. Silicon was used as the
substrate for all the PMMs models, and all the XRR data
were calculated for s-polarization. Initial models included
several structural “defects” such as gradual change of layer
thickness.

Fig. 4 shows the XRR data for the Mo/B PMM with a linear
gradient of Mo generated by X-Ray Calc. Fig. 4 (inset) shows
the distribution of the Mo thickness in the model as a function
of the stack number. Here, the time required to complete the
automatic reconstruction of the structure parameters using our
parallelized LFPSO method was only 13.6 s for six cores
Intel CPU without graphics processing unit (GPU) acceleration
while using MATLAB R2021b. The data collected in Table I
demonstrate that the thicknesses parameters reconstructed
using our method are close to the actual parameters of
the original PMM under X-ray illumination. In the next
stage, PMM characterization algorithm was applied to XRR
data generated using our theoretical electromagnetic model
(X-Ray Calc) in order to evaluate the feasibility of applying
our method to more complex models. The PMMs considered
had 50, 100, and 300 stacks (see Fig. 5). In addition to
the excellent PMM structure parameters results reported here,
a nearly linear relationship between the elapsed time and
increasing number of layers was observed, which suggests that
even if the structure becomes more complicated, the model
parameters reconstruction time will not scale up exponentially.

TABLE I
STACK-TO-STACK VARIATION OF MO LAYER THICKNESS (FIG. 4);

h IS THE THICKNESS IN THE KNOWN MODEL; h∗ IS THE THICKNESS
RECONSTRUCTED BY LFPSO. THE ERROR IS

CALCULATED BY |h−h∗
|/h

Fig. 5. Example of applying our PMM characterization method to XRR
data generated by X-Ray Calc (dark dots) for B/MoB2/Mo/MoB2 PMMs.
Initial models had (a) 50, (b) 100, and (c) 300 stacks. (d) Structure model
reconstruction time as a function of the number of stacks in a model.

We also provide an example with real-life measurement
setup. The manufacturing of PMMs is performed by
magnetron sputtering in the vacuum. The schematic of the
deposition system is shown in Fig. 6(d) and (e). The deposition
system mainly consists of magnetrons mounted on the top.
A–C targets are installed on the magnetrons. A substrate holder
is mounted below the magnetrons and is moved from one
magnetron to another by a whirling arm to deposit alternate
layers of A–C. A shutter with a circular window is used to
control the deposition time. Fig. 6(c) shows the high resolution
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Fig. 6. (a) Automatic model reconstruction for measured PMMs model
consisting of 300 × B/MoB2/Mo/MoB2 multilayer, χ2

= 0.0288. (b) Manual
fitting for measured PMMs model consisting of 300 × B/MoB2/Mo/MoB2
multilayer (3600 optimization variables in total) [18], χ2

= 0.0382.
(c) Cross-sectional HRTEM image of PMM [13]. (d) Image of the laboratory
setup used for the deposition system. (e) Schematics of the deposition system
for manufacturing PMMs. 1: Vacuum chamber, 2: magnetrons A, 3: shutter’s
circular window, 4: substrate holder, 5 and 6: magnetrons B and C, and 7:
whirling arm.

transmission electron microscopy (HRTEM) image of the
PMM. The measured XRR data of the real Mo/B PMMs
were reconstructed using our method, and the first PMMs
had 300 stacks; their structure is described elsewhere [18].

Fig. 7. Details for model reconstruction at Fig. 6(a). (a) Thickness distribution
of all layers. (b) Minimum chi-square χ2 [see (10)] during each iteration.

Fig. 8. (a) Result of model reconstruction by the new method of measured
XRR curve for Mo/B PMMs consisting of 25 stacks (400 optimization
variables in total) and having large thickness nonuniformity. (b) Thickness
distribution of all layers. (c) Minimum chi-square χ2 (10) error during every
iteration.

The reconstruction results using the LFPSO method are shown
in Fig. 6(a). The results in Fig. 7(a) reveal that the sputtering
was not stable, resulting in the fluctuations of the thickness
of the Mo and B layers owing to variations in the deposition
rate [40]. Moreover, such fluctuations caused the broadening
of diffraction peaks in the XRR curves. For comparison,
Fig. 6(b) shows the result of the original “manual” PMM
structure determination. It was obtained using the conventional
approach, wherein the parameters of the stack were assumed
constants, such that only a dozen parameters within a period
(stack) were fitted in order to simplify the tedious manual
process. However, this rarely results in the correct PMM
structure parameters owing to the thickness drift. Certain
software, such as IMD, employs an original GA to achieve
automated fitting, which usually requires several hours and
is inefficient because of the undesirable performance of the
original GA.

For the model reconstruction shown in Fig. 6(a), 20 particles
were initialized, and the number of iterations was set to 20;
the elapsed time was only 101.9 s for the running environment
described above, which is a greater speed than that in [17].
Tiilikainen et al. [17] described 15 periods, each consisting
of three layers; however, the elapsed time was approximately
1600 s. One of the advantages of the new method proposed
here and that in [17] is the integration of the calculation of
the time-consuming recursive reflectivity formulas into the
executable file (X-Ray Calc), which in our case calculates
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the cost function (10) in only about 0.008 s in a system
utilizing six cores Intel CPU. In addition, the LFPSO algorithm
was reported to be superior to the GA algorithm in high-
dimensional optimization problems [21], particularly for the
fitting of PMMs. Once the period of the PMMs increases to
several hundreds, the model reconstruction time in case of
the GA would increase dramatically, whereas in our approach,
it has been observed to maintain a linear growth relationship
for the LFPSO. As shown in Fig. 6, the automatic PMM
structure reconstruction result for LFPSO (χ2

= 0.0288) was
better than that for manual fitting (χ2

= 0.0382). Furthermore,
the peak and full-width at half-maximum (FWHM) fitted
in Fig. 6(a) were superior to those fitted in Fig. 6(b),
demonstrating the convenience of the new program for XRR-
based model characterization.

As illustrated in Fig. 7(a), the thickness of each layer was
obtained from GIXR, on the basis of which parametric infor-
mation about undesirable compound MoB2 and knowledge
of the layer growth were also acquired. Owing to constant
temperature conditions during deposition [18], the roughness
of each interlayer was the same, just as the density of each
layer. Fig. 7(b) shows that the cost function (10) decreases with
an increase in the number of iterations, indicating convergence.
If the reconstruction results are not satisfactory, then more than
20 particles can be initialized or more than 20 iterations can
be set; however, the elapsed time will be prolonged. Fig. 8
illustrates the structure parameters reconstruction results for
the Mo/B PMMs deposited without careful stabilization of
the deposition conditions; significant deviations in the layer
thickness were observed. In addition, the thickness of MoB2
increased during deposition, revealing insufficient substrate
cooling [18].

Finally, it is worth adding that users are free to modify
the LFPSO algorithm in order to enhance optimization
performance. For instance, LFPSO combines chaos [21],
butterfly algorithm [41], and other intelligent algorithms in
order to improve its performance. All structure parameters
obtained from all layers can be used to further analyze the
growth of the coatings, interlayer mixing, periodic drift, and
other undesirable phenomena. Moreover, larger particles and
iterations or narrowing of the solution domain can be specified
to enhance the reconstruction accuracy; however, note that this
last modification comes at the expense of execution longer
time.

V. CONCLUSION

A new software package that combines the electromagnetic
solution of reflectivity (X-Ray Calc) with global optimization
(LFPSO) was developed to reconstruct unknown structure
parameters of PMMs for X-ray optics applications. The
proposed PMM characterization method resulted in a reliable
global search and a high convergence rate inverse modeling
algorithm, where many unknown structure parameters, mainly
thickness, roughness, and densities were estimated based on
measured XRR data. Rather than manually reconstructing
thousands of parameters, simple operations such as import-
ing experimental XRR data and setting up the solution

domain allowed the program to perform automatic PMM
characterization in real time. The method was verified by
comparison with measured and theoretical XRR data and
excellent agreement between the technique’s reconstructions
and the actual PMM structure were observed. In addition, all
parameters from all layers were obtained with knowledge of
the details of layers growth, while significantly reducing the
computational time compared with other global optimization
methods such as GA. Since the number of layers in X-ray
optical mirrors is expected to grow in the future with the
development of new applications such as the next-generation
extreme ultraviolet (EUV) lithography and other advanced
X-ray imaging technologies, the proposed algorithm offers a
robust and efficient addition to other currently used methods.
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