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Decomposed Vector Rotation-Based
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Abstract— In this article, we present a novel decomposed vector
rotation (DVR)-based recurrent neural network behavioral model
for digital predistortion (DPD) of radio frequency (RF) power
amplifiers (PAs) in wideband scenarios. By representing memory
terms of DVR with recurrent states and redesigning the piecewise
modeling, we propose a novel recurrent DVR scheme. To ensure
stable operation and enhanced modeling accuracy, we integrate
the recurrent DVR into the gated learning mechanism of the
modified Just Another NETwork (JANET). Experimental results
confirm that the proposed DVR-JANET model provides much
improved linearization performance with significantly reduced
model complexity compared with the recent existing models.

Index Terms— Behavioral modeling, digital predistortion
(DPD), neural network, power amplifier (PA), recurrent neural
network.

I. INTRODUCTION

W ITH the advance of wireless standards, the fifth-
generation (5G) communication systems are adopting

higher carrier frequencies and wider signal bandwidth. While
such an adaptation serves to high capacity communication,
modern radio frequency (RF) systems inevitably face signifi-
cant challenges in maintaining high linearity while minimizing
power consumption [1]. Genuinely, power amplifiers (PAs)
account for the majority of the power and cause foremost
nonlinear distortion in RF systems [2]. Owing to its allowing
PAs to be operated at higher drive levels and compensat-
ing the nonlinear distortions, digital predistortion (DPD) is
widely deployed in wireless base stations [3]. In the liter-
ature, numerous DPD models have been proposed, such as
memory polynomial (MP) [4], generalized MP (GMP) [5],
envelope MP (EMP) [6], dynamic deviation reduction
(DDR) [7], [8], and so on. In fact, the existing models
have been competent in practice. However, with constantly
increasing signal bandwidth, the PA behavior is now associated
with more sophisticated nonlinear characteristics and memory
effects. While endeavoring to model such complex systems,
the existing models may fail to meet the required linearization
performance.
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Relying on the impactful success of deep learning and its
enormous potential for improvement, neural network learning
emerges an appealing alternative in PA modeling. Recently,
many neural network-based DPD models have been pro-
posed [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20]. When deploying a deep learning model, selecting
a proper network structure to accurately model nonlinear
dynamics of the PA becomes significantly challenging. In the
existing works, DPD models are mainly built on traditional
feedforward networks learning with memory samples. With
longer memory effects, however, such models require a quite
large number of memory samples, which intrinsically con-
tributes to the complexity of the model. Recurrent models can
involve an infinite number of past samples into the learning
and, therefore, potentially can lead to higher accuracy [21],
but the conventional recurrent networks suffer from stability
issues. Some recent works have proposed recurrent DPD
models [16], [17], [18], [19], but none of the revised networks
concentrate on the search for the most suitable network
structure. In [22], a useful link between the lightweight Just
Another NETwork (JANET) [23] and the physical behavior of
the PA is established. After adopting a new model structure,
the phase-gated recurrent neural network-based DPD model,
phase-gated JANET (PG-JANET), proposed in [22], achieved
remarkable improvement in modeling accuracy and lineariza-
tion performance. However, a large number of coefficients are
still required when linearizing wideband PAs.

In this article, we significantly improve our prior work
in [22] and propose a novel decomposed vector rotation
(DVR)-based recurrent network to better model the com-
plex nonlinearity and longer memory effects of the PA and,
therefore, to ensure a more practical design. Based on the
methodical analysis of recurrent operation and DVR model
structure [24], we find that it is possible to represent memory
terms within the model with recurrent states. By rearranging
piecewise modeling according to recurrent learning, we build a
novel recurrent DVR scheme to adapt the flexible and powerful
nonlinear modeling ability of the DVR model to recurrent
neural network learning. To better map the outcome of novel
DVR layer onto overall modeling, we also carefully redesign
the recurrent JANET unit. Experimental results confirm that
the proposed DVR-based recurrent model not only performs
superior to the conventional DPD models but also reduces the
model complexity significantly.

The rest of this article is organized as follows. Section II
reviews PA modeling with PG-JANET. Section III explains
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Fig. 1. PG-JANET cell architecture.

how to construct a recurrent DVR model. In Section IV, the
complete model structure and the model training process are
given. Section V presents experimental validation followed by
a conclusion in Section VI.

II. REVIEW OF PA MODELING WITH PHASE-GATED

RECURRENT NEURAL NETWORK

With wireless systems demanding further wider signal band-
width, the consequent longer memory effects have a significant
impact on RF PA modeling. To represent the more complex
PA behavior dominated by memory effects, recurrent neural
networks arise as an alternative solution and have attracted
more interests in recent DPD development, as they have proved
their proficiency in learning long-term dependencies.

As regards the recurrent neural networks, many network
structures addressing different issues can be found in the
literature. Instead of using the generic structures, tailoring the
best suitable one for modeling complex nonlinear behavior of
the RF PAs is more effective. On the one hand, the rightly fit
model can accurately catch the physical dynamics of the PA.
On the other hand, removing redundant terms is beneficial in
reducing the complexity for practical implementation. In our
previous work in [22], we carefully examined the relationship
between the physical behavior of the PA and the neural net-
work structures and proposed a modified version of recurrent
neural networks, called PG-JANET, to model the PA and
conduct the DPD.

As depicted in Fig. 1, the recurrent operations in JANET
can be described with the functions of forget gate fn , inner
cell gn, and the output of the network hn⎧⎪⎨

⎪⎩
fn = σ

(
W f [xn, hn−1] + b f

)
gn = tanh(Wc[xn, hn−1] + bc)

hn = fn ⊗ hn−1 + (1 − fn) ⊗ gn

(1)

where W f and Wc are the weights of the layers, and b f

and bc are the bias, while [xn, hn−1] stands for concatenation.
Moreover, ⊗ and σ represent the element-wise multiplication
and the sigmoid activation function, respectively. From the
results given in [22], we can see that the output function hn

of JANET can be attributed to the PA behavior described via a
recurrent feedback structure that can cover long-term memory
effects. The JANET network is a single gate simplified model
of long short-term memory (LSTM) network, which provides
high-accuracy performance with low complexity. Using such

a compact network, thus, lowers model implementation com-
plexity and reduces model running time.

This experimental results in [22] confirmed that processing
of current input by associating it with the recurrent information
is quite useful to capture the memory effects. In fact, one can
rely on this recurrent information to cover longer memory
effects, rather than taking the input with multiple memory
samples, which is the commonly adopted approach used in
the PA modeling. Despite the improvement was made, to lin-
earize ultrawideband PAs, e.g., with over 200-MHz modulated
signals, a large number of model coefficients are still required.

III. BUILDING DVR WITH RECURRENT CONNECTIONS

The PG-JANET model showed us how an effective recur-
rent structure can boost the model capability on capturing
long-term memory effects. However, the nonlinear process
of the signals still relies on the conventional neural network
approach, e.g., linear weighting with simple activation func-
tions, which may not be effective in dealing with the complex
nonlinear behavior of the PA. Thus, we believe that integrating
a powerful nonlinear processing, which is also well tailored for
PA and DPD modeling conditions, into the recurrent learning
of the JANET network further enhances the model capability.

In the course of search for such a nonlinear structure, the
DVR model [24] emerges as a promising candidate. In this
section, we demonstrate how the DVR processing can be
integrated with recurrent connections to form a recurrent
DVR structure.

A. DVR Model

The DVR model is a modified version of the canoni-
cal piecewise linear (CPWL) function [25] for behavioral
modeling of RF PAs [24]. Using CPWL, the output of a
finite-memory nonlinear digital system is approximated by the
following equation:

y(n) =
M∑

i=0

ai x(n − i) + b +
K∑

k=1

ck

∣∣∣∣∣
M∑

i=0

aki x(n − i) − βk

∣∣∣∣∣
(2)

where y(n) and x(n) denote the output and input, respectively.
| · | stands for the absolute value operation, whereas K is
the number of the partition, and βk becomes the threshold,
which decides the boundary of the partition. M represents the
memory length, and ai , b, ck , and aki, j can be defined as the
model parameters. From (2), we can see that the nonlinear
process is achieved using the “absolute” operation. It has
been proven that the CPWL can be used to represent a wide
range of nonlinear behavior of analog circuits with a high
precision [25].

The conventional CPWL function, however, only can deal
with real-valued signals. To make it suitable for DPD, e.g.,
to deal with complex signals and make it linear-in-parameters,
in [24], the nonlinear basis function of (2) was modified from

K∑
k=1

ck

∣∣∣∣∣
M∑

i=0

aki x(n − i) − βk

∣∣∣∣∣ (3)
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to
M∑

i=0

K∑
k=1

cki

∣∣∣∣∣|x̃(n − i)| − βk

∣∣∣∣∣e jθ(n−i) (4)

where the nonlinear process is conducted on the samples first
before linearly combined. The inner |·| is to find the magnitude
of the baseband input, whereas the outer | · | represents
the absolute value operation. The phase information of the
sample is recovered by multiplying the output with e jθ(n−i).
In principle, the DVR performs a vector decomposition of
the signal into magnitude and phase and then compares the
magnitude with multiple predefined thresholds βk . Next, the
nonlinear operation is performed on the this comparison via
the “absolute” value operation as CPWL does. The results
are multiplied with the corresponding model coefficients and
summed up. Finally, the phase restoration comes at the last
stage of the implementation. To improve model accuracy,
it can also include additional basis functions. The complete
DVR model is described by the following equation:

ỹ(n)|DVR =
M∑

i=0

ãi x̃(n − i)

+
M∑

i=0

K∑
k=1

c̃ki,1

∣∣∣∣∣|x̃(n − i)| − βk

∣∣∣∣∣e jθ(n−i)

+
M∑

i=0

K∑
k=1

c̃ki,21

∣∣∣∣∣|x̃(n − i)| − βk

∣∣∣∣∣e jθ(n−i)|x̃(n)|
+ · · · (5)

where ỹn , x̃n, and θn denote the baseband output, input, and
the phase of the input, respectively, and ãi and c̃ki, j are model
coefficients.

Different from the conventional polynomial-based models,
such as GMP, the DVR model is much more flexible, espe-
cially in modeling highly nonlinear systems. However, it is still
in a feedforward structure, where the memory length that the
model can cover depends on the number of memory samples
used in the input. This leads that, in a wideband system, the
number of memory samples required can be very large, which,
as a result, significantly increases the model complexity.

B. Recurrent DVR Scheme

To address the complexity issue of the model, in this work,
we propose to incorporate the recurrent structure presented in
the PG-JANET model into the DVR nonlinear process to build
the DPD model.

1) Magnitude and Phase Recurrent Filters: In a recurrent
network, the basic operation can be expressed as follows:

yn = tanh(Wx ⊗ xn + Wh ⊗ hn−1 + b) (6)

where Wx , Wh , and b are weight matrices and bias term,
respectively. xn and yn denote the input and output of the
model at time instant n, whereas hn−1 represents the previous
hidden information. Also, note that tanh specifies the nonlin-
ear activation function for the operation. To incorporate the
recurrent operation, we propose to feed the input signal into a
magnitude and a phase recurrent filter, respectively, following

Fig. 2. Nonlinear basis function design.

the decomposition of the baseband data into magnitude and
phase. The operation can be described by the following
equation: {

an = Wax ⊗ |xn| + Wah ⊗ hn−1

θ̃n = Wpθ ⊗ θn + Wph ⊗ hn−1
(7)

where Wax and Wpθ represent the input coefficient matrices,
while the weights of the hidden state hn−1 are expressed as
Wah and Wph , respectively.

The main motivation behind such a filtering of (7) is to
combine the input signal with the previous sequence informa-
tion from the recurrent output, hn−1, by weighing them with
the related coefficient matrices. This enables us to associate
the magnitude and the phase of complex-valued PA data with
a long range of past information in the system.

2) Nonlinear Basis Function Design: By performing the
mathematical operation in (7), we arrive at the following
expression for each element of an, in the magnitude branch:

al
n =

m∑
i=1

wahli h
i
n−1 + waxl |xn| (8)

where wahli and waxl are the coefficients in the weight matrices
of Wah and Wax , respectively. l = 1, 2, . . . , m is the neuron
index, and m determines the number of hidden neurons used.

After obtaining the input, the nonlinear basis function of
the DVR model defined in (4) can be directly used to con-
struct the model nonlinear process. For the magnitude branch,
to produce the output, al

n will be compared with βk , which is
the threshold defined by βk = k/K for k = 1, 2, . . . , K and
then multiplied with the corresponding model coefficients. The
resulting nonlinear basis function can be expressed as follows:

K∑
k=1

ck

∣∣∣∣∣
m∑

i=1

wahli h
i
n−1 + waxl |xn| − βk

∣∣∣∣∣. (9)
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Fig. 3. Comparison of vector decomposition and phase restoration between
(a) DVR [24] and (b) recurrent DVR scheme.

Note that each of al
n defines a different hyperplane parti-

tion, as each hidden neuron stores the past information with
a different weight. Hence, the previous sequence information
differs from each one. Though all the elements are compared
with the same threshold βk and the partitions are weighted by
the same coefficient, ck , each element of the magnitude filter
points out a different DVR structure. To clarify the flow of
the nonlinear basis function design, Fig. 2 depicts the block
diagram of the structure.

3) Complete DVR Scheme: Fig. 3(b) shows how the recur-
rent DVR scheme works, in comparison with the DVR model
itself shown in Fig. 3(a). The input of the DVR model consists
of the current input or the time-delayed samples, whereas the
recurrent scheme takes the input at that instant and stores it
with the hidden information within the neurons of the network
to address the previous sequence data. Thus, the recurrent
DVR provides a more powerful nonlinear processing in regard
of relating the past information to the output. It is because the
recurrent state, hn−1, in the basis function of (9) can have
infinite memory length theoretically, whereas (4) only can
include a limited numbers, e.g., M , of memory samples.

IV. RECURRENT DVR-JANET MODEL

The proposed recurrent DVR unit shown in Fig. 3(b) can be
used as a network itself to model the nonlinearity and memory
effects of the PA in the course of constructing DPD. However,
this might come at the price of vanishing or exploding gradient
of the signals, as it lacks the feedback connections through the
gating mechanism [26].

To ensure the stability of the recurrent learning and to more
accurately address the physical behavior of the PA, this section
presents the full model architecture of the proposed DVR-
JANET model. To construct DVR-JANET, we combine the
DVR scheme in Fig. 3(b), a modified JANET unit, and the
final linear output layers.

A. DVR-JANET Model
Considering JANET modification, first, we have simplified

the forget gate, fn , without changing its dynamics. The oper-
ation of fn is simply based on processing the present input
and the previous information, and then nonlinearly activating
them with the sigmoid function. The interpretation of the
sigmoid operation is selectively removing redundant memory
states from the model, therefore, focusing on the important
ones for the future prediction. At this point, if we consider
the usual behavior of PAs, we see that the output signal is
mostly dominated by the instantaneous input sample [27].
Building on that, we can release the current input from the
forget operation, and therefore, only the hidden information
is processed through the forget gate, which lowers the overall
complexity.

The other significant difference from the original JANET is
that the network has two inner cells, gcosn and gsinn , instead
of gn, which is illustrated in Fig. 1, and can be regarded as the
inner memory of the JANET. With the additional inner state,
now, we can define separate Wccos and Wcsin as the weights of
each layer. The reason of this modification is based on that the
output of DVR scheme consists of two elements: ãn cos(θ̃n)
and ãn sin(θ̃n). Instead of concatenating these through one
inner cell, encoding the cosine and sine components of the
phase restoration in separate two inner memories will provide
the network a better learning capability for each information.

Thus, using the newly modified forget gate and these
two inner memory cells, the network generates two outputs,
hI

n and hQ
n , in other words, two recurrent states, which is

also essentially different from the outcome in the conven-
tional JANET. Both of hI

n and hQ
n functions are calculated

identically to the output function of JANET defined in (1)
using gcosn and gsinn separately. One can especially consider
hI

n and hQ
n as the estimated in-phase and the quadrature states

of the DVR-JANET recurrent cell, since they are built on
the information of ãn cos θ̃n and ãn sin θ̃n, respectively. The
complete model structure is illustrated in Fig. 4, and the
operation of DVR-JANET can be described by the following
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ãn = ̂DVR
(

Wax ⊗ |xn| + Wah ⊗
(

hI
n−1 ⊕ hQ

n−1

))
θ̃n = Wpθ ⊗ θn + Wph ⊗

(
hI

n−1 ⊕ hQ
n−1

)
fn = σ

(
W f

[(
hI

n−1 ⊕ hQ
n−1

)]
+ b f

)
gcosn = tanh

(
Wccos

[
hI

n−1, ãn ⊗ cos θ̃n
] + bgcos

)
gsinn = tanh

(
Wcsin

[
hQ

n−1, ãn ⊗ sin θ̃n

]
+ bgsin

)
hI

n = fn ⊗ hI
n−1 + (1 − fn) ⊗ gcosn

hQ
n = fn ⊗ hQ

n−1 + (1 − fn) ⊗ gsinn

Ipredn
= Wo1 hI

n

Qpredn
= Wo2 hQ

n .

(10)
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Fig. 4. Folded architecture of the recurrent DVR-JANET model.

As the input layer before the modified JANET, we imple-
mented the recurrent DVR idea discussed in Fig. 3(b) with
some alterations. Note that the DVR-JANET cell has two
hidden states carrying different past feedback data: hI

n−1

and hQ
n−1. They are combined with the element-wise addition

operator, as the consequent past sequence information for the
magnitude and the phase filters.

With the history information, the recurrent filters perform
a linear mapping on the input sequences, |xn| and θn . The
output of the magnitude filter continues to be processed with
the nonlinear basis function defined in (9), whose operation
is represented with ̂DVR, and the outcome is noted as ãn

in (10) and Fig. 4. Then, the real-valued phase restoration
takes place with the outputs coming from ãn, cos θ̃n, and
sin θ̃n and results in two components, ãn cos θ̃n and ãn sin θ̃n.
As discussed before, they pass through gcosn and gsinn , each
of which only uses its own recurrent state, hI

n−1 and hQ
n−1,

respectively. On the other hand, note that such as the recurrent
filters, the forget gate, fn , also conducts its operation with the
combination of both recurrent connections.

As DVR-JANET unit completes all recurrent functions
described in (10) and generates the hidden states, conse-
quently, they are fed to the final linear layers whose coefficient
matrices are Wo1 and Wo2 , to generate the predicted in-phase
(Ipredn

) and the quadrature (Qpredn
) parts of the complex-valued

predistorted signal, i.e., the output of the complete model.

B. Training of DVR-JANET

Considering the acquired behavioral model of the PA,
the same model architecture can be exactly used for DPD
by swapping the input and output of the PA. This section
presents a method for how to train DVR-JANET to define

Algorithm 1 DVR-JANET Training Algorithm

Pretraining Stage: ILC Test

Input: x and y
Output: x and uilc

1: Minimize the error between x and y iteratively
2: Obtain the dataset of the target DPD for the training

Learning Stage: Neural Network Training

Input: x and uilc

Output: Model Coefficients
3: Train the network with x and uilc

4: Determine the model coefficients

Adaptive Stage: DLA-based Fine Tuning

Input:The weights of DVR-JANET cell, x̂ and ŷ
Output: Updated Model Coefficients
5: Use the coefficients of the DVR-JANET cell directly
6: Tune the parameters of the fully connected linear layers in

a DLA scheme for the final prediction

Fig. 5. Unfolded DVR-JANET learning with T time steps.

a DPD model. Entire procedure consists of three stages, as pre-
viously described in [22] and also summarized in Algorithm 1.

When deploying a neural network-based DPD, we essen-
tially need a training dataset. To teach the proposed neural
network to identify the target DPD, this dataset is obtained
from the ILC method [28]. The ILC unit minimizes the error
between the input, x , and the output, y, of the PA itera-
tively updating its output to the controlled system. Therefore,
it determines the ideal input uilc of the PA for the minimum
error achieved and provides the training dataset consisting of x
and uilc for the DVR-JANET learning.

After the preparation stage, next step attempts to identify the
weights of the DPD model. Fig. 5 summarizes the sequential
learning of DVR-JANET by illustrating the unfolded network
with T time steps. The folded DVR-JANET in the left-hand
side simply shows the input and the output vectors together
with the recurrent states of the network. The DVR-JANET
block processes the input consisting of the magnitude vector
|x | and the phase vector θ by directly feeding the previous
hidden information hI and hQ back to the model and then
predicts the output y = [Ipred, Qpred].

The recurrent DVR-JANET decides the model parameters
over many time steps. We can simplify this learning by
unfolding its representation along the input sequence, which
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Fig. 6. Experimental setup.

is illustrated in the right part of Fig. 5. This is a useful
conceptual visualization to clarify how the network processes
the input samples during the forward pass. At time instant n,
for example, the model takes the new input |xn| and θn and
uses the hidden state information hI

n−1 and hQ
n−1 in the memory

cells; then, it generates the model output based on (10). After
one complete pass of the input sequence, we arrive at predicted
multiple time steps of the output vector. It should be especially
noted that the DVR-JANET network does not change between
the time steps. It is always the same block using the same set
of parameters for each time step until the next update of model
coefficients.

Finally, we add an adaptive stage to the training called direct
learning (DLA)-based fine-tuning. The ultimate goal of this
stage is to update the DPD occasionally in case any variation
in the input–output, x̂–ŷ, characteristics happens [29]. During
this stage, we retain and reuse the coefficients of the recur-
rent unit, while we fine-tune the weights of the final linear
layers before the final model prediction. Considering that the
fine-tuning is a pure linear system identification problem,
it results in a very low complexity.

V. EXPERIMENTAL VALIDATION

To validate the linearization performance of the proposed
model, different experimental tests were conducted, and the
results are presented in this section.

A. Experimental Setup and Configurations

Fig. 6 demonstrates the experimental setup including a
test computer (PC) running MATLAB and PyTorch software,
a vector signal generator (SMW200A) of Rohde & Schwarz
controlled via the test computer, a linear driver amplifier,
a PA, a −30-dB RF attenuator, and a spectrum analyzer
(FSW50) from Rohde & Schwarz. The PA under test is an
in-house designed broadband gallium nitride (GaN) Doherty
PA operated at 2.80–3.55 GHz with 9.3–11.1-dB gain and
43.0–45.0-dBm saturated power [30]. During the experiment,
the input signal is generated in MATLAB running on the PC
and then sent to the vector signal generator, which forms the
baseband signal and upconverts it to the carrier frequency
of 3.2 GHz. After passing the linear driver amplifier, the

upconverted signal becomes the input of the PA. The output
is attenuated before coming to the spectrum analyzer, which
finally downconverts and digitizes the output signal to be saved
in the PC.

Throughout the experiment, the proposed model DVR-
JANET was compared with our prior work PG-JANET, DVR
model itself, and GMP as the conventional model. It is worth to
mention that we have compared PG-JANET model with other
neural network-based models, particularly the state-of-the-art
time-delayed neural network and LSTM-based models, such
as the augmented vector-decomposed time-delayed network
(AVDTDNN) model [15] and the vector decomposed long
short-term memory (VDLSTM) model [17], in [22]. To avoid
replication, we did not conduct tests with other models,
because they are all worse than the PG-JANET.

As two different wideband scenarios, the measurements
were performed with the test signals of 100- and 200-MHz
orthogonal frequency-division multiplexing (OFDM) with
7.7-dB peak-to-average power ratio (PAPR). The average
output power of the PA was 35.7 dBm. After the ILC test,
160 000 I/Q samples were recorded with the sampling fre-
quencies of 400 and 800 MHz, respectively, for the training
of the proposed DVR-JANET and PG-JANET both of which
had one recurrent layer. They were trained with the batch size
of 40 during 500 epochs and tested with different numbers
of hidden neurons. To update network weights, the adaptive
moment estimation (ADAM) [31] optimizer was adopted, and
to enhance the modeling accuracy, a decaying learning rate
method is followed, which decreases the learning rate by 10
after learning curve saturates. For DVR and GMP, the same
number of I/Q samples was used for the model extraction, and
their configurations also differ in various tests.

As the performance comparison metrics, we presented nor-
malized mean square error (NMSE) and adjacent channel
power ratio (ACPR). To compare the model complexity, the
number of real-valued parameters was considered as the main
criteria, which suggests that a complex-valued parameter of
DVR and GMP was counted as two real-valued free parameters
during the comparison.

B. Experimental Results

1) Test Results of 100-MHz OFDM Signal: The first wide-
band experimental validation was performed with five-carrier
test signal of 100 MHz. This measurement aims to carry out
an extensive search to understand how the models perform
with different numbers of model parameters and to present
a broad comparison by taking various configurations of them
into consideration eventually.

In this test, the number of hidden states was swept from 8 to
14 for DVR-JANET and PG-JANET, and DVR and GMP
were specifically configured, so that they can attain their best
performance for each evaluation point. Figs. 7 and 8 depict
how NMSE and ACPR of the models change by increasing the
number of model parameters. It is worth mentioning that the
same number of model parameters does not necessarily means
exactly the same model complexity. Depending on the model
structure and hardware implementations, different models may
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Fig. 7. NMSE (dB) of the compared models with different numbers of
real-valued model parameters for 100-MHz OFDM test.

Fig. 8. ACPR (dBc) of the compared models with different numbers of
real-valued model parameters for 100-MHz OFDM test.

lead to different resource usage. But, more or less, the number
of model parameters gives an indication of model complexity.
For this test, any of the models can be adopted with their own
specific configuration for a linearization task considering the
indicators of the model performance in Figs. 7 and 8.

Nevertheless, among the compared models, GMP becomes
the most suffering one from the problem of the restricted
capability despite of the increasing model parameters. Con-
sidering its quickly saturated performance, it can be deduced
that there is almost no room for further improvement. DVR
and PG-JANET, however, allow more flexibility to accomplish
better modeling performance with higher number of model
coefficients. Here, we should remark that PG-JANET still can
provide much better NMSE and ACPR than the best result of
DVR after reaching a particular complexity level.

Ultimately, DVR-JANET appears to have a great advantage
over the compared models in each comparison metric. It not
only results in the most successful linearization all the time,
but also it distinctively provides a much better performance
even with a relatively small number of model parameters.
For further discussion, to closely investigate the modeling
capability of the models in a similar complexity, we can limit
the number of model parameters within a particular range

TABLE I

PERFORMANCE COMPARISON OF THE MODELS
FOR THE 100-MHz OFDM SIGNAL

Fig. 9. Power spectral density comparison between the models for
100-MHz OFDM.

and evaluate the model performance. This enables us a fair
comparison between the models under a complexity budget.

For this purpose, we can probe into the comparison
when each model has ≈ 500 real-valued parameters, and the
DVR-JANET achieves −45 dBc in ACPR for the 100-MHz
long-term evolution (LTE) signal. The test results can be found
in Table I, which demonstrates the NMSE, ACPR, and the
total number of the model parameters. In this specific case,
PG-JANET and DVR-JANET were tested with eight hidden
states and K = 3 for DVR-JANET. We used the GMP
model with only lagging terms with a memory depth of 5,
the polynomial order of 5, and a cross term length of 8.
Finally, the DVR model had 12 partitions with a memory
length of 5, including the linear terms, the first-order basis, the
second-order type-1 terms, the second-order type-2 terms, the
second-order type-3 terms, and the DDR-1 terms [24].

Table I and Fig. 9 confirm that the proposed DVR-JANET
exhibits a distinguished competence, when a less complex
model is strictly needed. It explicitly brings about a better
performance, which is at least 2 dB better in both NMSE
and ACPR when compared with DVR and GMP. In case we
compare PG-JANET and DVR-JANET, almost 5-dB difference
in both of the performance metrics can be observed. Even
though PG-JANET is a quite powerful model that can attain
much better results than conventional DPDs, it may no longer
have the capability to model the PA effectively if the sources
are limited. The AM/AM and AM/PM characteristics of the
PA can be seen in Fig. 10, showing the behavior both without
DPD and with DPD based on DVR-JANET.
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Fig. 10. AM/AM and AM/PM characteristics with and without DPD for the
100-MHz OFDM signal.

Fig. 11. NMSE (dB) of the compared models with different number of
real-valued model parameters for 200-MHz OFDM test.

2) Test Results of 200-MHz OFDM Signal: To validate
the performance of the proposed model in an even wider
bandwidth, the second test was conducted with ten-carrier
200-MHz OFDM signal. This measurement basically exam-
ines how the model performs when the linearization problem
becomes more challenging due to the higher distortion induced
by the PA.

Similar to the first measurement, this experimental work
intends to present a comprehensive comparison between the
models under several configurations of them, which leads
to different number of model parameters. In this regard,
Figs. 11 and 12 provide not only the results of various mea-
surements in terms of NMSE and ACPR, but also an important
insight regarding their modeling capabilities. To obtain these
results, the number of hidden states of DVR-JANET and
PG-JANET was swept from 6 to 17 and from 8 to 18,
respectively. Besides, DVR and GMP were tuned to their best
performance again as discussed previously.

In the presence of stronger distortion, the conventional mod-
els demonstrate a severe lack of an effective DPD modeling,
which can be observed from Figs. 11 and 12. Apparently,
the higher model complexity does not allow them to improve
their modeling accuracy. On the other hand, PG-JANET and
DVR-JANET obviously can reach a particular linearization
performance, which emphasizes the importance of a flexible

Fig. 12. ACPR (dBc) of the compared models with different numbers of
real-valued model parameters for 200-MHz OFDM test.

TABLE II

PERFORMANCE COMPARISON OF THE MODELS

FOR THE 200-MHz OFDM SIGNAL

Fig. 13. Power spectral density comparison between the models for
200-MHz OFDM.

and effective neural network modeling. From Figs. 11 and 12,
we can conclude that the best possible performance of
DVR-JANET and PG-JANET converges toward nearly the
same level. However, DVR-JANET obviously arrives at the
targeted performance with a much less complex model con-
figuration, which has nearly one-third of the PG-JANET
model parameters. Based on this, we can conclude that the
DVR-JANET shows a great improvement on the learning
ability of PG-JANET.

Similarly, the performance of the compared models is pre-
sented in Table II when they have nearly 500 real-valued para-
meters. The output spectrum, and the AM/AM and AM/PM
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Fig. 14. AM/AM and AM/PM characteristics with and without DPD for
200-MHz OFDM signal.

plots are also depicted in Figs. 13 and 14, respectively. For
this test, PG-JANET and DVR-JANET were configured with
eight hidden states and K = 5 for DVR-JANET. While GMP
was tested with the same configuration employed in 100-MHz
band, the DVR model configuration changed to the partition
number of 10 and the memory length of 10, including the
linear terms, the first-order basis, the second-order type-1
terms, and the second-order type-2 terms.

In this case, both Table II and Fig. 13 indicate that only
DVR-JANET can provide a competent compensation of the
nonlinear distortion within this particular complexity range,
while the others result in a poor linearization performance.
This is because, with wideband signals, the nonlinear behavior
of the PA becomes much more complex, e.g., longer memory
effects would occur, and the interaction between memory sam-
ples becomes more prominent. The conventional feedforward
models would not be able to handle the long-term memory
effects, while PG-JANET cannot model the nonlinear interac-
tion accurately. In this case, combining recurrent network with
high precision piecewise DVR function certainly makes sense,
which verifies the superiority of DVR-JANET over the other
compared models.

VI. CONCLUSION

To reduce relatively higher complexity of wideband DPDs,
we propose a novel DVR-based recurrent neural network
model for RF PA linearization in this article. Building a
novel recurrent DVR structure and integrating it into a gated
recurrent network, we aim to enhance the learning capability
of our prior work PG-JANET, therefore, to achieve the same
performance with a smaller number of model coefficients.
Experimental tests have demonstrated that the proposed model
not only improves the modeling accuracy, but also lowers the
model complexity significantly. Based on its high linearization
performance and distinct advantage in the complexity aspect,
we believe that the proposed DVR-JANET model provides
a promising solution to future challenges of wideband DPD
applications.
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