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Abstract— This article presents an overview of artificial neural
network (ANN) techniques for a microwave computer-aided
design (CAD). ANN-based techniques are becoming useful for
performing forward/inverse modeling for active/passive compo-
nents to enhance a circuit design. With measured or simulated
data of microwave devices, ANNs can be trained to learn relevant
microwave relationships, which are, otherwise, computationally
expensive or for which efficient analytical formulas are not avail-
able. Fundamental concepts of the ANN structure and training,
such as feedforward neural networks (FFNNs), recurrent neural
networks (RNNs)/dynamic neural networks (DNNs)/time-delay
neural networks (TDNNs), deep neural networks, and neural
network training and extrapolation, are described. Knowledge-
based neural networks (KBNNs) are described for improving the
accuracy and reliability of modeling and design optimization.
Various advanced ANN techniques, such as neuro-transfer func-
tion (neuro-TF) modeling, neural network inverse modeling, and
deep neural network modeling, are discussed. The existing and
emerging applications of ANN in microwave CAD are identified,
such as electromagnetic (EM)/multiphysics modeling, modeling
of nonlinear circuits and transistors, filter design, very large-
scale integration (VLSI) interconnects, oscillator, transmitter and
receiver modeling, and CAD applications in such as gallium
nitride (GaN) high electron-mobility transistor (HEMT), wireless
power transfer (WPT), microelectromechanical system (MEMS),
and substrate-integrated waveguide (SIW).

Index Terms— Artificial neural networks (ANNs), deep neural
network, inverse modeling, knowledge-based neural network
(KBNN), microwave computer-aided design (CAD), neuro-
transfer function (neuro-TF).
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I. INTRODUCTION

RTIFICIAL neural networks (ANNSs) are important tech-

niques for a microwave computer-aided design (CAD) to
perform forward/inverse modeling for active/passive compo-
nents to enhance a circuit design [1], [2], [3], [4], [5]. With
measured or simulated data of microwave devices, ANNs can
be trained to learn relevant microwave relationships, which are,
otherwise, computationally expensive or for which efficient
analytical formulas are not available. By training an ANN
using data from electromagnetic (EM)/physics simulations,
one can use the trained ANN as models for microwave
devices to replace the EM/physics models, which are typically
CPU-intensive, to significantly accelerate the circuit design
with EM/physics-level accuracies.

ANNSs can help address two of the frequently encountered
challenges in microwave CAD: One is the computationally
expensive challenge in forward modeling, and the other is
the no-analytical-equation challenge in the inverse design.
The types of ANNs used in microwave CAD have ranged
from fundamental neural networks, such as multilayer per-
ceptrons (MLPs) and radial basis function (RBF) networks,
to advanced neural networks, such as knowledge-based neural
networks (KBNNs) for handling reduced amount of training
data and deep neural networks for handling a large number of
input variables. In this article, we review the state of the art of
the ANN techniques for microwave CAD, from fundamental
neural networks to advanced KBNN, neural network-based
inverse modeling, and deep neural networks.

Early works in ANN for microwave CAD cover a vari-
ety of microwave applications, such as microstrip circuit
design [6], [7], [8], [9], spiral inductor [10], impedance
matching [6], [11], and MESFET devices and circuits [12],
[13]. Increased research interests of ANN in the microwave
community in the 1990s led to special issues on applica-
tions of ANN in microwave CAD (1999 and 2002 special
issues of the Int. J. RF Microwave CAE) covering more top-
ics, such as ANN structures and training [14], [15], [16],
EM design acceleration [17], [18], [19], microwave filter
design [17], [20], [21], [22], microwave amplifier design [23],
[24], [25], [26], intermodulation distortion [27], coplanar
waveguide (CPW) [28], microwave device modeling [29],
microstrip antennas [30], [31], large-signal analysis [32],
[33], multiconductor transmission line [34], and microwave
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measurements [35]. An early review of ANN for microwave
CAD is given in [14]. A systematic description of the area
from theory to practice was presented in [2]. The work in [3]
provided a review of further developments for ANN-oriented
EM optimization.

To improve the accuracy and reliability of ANN modeling
and design optimization, the KBNN has been developed [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50]. The knowledge-based approach combines
neural networks with prior knowledge to build models. Ana-
Iytical expressions, empirical models, and equivalent circuits
are the most commonly used formats of prior knowledge
in this kind of approach. It has been shown that using
prior knowledge not only accelerates model development but
also improves the overall model’s learning and generalization
ability [51], [52], [53].

The neuro-transfer function (neuro-TF) modeling approach,
which integrates neural networks with transfer functions, has
emerged as an attractive candidate in EM parametric mod-
eling in recent years [54], [55], [56], [57], [58], [59], [60].
In this method, transfer functions, which have been widely
used in EM modeling and optimization [61], [62], [63], [64],
[65], [66], [67], are used to represent the highly nonlinear
EM responses versus frequency. The remaining less non-
linear relationship between transfer function parameters and
design variables, for which no analytical formula is available,
is learned by neural networks. Once developed, the neuro-
TF model can be subsequently utilized in microwave design
optimizations [68], [69], [70], [71], [72].

The ANN has also been trained to learn the complex and
high-dimensional relationships between inputs and outputs
in the inverse problems [73], [74], [75], [76], [77], [78].
In many situations, the inverse input—output relationship in
the training data may have non-uniqueness problems, which
means that different training samples with the same input
values have contradictory output values. A fundamental issue
in this research direction is that, for the same input values, it is
impossible to have a trained ANN model match contradictory
output values simultaneously. Therefore, it is often challenging
to obtain an inverse model with a small training error and
high model accuracy. Various advanced inverse modeling
techniques [79], [80], [81], [82], [83] have addressed this non-
uniqueness problem in the microwave area.

The last decade has witnessed the great research efforts
devoted to the development of neural network models with
many hidden layers (known as the deep neural network mod-
els) in the research community [84], [85], [86], [87], [88],
[89], [90]. Deep neural network has been recognized as a
very powerful tool in modeling intricate relationships in large
datasets [84]. The advantages of deep neural networks are
then leveraged to address the challenges in high-dimensional
microwave component modeling [91].

In the subsequent part of this article, we first describe
the fundamental concepts of ANN structure and training
in Section II. The various KBNN methods are discussed
in Section III. The formulation and training algorithm of
neuro-TF are described in Section IV. The neural network-
based inverse modeling algorithms are reviewed in Section V.
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In Section VI, the structure and deep learning algorithm of the
various deep neural network techniques for microwave mod-
eling are presented. Several major categories of applications
of ANN in microwave CAD are highlighted in the review in
Section VII. Section VIII concludes this article and discusses
the future directions of ANN in microwave CAD.

II. ANN STRUCTURE AND TRAINING

A neural network consists of a number of neurons and a
corresponding set of links connecting between them. Different
neuron types or different manners in which the neurons are
connected can form different neural network structures [1].

A. Feedforward Neural Networks

Feedforward neural networks (FFNNs) are ANNs wherein
connections between the neurons do not form a cycle. FFNNs
are usually used to solve non-dynamic modeling problems [1].
MLPs are the most popularly used FFNN structures, which
are widely used in microwave modeling for both passive
component modeling [7], [8], [9], [10], [15], [17], [18],
(191, [22], [30], [31], [34], [76], [801, [83], [92], [93], [94],
[95], [96], [971, [98], [99], [100], [101], [102], [103], [104],
[105] and active device/circuit modeling [12], [13], [23], [24],
[25], [29], [32], [33], [106], [107], [108], [109], [110], [111],
[112], [113], [114], [115], [116], [117], [118], [119], [120],
[121]. In the MLP structure, neurons are grouped into different
layers. Three types of layers are defined, i.e., input layer (the
first layer), output layer (the last layer), and hidden layers
(the rest of the layers in between). Another type of FFNN
widely used in microwave design is the RBF network [15],
[24], [27], [122], [123], [124], [125]. The output of the RBF
network is a linear combination of RBFs of the inputs and
neuron parameters. The RBF-neural network (RBF-NN) is
more effective in representing various localized behaviors in
the input—output relationship [126]. When the behavior of the
problem exhibits high nonlinear phenomena or contains sharp
variations, wavelet neural networks (WNNs) can be used, since
the localized nature of their hidden neurons makes it easier
to train and obtain a promising model accuracy [15], [21],
[24]. As a single-hidden layer FFNN, the extreme learning
machine (ELM) is found to have a fast learning speed and
good performance in EM parametric modeling when the
training dataset is not too large [127], [128], [129].

B. Dynamic/Recurrent/Time-Delay Neural Networks

A time-domain dynamic behavior of nonlinear devices or
circuits is typically characterized by dynamic neural networks
(DNNSs) [130], [131], recurrent neural networks (RNNSs) [26],
[132], [133], [134], [135], [136], and time-delay neural net-
works (TDNNs) [137], [138], [139]. The DNN is a special
type of feedback neural network, which uses continuous-
time formulation to model the dynamic microwave behavior.
The neural network output of DNN is a function of the
input—output signals and their time derivatives. RNN is another
type of neural network with feedback from output to input.
It has the capability of representing a dynamic system’s
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behavior through a suitable learning process. The RNN uses
discrete-time formulation to represent the dynamic behavior
of microwave circuits. The neural network output of RNN is
a function of its present input and a history of its input and
output. The TDNN is an FFNN whose output is formulated
by a time-delay series of inputs in discrete-time formulation,
such as RNN. TDNN is simpler than RNN, since the output
of TDNN is a function of its present input and history of only
its input.

C. Deep Neural Network

A deep neural network is defined as a neural network with
many hidden layers [84], [88], [89], [90], [140], [141], [142],
[143]. It has been shown that deep neural networks have much
better performance than shallow neural networks (i.e., neural
networks with a few hidden layers) in dealing with modeling
problems exhibiting very intricate relationships. One type of
deep neural networks is the deep MLP [89], [91], [142], [144].
The selection of hidden neuron activation functions in deep
MLP could affect the ultimate training accuracy. In deep MLP,
one of the most popular activation functions is the rectified
linear unit (ReLU). The ReLU helps solve one of the main
problems, i.e., the vanishing gradient problem, in training
deep neural networks. A convolutional neural network (CNN)
is another type of deep neural network [77], [145], [146].
A typical CNN is structured as a series of stages. Each stage
usually includes three different layers: a convolutional layer,
a nonlinearity layer, and a pooling layer [84], [145]. CNN
can be used to learn EM problems where the inputs and/or
outputs can be treated in image-like representations [74],
[146]. A deep belief network (DBN) is also in the class of
deep neural networks. In contrast to the FFNNs, such as
deep MLP and CNN, DBNs are hybrid networks that contain
both directed and undirected layers [147]. DBN has shown
advantages in handling the inverse modeling problem for
microwave CAD [148]. Another type of deep neural network
is the long short-term memory (LSTM) [149], which is an
advanced type of RNN. LSTMs can handle the issue of
vanishing gradient encountered during the training procedure
of traditional RNNs [149]. LSTM has been introduced into
the microwave area for nonlinear device modeling [150] and
extrapolation of frequency domain EM responses [151].

D. Knowledge-Based Neural Network

Taking advantage of a wide range of existing equivalent
circuit models/empirical models for microwave components,
KBNNs have been developed for microwave CAD [36], [37],
[38], [391, [40], [41], [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51], [52], [53]. The use of knowledge in neural
networks helps to reduce the amount of training data needed
and enhance the extrapolation capability of the model. Further
description of KBNN will be included in Section III.

An advanced knowledge-based modeling approach, that
integrates neural networks with transfer functions (shortened
as neuro-transfer function or neuro-TF), can be used to build
effective parametric models of EM structures [54], [55], [56],
[57], [58], [59], [60]. This knowledge-based approach can
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be used even if accurate equivalent circuits or empirical
models are unavailable. Further description of neuro-TF will
be included in Section IV.

E. Discussions for Different Neural Network Structures

Different ANN structures can be chosen for different appli-
cations. When modeling simple and straightforward relation-
ship and data generation is not expensive, the FFNN is the
simplest and most efficient neural network structure to be
used. Sufficient amount of training data is the key to ensure
the quality of the neural network training and accuracy of
the trained neural network. When the data generation is com-
putationally expensive, KBNN becomes more suitable, since
the prior knowledge can help decrease the amount of train-
ing data needed while maintaining good modeling accuracy.
When the equivalent circuit/empirical model is not practically
available and the input—output response of the training data
behaves a highly nonlinear response with sharp ripples with
respect to frequency, neuro-TF can be applied and can be
trained with smaller amount of data than pure ANN structures.
To address the situation where the dimension of model inputs
is high and/or the amount of training data is large, deep
neural networks typically become better choices. When the
neural network outputs represent time-domain responses, espe-
cially having memory effects, DNN/RNN/TDNN structures
are needed.

FE. Neural Network Training and Data Generation

Neural networks can only represent a considered microwave
device’s or circuit’s behavior after it is well trained with
corresponding data [1]. The neural network training involves
the use of training data to guide the adjustment of neural
network internal connection weights (or synaptic connection
weights). A separate set of data, called the test data, is used to
assess the quality of the trained neural network. It is expected
that the test data are not used during training, to fairly assess
the trained neural network. The process of developing a neural
model generally involves six steps. They are as follows.

Step 1): Identify inputs and outputs of the microwave mod-
eling problem.

For the identified inputs and outputs, generate train-
ing and testing data.

Identify possible knowledge of the overall problem
or a subproblem. Formulate ANN or knowledge-
based ANN structure.

Perform model training, model validation, and ANN
structural adaptation.

Test the accuracy of the trained model.

Incorporate the model into microwave CAD.

Step 2):

Step 3):

Step 4):

Step 5):
Step 6):

Data generation is an important issue for ANN model
development. Loosely speaking, an ANN model’s accuracy
enhances, as the number of data samples increases. However,
generating large numbers of data samples is inevitably time-
consuming and resource-demanding (e.g., 3-D EM simula-
tions). Various data sampling strategies have been introduced
for ANN model development, such as uniform/nonuniform
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grid distribution [1], star distribution [37], random distrib-
ution [152], Latin hypercube sampling (LHS) [153], [154],
adaptive sampling [155], [156], [157], and design of exper-
iment (DoE) with orthogonal distribution [55], [70]. In grid
distribution, each input parameter is sampled at equal or
unequal intervals. In star distribution, sample points are gen-
erated by perturbing a central point twice along each input
dimension, once toward the positive direction, and once toward
the negative direction. When the input dimension increases,
the number of data samples using grid distribution grows
exponentially, while the number of data samples using star
distribution increases linearly. The grid distribution provides
the most sufficient data for training, but is not practically
usable when the input dimension is high. The star distribution
cannot provide sufficient data for pure neural network training,
but it can be used for training neural networks combined
with prior knowledge and has the least number of training
data among all the sampling methods, especially when the
input dimension is high. In the random distribution, each
input sample is a vector of random variables within the
range of input parameters. LHS improves the uniformity of
distributed samples in the sampling space compared with
random distribution. Adaptive sampling uses the interaction
between the intermediate surrogate model and the available
data to adaptively and iteratively build an optimized training
dataset. It can distinguish where data are needed in the input
modeling space. Compared with grid sampling and random
sampling, adaptive sampling helps to achieve the required
model accuracy using the fewest data samples, making the data
generation process flexible and efficient. DoE with orthogonal
distribution can be used for generating multiple sample points
in high-dimensional parameter spaces. In DoE, the subspace
divisions are orthogonal and sampled with the same density.
The use of orthogonal distribution around the center point
allows DoE to have far fewer sampling points than grid
distribution does. Due to this, the surrogate model developed
by DoE can be valid in a much larger neighborhood than
that developed by star distribution. With the increasing model
dimension and complexity, data generation in ANN modeling
faces new challenges. How to keep a good balance between
the cost of data sampling and the accuracy of a model is an
ongoing direction to be further addressed in the future.

A robust automated model generation (AMG) algo-
rithm [158], [159] for neural network training can be used
to significantly reduce the intensive human effort demanded
by the conventional step-by-step neural modeling approach.
The algorithm inherently distinguishes between smooth and
nonlinear regions of model behavior. It then uses relatively
fewer samples in smooth subregions and more samples in
nonlinear subregions. The AMG algorithm can systematically
generate a neural network model satisfying the user-desired
accuracy. Active learning is widely used in deep learning
area and can adaptively perform model generation. In active
learning, adaptive sampling is used to create a feedback loop
between the deep learning model and the data [160], [161].
As more samples are collected, the adaptive sampling method
learns how to improve the sampling process by deciding
where to sample next. This enables faster training convergence,
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as more data are generated in the regions that have maximum
uncertainty. Incorporation of active learning into the AMG
process is an interesting further step.

G. Extrapolation for Neural Networks

Typically, a standard neural network model is accurate
only inside the region where it is trained and is unreli-
able outside this training region. Various extrapolation meth-
ods [162] for neural network models have been introduced
to address this issue, such as model-level extrapolation [163],
[164], neuron-level extrapolation [165], and multidimensional
extrapolation [166]. To facilitate the model extrapolation,
the model-level extrapolation methods use the neural net-
work and its derivative information at the training region’s
boundaries [163], [164]. Neuron-level extrapolation method
addresses the problem in case when the training boundaries are
irregular [165]. This method detects the necessity of extrap-
olation inside each hidden neuron and performs extrapolation
using a modified neuron activation function. The simplification
of the problem into a combination of several 1-D first-
order extrapolations makes this method simple and easy to
be implemented. To address the modeling challenges in EM
optimization and large-signal harmonic balance simulation,
an advanced multidimensional extrapolation technique for
microwave modeling and design has been used [166]. With
a good model accuracy being guaranteed inside the training
region, the extrapolation technique [166] can further force
the model to be smooth along all the directions outside the
training region. Besides various extrapolation methods, the
KBNN method [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47], [48], [49], [50], [51], [52], [53] exploits
microwave empirical or equivalent models to help the overall
KBNN model to achieve better extrapolation capability than
pure neural networks. Furthermore, CNN- and LSTM-based
neural network structures have been exploited for design space
extrapolation and frequency extrapolation [151].

III. KNOWLEDGE-BASED NEURAL NETWORKS

The KBNN incorporates the available microwave infor-
mation in the form of microwave equivalent circuit/semi-
analytical models (as prior knowledge) into neural network
structures. There are several ways in which microwave knowl-
edge and neural network are combined, as shown in Fig. 1. Let
y represent the outputs of the KBNN model. Let x represent
the inputs of the KBNN model, i.e., geometrical parameters.
Let d represent the values of y in the training or validation
data (such as data generated from EM simulation). Fig. 1(a)
shows the general structure of KBNN, followed by special
structures of various KBNN methods in Fig. 1(b)—(g).

A. Basic KBNN Structures

The difference method [9] uses ANN to learn the differ-
ence between EM data and prior-knowledge model outputs,
illustrated in Fig. 1(b). The inputs of ANN are physical
parameters, and the outputs are the differences between the
prior-knowledge model and the EM simulation. The difference
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Fig. 1.

(a) General structure of KBNN. (b) Structure of the difference method for KBNN [9]. (c) Structure of the multiknowledge embedding approach for

KBNN [36]. (d) Structure of the PKI method [28]. (e) Structure of the knowledge-based model with adjoint neural networks [58]. (f) Structure of the SMNN

method [37], [167]. (g) Structure of KBNN with adaptive mappings [44].

method is very efficient in dealing with the modeling problem
where the differences between the outputs of the prior knowl-
edge and the EM simulation have simpler relationship with
respect to the inputs compared with the outputs of the EM
simulation itself.

The multiknowledge embedding approach [36] for KBNN
embeds the multiple prior knowledge into separate subspaces
of the neural network model, resulting in an overall model
covering a larger space than any of the individual knowledge
models alone, as shown in Fig. 1(c). Compared with the
difference method, the multiknowledge embedding approach
embeds the prior knowledge into the internal of neural net-
works, allowing the boundaries between subspaces for each
prior knowledge to be learned too.

In the prior-knowledge input (PKI) method [28], the prior-
knowledge model outputs are used as the inputs to the
ANN, in addition to the original problem (EM data) inputs,
as illustrated in Fig. 1(d). The PKI method is more suitable
when dealing with the modeling problem where the similar-
ities between prior-knowledge output and EM output lead to
simpler training of the ANN.

Space mapped neural networks (SMNNs) [22], [37], [167]
concept divides the modeling problem into a coarse model

(prior-knowledge models) and a fine model (EM simulations).
ANN is used to map between the fine model and the coarse
model, as shown in Fig. 1(f). SMNN concepts can be applied
for input mapping, output mapping, and implicit mapping.
By exploiting the vast set of available knowledge models,
SMNN methods reduce the number of fine model data needed
for training, improve the model generalization ability, and sim-
plify the ANN topology with respect to pure ANN modeling
methods.

B. Knowledge-Based Model With Adjoint Neural Networks

To further speed up the KBNN development process,
EM sensitivity information is incorporated into the KBNN
model [58], as shown in Fig. 1(e). Let d’ represent the values
of derivatives of y with respect to x in the training or valida-
tion data (such as data generated from EM sensitivity analysis).
The knowledge-based model with adjoint neural networks [92]
allows robust parametric model development by learning both
the input—output behavior and the derivatives of the EM
modeling problem simultaneously. Compared with the KBNN
modeling without EM sensitivity, the same modeling accuracy
can be achieved with fewer training data by exploiting EM
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sensitivities. The knowledge-based model with adjoint neural
networks is only utilized during the training process. The
final model for a user is the simple original knowledge-based
model, which can be further used in high-level designs.

C. KBNN With Adaptive Mappings

In KBNN modeling, there are several different ways to map
the difference between the knowledge/coarse model and the
EM data, such as input mapping, output mapping, frequency
mapping, or a combination of any two or three of these map-
pings [3], and each mapping can be linear or nonlinear. Differ-
ent modeling problems or different knowledge/coarse models
can lead to different types and complexities of the mapping in
KBNN. However, a quantitative decision of mapping structure
in a KBNN is unknown in advance. To address this issue,
KBNN with adaptive mappings [44] helps to systematically
determine the type and topology of the mapping structure in
KBNN. The structure of the KBNN with adaptive mappings
combines the empirical model with one input mapping, one
frequency mapping, and one output mapping to include all
cases of mappings. To include both linear and nonlinear
mapping, each mapping ANN is an expansion of conventional
MLP by adding an additional direct connection between the
input layer and the output layer, as shown in Fig. 1(g). A two-
stage training strategy with /; optimization is presented in [44]
to train the model. Using the properties of /; norms, the
training method automatically determines whether to use linear
or nonlinear mapping in various parts of the model in the first-
stage training and also determines whether a linear mapping,
if exists, can be deleted or not in the second-stage training.
After the two-stage training, the appropriate mapping structure
of the knowledge-based model for the modeling problem is
achieved.

D. Discussions

This section provides a brief qualitative characterization of
the advantages and disadvantages of the different kinds of
KBNNs reviewed in this article. Table I shows the comparisons
of pure neural network and different KBNN methods. A main
advantage of KBNN over pure neural network is reduced
amount of training data needed. The efficiency of KBNN also
depends on the choice of KBNN methods. The difference
method uses the difference between the prior knowledge
and the EM simulations to form the model, resulting in a
smaller range of the ANN outputs and a simpler input—output
relationship. This method is the simplest form of KBNN and is
expected to give good results when the difference has a simpler
input—output relationship as a function of the inputs than the
EM simulation data. The multiknowledge embedding approach
allows multiple knowledge functions in different regions of the
model. Since these knowledge functions are used for some
neurons instead of standard activation functions, the KBNN
needs to be trained using methods other than the conventional
backpropagation. The advantage is its ability to accommo-
date multiple knowledge models for different subregions of
the overall modeling space and allowing the boundaries of
subregions to be learned during training. The PKI method
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makes direct correction of the output responses of the prior
knowledge. Compared with the difference method, the PKI is
slightly more complex. However, the PKI is applicable even
if the difference between prior knowledge and EM output has
a complicated relationship with respect to inputs. Knowledge-
based modeling with an adjoint neural network incorporates
the EM sensitivity information into the KBNN model devel-
opment process. Since more information is provided, the
knowledge-based modeling with an adjoint neural network
needs fewer EM data to achieve an accurate model than the
knowledge-based modeling without sensitivity information.
Therefore, this method is suitable if the data generation is
very expensive, and sensitivity information is available from
the data generator. SMNN uses input mapping, output map-
ping, or implicit mapping for different microwave modeling
problems to construct mapping functions from fine model (EM
simulations) to coarse model (the prior knowledge), modify
the coarse model, or align the responses between the fine
model and the coarse model. When the mapping structure
in the SMNN for a microwave modeling problem cannot
be determined in advance, KBNN with an adaptive mapping
method can be applied to automatically determine the optimal
mapping structure for the specific modeling problem. Instead
of sequential trials of linear and nonlinear mappings every time
for every mapping structure, KBNN with an adaptive mapping
method effectively increases the efficiency of knowledge-based
model development.

E. Application Example of KBNN With Adaptive Mappings
for Microwave Modeling

As an example, the method of KBNN with adaptive map-
pings is applied to develop a parametric model of a microwave
low-pass filter with double microstrip sections [44], as shown
in Fig. 2(a). The geometrical input parameters of the model
are the lengths and widths of the microstrip lines of the filter.
The output of the model is the magnitude of S,;. Fig. 2(b)
shows the prior-knowledge model, which is an equivalent
circuit of the low-pass filter using simple transmission lines.
For comparison purposes, KBNN models are developed for
two different cases. In Case 1, the range of the geometrical
input parameters is small, while in Case 2, the range is
large. Using the modeling method of KBNN with adaptive
mappings, a linear input mapping is good enough to achieve
a KBNN with 1.92% testing error for Case 1. For Case 2, the
modeling method chooses a nonlinear input mapping together
with a nonlinear frequency mapping to achieve a KBNN with
1.97% testing error [44]. From these two modeling examples,
it is demonstrated that the modeling method of KBNN with
adaptive mappings can adaptively determine the mapping
structure of the KBNN model for specific modeling problems.
Fig. 2(c) shows modeling results at four different geometrical
values for the low-pass filter example.

IV. NEURO-TF MODELING METHODS

As an advanced knowledge-based modeling approach, the
neuro-TF method introduces transfer functions to perform the
parametric modeling of the frequency response of microwave
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TABLE I
COMPARISONS BETWEEN PURE NEURAL NETWORK AND DIFFERENT KINDS OF KBNNs
Requirement Position of No. of Complexity EM Mapping Amount of
Model of the Prior the Prior Neural of the Model Sensitivity Structure Training
Knowledge Knowledge Networks Structure Information Adjustment Samples
Pure Neural
No - One Simple Not Included - Large
Network
Difference
Yes Output One Simple Not Included No Small or Medium
Method [9]
Multi-Knowledge
Embedding Yes Inside One Medium Not Included No Small or Medium
Approach [36]
Prior-Knowledge
Input(PKI) Yes Input One Simple Not Included No Small or Medium
Method [28]
Knowledge-Based
Model with
o Yes Input One Complex Included No Small or Medium
Adjoint Neural
Network [58]
Space Mapped Input or
Neural Network Yes Output or Multiple Medium Not Included No Small or Medium
(SMNN) [167] Inside
KBNN with
. Input or . .
Adaptive Yes o Multiple Complex Not Included Yes Small or Medium
utput
Mappings [44] P

components [54], [55], [56], [57], [58], [59], [60], [68], [69],
[70], [711, [72]. To develop the neuro-TF model, a trans-
fer function is needed as the prior knowledge to represent
the highly nonlinear relationship between EM responses and
frequency. Using the knowledge of transfer functions, the
remaining relationships of the transfer function parameters and
geometrical parameters are less nonlinear and much easier for
the neural networks to learn, resulting in the training of neuro-
TF to be much more efficient.

Let the order of transfer functions be denoted as N. Let
p be a vector containing all the transfer function para-
meters (e.g., rational function coefficients, or pole/residues,
or gain/pole/zeros), i.e., p = [p;]?Y, = [p1 p> panl’.
Neural network functions are used to represent the relation-
ships of the transfer function parameters p versus x and w,
where w represents a vector containing the weights in neural
network. The neuro-TF model output in general format is
formulated as

y(x, w,s) = H(p(x, w),s) &

where H is the transfer function response; s is the Laplace
domain frequency. Fig. 3 shows the structure of the neuro-TF
model in general format.

A. Neuro-TF in Different Transfer Function Formats

The neuro-TF in rational format consists of neural networks
and rational transfer functions. Let the neural network outputs

represent the coefficients of the rational transfer function. The
rational transfer function for neuro-TF is relatively simple.
However, its order of the transfer function or its frequency
bandwidth is limited to preserve neuro-TF accuracy [54], [59].

Another structure is the neuro-TF model in a pole/residue
format, which wuses the pole-residue-based transfer
function [55] instead of the rational transfer function.
The neuro-TF model in the pole/residue format consists of
neural networks and pole/residue-based transfer functions.
The neuro-TF in pole/residue format has low sensitivities
of transfer function parameters with respect to geometrical
parameters even when the order of transfer function is high,
which can result in a good modeling accuracy and robustness.

To extract the feature parameters from the neuro-TF model
to assist EM design optimization, the neuro-TF in pole/zero
format is introduced [56], [68], [69]. The neuro-TF in
pole/zero format can efficiently extract the transfer function
zeros through a calculation to obtain the feature parameters
(e.g., feature frequencies) [68], which assists neuro-TF-based
optimizations to have better chance of jumping out of local
minima [69].

Table II summarizes the formulations and comparisons for
the neuro-TF model in different transfer function formats.
When the transfer function with relatively low order can rep-
resent the EM frequency responses of microwave applications,
the neuro-TF in rational format is efficient to use, because the
rational coefficients are automatically sorted correctly among
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model of the low-pass filter example. (c¢) KBNN modeling results of the
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Fig. 3. Structure of the neuro-TF model in general format [55].

different geometrical samples. The neuro-TF model in rational
format can automatically avoid the mismatch issue (i.e., differ-
ent sequences of transfer function parameters among different
geometrical samples) in pole/residue or pole/zero format.
When the transfer function with relatively high order is needed
to represent the EM frequency responses of microwave appli-
cations, the neuro-TF model in pole/residue format can achieve
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better accuracy and robustness, because the relationship of
the response of transfer functions versus the pole/residues
is much less sensitive than that versus rational coefficients.
When feature parameters are needed to be extracted from a
neuro-TF model to assist the design optimization, the neuro-
TF model in pole/zero format is effective and efficient to
be used.

As an alternative way to model the frequency response of
microwave components apart from neuro-TF, a discrete fre-
quency ANN approach can be used to consider each frequency
point as a separate output dimension [151], [168]. By remov-
ing the frequency variable and converting the information to
discretized output format, the training of the neural network
becomes simplified. However, it may result in the loss of
continuity in the frequency variable, and the dimension in
the ANN outputs becomes high when the frequency range
increases. Further steps, such as frequency interpolation and
frequency extrapolation, would be applied when necessary.

B. Neuro-TF With Different Neural Network Structures

In the abovementioned neuro-TF methods, different formats
of transfer function are used to develop accurate parametric
models for different applications, while MLPs are used as the
neural network structures [54], [55], [56].

Besides MLPs, different neural network structures are also
introduced in neuro-TF methods to expand the methods into
broader applications. One of the alternative neural network
structures suitable for neuro-TF method is the ELM [127],
which fixes input weights and hidden layer bias of a single-
hidden layer FFNN. Furthermore, a dynamic adjustment kernel
ELM is also used as the neural network structure, which
contains increased learning, reduced learning, and hybrid
learning in the interior structure [128]. The neuro-TF model
with ELM can speed up the training process over that
with MLP.

Another alternative neural network structure suitable for
the neuro-TF method is the RBF-NN. For specific training
of the RBF-NN in neuro-TF, a semi-supervised training,
including both supervised and unsupervised training, is imple-
mented [123]. By incorporating the semi-supervised training,
the modeling accuracy and efficiency can be improved with
the same number of training data.

C. Two-Stage Training Process for Neuro-TF Models

In general, the neuro-TF model is trained using a two-stage
training process. Before training the neuro-TF model, vector
fitting [169] is used to extract the transfer function parameters
(rational coefficients, or pole/residues, or gain/pole/zeros) from
EM responses for all the training samples. The training of
the neuro-TF uses a two-stage training process [55]. The first
training stage is the preliminary training process, where the
relationships of transfer function parameters versus geomet-
rical parameters are learned by neural networks. The second
training stage is the model refinement of the overall neuro-
TF model. The model refinement is performed by optimizing
the weighting parameters in neural networks to minimize the
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TABLE 11
COMPARISONS FOR NEURO-TF MODELING METHODS IN DIFFERENT TRANSFER FUNCTION FORMATS

Transfer Function Complexity of Handling Transfer Function Convenience in
‘Formats Neuro-TF Formulations Potential Mismatch in Parameter Extraction of
Transfer Function Parameters Sensitivities Feature Parameters
General Format y(x,w,s) = H(p(x,w),s) - - -
N
) D Py (x, w)s’!
Rational (x.w, 5) = i=1 Simple High Inconvenient
Format [54] yix,w,s)= N ] P g
1+ p;(x, w)si
i=1
Pole/Residue Nopyy(x,w) .
Format [55] y(x,w,s)= igi m Complex Low Inconvenient
N—1
]_[ R PN.H'(xa w)
Pole/Zero i=1 C 1 Medi C .
Format [69] Y, w,5) = pyy (¥, w) —5 omplex edium onvenient
s — p;(x, w)
i=1
’
-10
Definition of the component configuration g A
and the geometrical variables x. E'ZO
+ o =30 =—==Neuro-TF in Rational Format
- - . =——Neuro-TF in Pole/Residue Format
Full-wave EM simulations to generate training oo EMDu
samples (x;_d,) w.r.t. different values of 0 3 6 9 12 15
. ’ Frequency (GHz)
geometrical parameters, k €7, ={1,2,...,n,}.
¥ (b)
Vector fitting to obtain the transfer function 0 o

parameters (rational coefficients, or poles/residues,
or poles/zeros/gain) for all the training samples.

v
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A

Fig. 4. Flowchart of the overall neuro-TF model development process [55].

training error, denoted as E, which is formulated as

1 oY 2
E(w) = 2nyn; ;;ly(xk, w,s;) — di | )

where n; represents the number of training samples of var-
ious geometrical parameters; n; represents the number of
frequency samples; dj ; is the training data generated using
EM simulators at the kth sample and the jth frequency. Fig. 4
illustrates the flowchart of the development process for the
neuro-TF model [55].
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Fig. 5. Application examples for the neuro-TF model. (a) Structure of the
UWB antenna [55]. (b) Comparison of the magnitude in decibels of |S;| of
the models developed using different neuro-TF methods and EM data for the
UWB antenna [55]. (c) Structure of the sixth-order cavity filter [69]. (d) EM
responses of the starting point and final solution of the design optimization
using feature-assisted neuro-TF in pole/zero format for the sixth-order cavity
filter [69].

D. Application Examples for Different Neuro-TF Models

The first example illustrates the development of the neuro-
TF model for parametric modeling of the EM behavior of
an ultrawideband (UWB) antenna [55], shown in Fig. 5(a),
where R; and d; are the radius of and the distance between
the two large pads, respectively. ¢ is the substrate thickness.
gs is the gap between the small and large pads connecting
to the port. r, is the small pad radius. According the vector
fitting results, the order of the transfer function is high in
this example. Therefore, the neuro-TF in pole/residue format
is suggested. Fig. 5(b) shows that neuro-TF in pole/residue
format can achieve better accuracy than that in rational format,
since the sensitivities of transfer function output with respect
to pole/residues are higher than that with respect to rational
coefficients.
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For the second example, we perform parametric modeling
and design optimization using neuro-TF of the sixth-order
cavity filter [69], whose structure is presented in Fig. 5(c). The
neuro-TF model has seven geometrical variables as its inputs,
ie.,x =[H, Ho Hs Wy Wy W3 W4]7, and one output, i.e.,
y = |S11]. Since feature parameters are needed to be extracted
to assist the design optimization in this example, neuro-TF
in pole/zero format is suggested. As shown in Fig. 5(d),
the design optimization using feature-assisted neuro-TF in
pole/zero format successfully achieves the final EM optimal
solution, which satisfies the design specifications.

V. NEURAL NETWORK-BASED INVERSE MODELING

We start the description of inverse modeling by contrasting
it to forward modeling. A neural network-based forward model
is a neural network trained to represent the original microwave
device where the inputs are the physical or geometrical para-
meters, and the outputs are the electrical parameters. Let n and
m represent the number of inputs and outputs of the forward
model, respectively. The forward model is expressed as

Y= fann(x, w) (3)

where x represents an n-vector containing the inputs of the
forward neural network model; y represents an m-vector
containing the outputs; f ,ny represents ANN functions for
the forward model; w represents a vector containing neural
network weights.

For the parameter extraction or design purposes of
microwave devices, the information is often processed in the
reverse way to find the physical or geometrical parameters
from desired outputs, which is called the inverse problem. The
inverse problem usually can be solved either by an inverse
modeling method or an optimization method. For inverse
modeling, the model inputs are the electrical parameters, and
the model outputs are the physical or geometrical parameters.
After a good inverse model is developed, it can obtain the
physical or geometrical parameters immediately. This makes
the inverse modeling much faster than the iterative optimiza-
tion process. ANNs have been employed as useful tools for
inverse modeling of microwave components [73], [74], [75],
[76], [77], [78], [148], [170]. In recent years, various advanced
neural network-based inverse modeling techniques have been
developed for microwave CAD to address the challenging non-
uniqueness problem for inverse modeling [79], [80], [81], [82],
[83], [171].

A. Formulation of Neural Network-Based Inverse Model

Since the inverse input—output relationship is usually
unknown and hard to be analytically formulated, a neural
network becomes a logical choice to develop the inverse
model by learning the input—output relationship based on
the training data. For the inverse model, let X represent an
m-vector containing the inputs, where m is the number of
inputs. The inputs are usually the electrical parameters. Let
Yy represent an n-vector containing the outputs, where n is
the number of outputs. The outputs are usually the physical
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or geometrical parameters. The neural network-based inverse
model is expressed as

V= @, w) 4)

where finy represents the ANN functions for the inverse
modeling.

B. Non-Uniqueness Problem in Inverse Modeling

The training data are generated from the forward model
(or simulation of forward problem). The input—output data are
then swapped, such that the input data from the forward model
are used as the output data during the inverse model training
process. When the input—output relationship is unique, i.e.,
the inverse problem is simple, the training of such an inverse
model is easy, and the model is accurate.

For general situations, there will be the non-uniqueness
problem of the inverse input—output relationship in the training
data. The non-uniqueness problem happens when the different
training samples with the same input values have multivalued
solutions (contradictory output values). The ANN model can-
not learn the contradictory output values simultaneously for
the same input values, which results in large training error
and low model accuracy. This is the reason why training an
inverse model is typically much more challenging than training
a forward model.

C. Derivative-Based Training Method of Neural Network for
Inverse Modeling

The derivative-based training method of neural network for
inverse modeling addresses the problem of non-uniqueness by
dividing the data containing contradictory output values into
groups, such that the data in each divided group do not have
the problem of contradictory output values [80]. The training
data are divided into groups according to the derivatives of
outputs versus inputs of the forward model. A neural network
inverse submodel is trained for each group of training samples.
Since there is no contradictory output values for each group,
the training of the subinverse model is simple, and the training
accuracy can be high.

After submodels training, the multiple inverse submodels
need to be combined to represent the overall model. For this
purpose, an algorithm is developed to select the right one
among multiple inverse submodels for a given input X. This
is achieved with the help of the forward model. Fig. 6 depicts
the inverse submodel combining method for a two submodel
system [80]. The input X is given to each inverse submodel,
and outputs from them are fed into accurately trained forward
models, respectively, which generate different values of y.
These outputs of forward models are compared with the input
data x. For the given input, the correct inverse submodel is
determined by the least error between y and X.

D. Multivalued Neural Network Inverse Modeling Technique

In [83], a simpler and more automated multivalued neural
network inverse modeling technique is developed to solve the
non-uniqueness problem and to simplify the inverse model-
ing process. This technique addresses the inverse problem
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Fig. 7. Multivalued neural network inverse model [83].

of a single set of electrical parameters with multiple sets
of physical or geometrical parameters. One set of physical
or geometrical parameters is defined as one value of the
multivalued inverse model. Let M represent the number of
values of the multivalued inverse model. The overall inverse
model is developed by repeating the outputs of the direct
inverse model M times, formulated as

[le sz ?/Tw ]T = gann(X, w) (%)
where y; is the ith value of the multivalued inverse model.
g ann represents the ANN functions of the multivalued inverse
model. Fig. 7 shows an example of the multivalued inverse
model.

Let 7, be the index set of all the training samples. Let
(x,dy), where k € T,, represent the kth training sample
pair. To solve the non-uniqueness problem, such that different
values y; can match different conflicts for the same or very
similar input ¥, a training error of the multivalued neural
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network is used as [83]
E(w) = Ex(w) (6)
keT,

where E;(w) represents the training error for the kth sample,
which is defined as

M | -1
Ey(w) = (Z o (w)) @)

i=1

where e; (w) represents the error between y, and d; as
follows:

1
eix(w) = Euyi —dy H2 (8)

where y; is the ith value of the inverse neural network model
g ann Xk, w) for the input ¥. The error function focuses on
matching the training sample with one of the values of the
multivalued inverse model, which is closest to the current
training sample, while ignoring other values. In this way, the
non-uniqueness problem is solved, and the developed multival-
ued inverse model can systematically fit multiple contradictory
samples.

E. Invertible Neural Nets for Inverse Modeling

Invertible neural network models are also developed to
handle the inverse modeling problem [171]. Invertible neural
networks consist of reversible blocks. In the forward process,
the reversible block can compute the output values from input
values. In the inverse process, the reversible block can also
compute the input values from output values without bringing
additional computing complexity compared with the forward
process. The model structure of bijectivity of the invertible
neural network is suitable for bidirectional operation and
training. Therefore, both forward and inverse processes can
be well addressed.

The invertible neural network is trained in a bidirectional
way in each training iteration. The invertible neural network
learns the transformation between the sample distribution and
the prior distribution of a latent variable. After the training
process, the conditional posterior distribution of the design
parameters can be predicted for the given target. This makes
this technique especially advantageous for solving the non-
uniqueness and degeneracies when multiple candidate solu-
tions exist in the inverse problem.

F. Discussions

Table III compares different neural network-based inverse
modeling methods. Here, we discuss the advantages and
situations of using different inverse modeling methods. The
simplest ANN method for inverse modeling is called a direct
inverse modeling method, where an ANN model is trained
using data obtained by swapping the input and output data
from the forward problem. When the input—output relationship
is unique, i.e., the inverse problem is simple, the training of
such an inverse model is easy, and the model is accurate.
When the inverse problem is complex and challenging due
to the nonuniqueness problem, the derivative-based training
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method, the multivalued neural network method, or the invert-
ible neural network method is needed. The derivative-based
method addresses the nonuniqueness problem by dividing
the inverse model into different inverse submodels according
to derivative criteria. Therefore, the derivative-based method
requires data preprocessing. If the data preprocessing for
the modeling problem is easy, the derivative-based training
method is efficient to be used. If the data preprocessing is very
intensive and complex, especially in multidimensional input
space, the multivalued neural network is more efficient to be
used, because it deals with the nonuniqueness problem without
the need of data preprocessing. To address both forward
and inverse modeling problems simultaneously, the invertible
neural network model can be used due to its bidirectional
ability.

VI. DEEP NEURAL NETWORK TECHNIQUES FOR
MICROWAVE MODELING

Neural networks with one or two hidden layers have
been used to successfully solve many application prob-
lems in microwave CAD. Further advance in microwave
CAD led to the use of deep neural networks with many
hidden layers to address more complex microwave mod-
eling problems. Various deep neural network methods
have been explored for microwave CAD, such as deep
MLP [89], [90], [91], [142], RNN [133], [140], [150], and
CNN [74], [77], [85], [151], [172].

A. Hybrid Deep MLP for Microwave Modeling

A fundamental type of deep neural network is deep MLP.
The number of hidden layers in a deep MLP should be
more than three (including three). Training a deep MLP is
hard due to the vanishing gradient problem [141]. A hybrid
deep MLP can be used for microwave modeling to further
solve the vanishing gradient problem and maintain the smooth
outputs and continuous derivatives simultaneously [91]. The
hybrid deep MLP technique [91] for microwave modeling uses
both sigmoid functions and the smooth ReLUs as activation
functions, so that the vanishing gradient problem [141] can be
overcome, and the number of hidden neurons can be reduced.
The smooth ReLLU is formulated as [91]

V> y > o
I, 1 1
; =J__ — —a, —a <y < 9
fs() s +2y+4a a<y<a )
0, y < —a

where o is a value greater than zero.

The structure of the hybrid deep MLP model is shown in
Fig. 8 [91]. Let g, represent the number of hidden layers using
sigmoid functions, which are the layers close to the input layer,
as shown in Fig. 8. Let g, represent the number of hidden
layers using smooth ReLLUs, which are the layers close to the
output layer, as shown in Fig. 8. The total number of layers
in the hybrid deep MLP is expressed as ¢; + g, + 2.

To deal with the vanishing gradient problem that may exist
during training of the hybrid deep MLP, a three-stage deep
learning algorithm can be used [91]. In Stage I, the deep
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Fig. 8. Structure of the hybrid deep MLP [91].

MLP with g, sigmoid hidden layers is trained. Usually, g
is initialized as g; = 3. New sigmoid hidden layers are added
until the vanishing gradient problem begins to appear or until
the model accuracy satisfies the requirement. If the model
accuracy satisfies the requirement, the training is finished.
Otherwise, proceed to Stage II. In Stage II, hidden layers with
conventional non-smooth ReL.Us are added until the accuracy
of the deep MLP model satisfies the requirement. In Stage III,
all the conventional non-smooth ReL.Us in the trained deep
MLP model are replaced by the smooth ReLUs. Then, the
hybrid deep MLP with sigmoid functions and smooth ReLUs
is further trained to refine the model accuracy.

B. Local-Feedback Deep RNN

To model the dynamic behavior of a nonlinear microwave
device, the RNNs are explored. The RNN structure contains
feedback loops involving delay units. Due to the feedback
loops, RNN structures are naturally deep in time dimension.
This is because the current state of RNN is related to all his-
toric states. An example of a deep RNN is the local-feedback
deep RNN (LFDRNN) developed to capture more complex
time dependencies [133]. The LFDRNN structure consists
of multiple local-feedback RNN layers. In the LFDRNN
structure, time-delayed local feedbacks are incorporated to
improve the convergence of the RNN model [173].
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TABLE IIT
COMPARISONS OF DIFFERENT INVERSE MODELING METHODS

. Addressing Complexity of ) Human-Intensiveness Bi-Directional
Inverse Modeling ) No. of Neural Complexity of ) .
Nonuniqueness Neural Network . When Addressing Modeling
Methods Networks Data Preprocessing
Problem Training Nonuniqueness Problem Ability
Direct Inverse
No One Simple Simple - No
Modeling method [18]
Derivative Based
Yes Multiple Simple Complex Much No
Training Method [80]
Multivalued ) .
Yes One Complex Simple Little No
Neural Network [83]
Invertible Neural
Yes One Complex Simple Medium Yes
Network [171]

Similar to other ANN structures, the training process of
the LFDRNN is a process to optimize the objective function
by adjusting the neural network weight parameters. To train
the LFDRNN, the gradients of model outputs with respect to
weights should be computed both through time and through
layer weights [133]. By introducing the time-delayed local
feedbacks, the LFDRNN can improve the ability of modeling
the complex nonlinear device behaviors as compared with the
conventional RNNS.

C. Augmented CNN

An example of CNN for microwave CAD is the augmented
CNN, developed for behavioral modeling and digital
predistortion of concurrent multiband power amplifiers [172].
To reduce the model complexity and improve the linearization
performance of the digital predistortion model, the augmented
CNN is composed of an input layer, a convolutional layer,
a pooling layer, a fully connected layer, and an output
layer. In the input layer, the input signals are reshaped into
2-D matrices. The layer following the input layer is the
convolutional layer. For the purposes of convolution, sliding
convolutional filters are employed. Most of the computations
of the CNN structure are performed by the convolutional
layer. The convolved outcomes are added with the biases.
The convolutional layer is followed by the pooling layer,
which is a many-to-one mapping used to decrease the size of
the output matrix from the convolutional layer. The pooling
layer can also reduce the risk of overfitting during training.
The pooling layer is followed by the fully connected layer.
The fully connected layer is followed by the output layer,
where linear functions are used as the activation functions.

D. Discussions

Table IV compares the different deep neural network tech-
niques. Here, we discuss the advantages and situations of using
different deep neural network techniques. If the dimension
of model inputs is relatively low, the shallow MLP (.e.,
MLP with one or two hidden layers) is easy to use for
modeling. When the dimension of model inputs becomes high,
the deep MLP is needed for accurate modeling. When the

training of a deep MLP becomes hard due to the vanishing
gradient problem, a hybrid deep MLP can be used to solve the
vanishing gradient problem and maintain the smooth outputs
and continuous derivatives simultaneously. Since the hybrid
deep MLP is a fully connected neural network, the connec-
tions between neurons are easy to establish, and the training
complexity is relatively low. Compared with the deep MLP, the
CNN is a partially connected neural network where the con-
nections are established between subgroups of neurons. The
size of the subgroups and the connection patterns between the
subgroups affect the structure of the CNN model. Therefore,
the CNN has a better ability to extract features/patterns than
deep MLP. Besides, CNN is specifically good at addressing
modeling problems with image-like inputs. For the time-
domain modeling with memory effects, the RNN is effective
to use, since the model outputs are the functions of the
present and past time series of model inputs and outputs.
Compared with the conventional RNN with depth only in the
time dimension, the LFDRNN can capture more complex time
dependencies, because it has depth both in the time and in the
space dimensions.

E. Application Example of the Hybrid Deep MLP for
Microwave Modeling

In this example, the hybrid deep MLP technique is used
to develop a parameter-extraction model for the sixth-order
multicoupled cavity filter. The center frequency of the filter
is 11785.5 MHz, and the bandwidth is 56.2 MHz [174]. The
ideal coupling matrix for this filter is

Migeal
—.0473 .8489 0 0 0 0
8489  —.0204 .6064 0 0 0
_ 0 6064 —.0305 .5106 0 —.2783
o 0 0 5106 .0005 .7709 0
0 0 0 7709 —.0026 7898
0 0 —.2783 0 7898 0177

(10)

The outputs of the deep MLP model are the 12 nonzero
coupling parameters in the Mg, matrix, ie., y =
(M1 My, Mss Muy Mss Mo Min Moz Msy Mus Msg Msg]”.
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TABLE IV
COMPARISONS OF DIFFERENT DEEP NEURAL NETWORK TECHNIQUES
Deep Neural Neural Model Time-Domain Image-
Network Network Training Modeling with Like
Techniques Structure Complexity | Memory Effect Inputs
Hybrid deep Fully- ) )
Simple No Inefficient
MLP [91] Connected
Local- Fully-
Feedback Connected
. Complex Yes Medium
Deep with
RNN [133] Feedback
Augmented Partially-
Medium No Efficient
CNN [172] Connected

The model inputs are S;; in dB at 41 frequency samples, i.e.,
x = [dB(S11(f1) dB(Sii(f2)) --- dB(Sii(fa))]". In this
example, each hidden layer contains 200 hidden neurons.
After training with the three-stage deep learning algorithm,
the structure of the hybrid deep MLP model for this sixth-
order example is shown in Fig. 9. In the developed deep neural
network model, eight hidden layers employ sigmoid functions,
and four hidden layers employ smooth ReLL.Us. The training
and test errors of the developed model are 1.31% and 1.79%,
respectively [91].

After the deep MLP parameter-extraction model is devel-
oped, a detuned filter is used to examine the developed
model. Fig. 10 shows the comparisons between the desired
S-parameters and the S-parameters calculated from the
extracted coupling matrix (i.e., outputs of the hybrid deep MLP
model) for the detuned filter.

VII. APPLICATIONS OF NEURAL NETWORKS IN
MICROWAVE CAD

A. EM Analysis and Parametric Modeling

EM parametric modeling is to provide EM behavior with
variable values of physical/geometrical parameters of an EM
structure. Such a model is important in EM-based design.
The use of neural networks can help avoid repetitive EM
simulations by learning the relationship between EM response
and the varying values of geometrical parameters in advance.
Many research activities have been devoted to such applica-
tions, for example, high-speed interconnects [93], CPW circuit
components [94], practical multilayered shielded microwave
circuits [124], spiral inductors [45], [95], EM interference
(EMI) estimation [96], internally decomposed EM struc-
ture [97], metasurfaces [175], differential via holes [46], and
couplers [98].

Bandler er al. [37] have presented a modeling method
of microwave circuits using a combined ANN and space
mapping (SM) technique. The SM concept combines the
computational efficiency of coarse models (typically empir-
ical functions/equivalent circuit models) with the accuracy
of fine models (typically EM/physics models). Besides the
SM technique, the RBF-NN models have been presented by
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Soliman et al. [125] for the efficient filling of the coupling
matrix of the method of moments (MoM). Ding et al. [99]
have introduced the ANN approach to EM-based modeling of
passive components in both frequency and time domains.

B. Behavioral Modeling of Nonlinear Circuits

The behavioral modeling for nonlinear circuits is an inter-
esting problem where the circuit responses are dependent
on signal amplitude and terminations as well as frequencies.
Simple analytical formulas often do not exist. Therefore,
neural network becomes a good choice for this task. Var-
ious ANN techniques have been developed for behavioral
modeling of nonlinear circuits. Novel neural network struc-
tures have been introduced to represent the dynamic rela-
tionships between nonlinear circuit inputs and outputs, for
example, RNN [132], [134], [135], DNN [130], nonlinear
model-order reduction method [107], neural network-based
bidirectional and dispersive behavior models [25], real-valued
TDNN (RVTDNN) [137], adjoint neural networks [176],
envelope-domain time-series model [177], and the Wiener-type
DNN [131].

Behavioral modeling of power amplifiers has been an
interesting topic in the ANN modeling area. Various ANN
modeling and design methods for power amplifiers have been
introduced, e.g., [89], [90], [108], [122], [129], [138], [139],
[142], [178], [179], [180], [181]. Related to power amplifier
design, ANN has also been used in digital predistortion,
e.g., [182], [183], [184], [185], [186].

C. Modeling of Microwave Transistors

Modeling of microwave transistors is an important topic,
especially when the behaviors of transistors become complex
under high-power and high-frequency operations in modern
wireless communications. The ANN method has become an
attractive approach for modeling of microwave transistors,
since it can provide smooth functions while providing the
capability to fit complicated nonlinear bias/power dependence
in devices. ANN methods have been used for modeling various
types of microwave transistors, for example, field-effect tran-
sistors (FETs) [47], [109], [110], [187], heterojunction bipolar
transistors (HBTs) [48], [49], [111], and high electron-mobility
transistors (HEMTs) [112], [113], [114], [115], [136], [188].

Gallium nitride (GaN) devices, such as GaN HEMTs, are
important for next-generation wireless communication systems
and microwave power device applications. However, the GaN
HEMT devices exhibit strong thermal effects and trapping
effects that would deteriorate the performance of the RF
and microwave circuits. As a consequence, an accurate large-
signal model for GaN HEMT devices capable of characterizing
the sophisticated thermal and trapping effects is the key to
high-reliability RF and microwave circuit design. Examples
of ANN-based GaN HEMT modeling are the ANN-based
electrothermal model [106], [189], [190], [191], the ANN-
based large-signal model [192], [193], the hybrid modeling
approach using ANN [194], the SM technique using decom-
posed mappings [195], and the ANN-based consistent gate
charge model [196].
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Fig. 9.
dB value of S over 41 frequency points.

D. Filter Modeling and Design

Filter design is one of the most fundamental parts of
microwave CAD. However, the full-wave EM simulation-
based approach to filter design is computationally expensive.
Various researchers have exploited the ANN approach to help
filter modeling and design. For example, homotopy optimiza-
tion based on the ANN model overcomes the problem that the
initial value is not close enough to the optimal solution [197].
An efficient hybrid sampling method for ANN-based
microwave component modeling and optimization can achieve
an accurate ANN model with limited training data [116].
An efficient ELM with transfer functions improves the learning
speed and accuracy [127], [128]. A high-dimensional model-
ing problem has been addressed in [50] and [198]. A novel
deep-g-network (DQN)-based fine-tuning approach is devel-
oped to reduce the computation time even with different initial
values [143]. Specific KBNN-based approaches are devel-
oped for different filter applications, for example, high-power
dielectric resonator filters [199], narrow-bandwidth four-pole
Ku-band bandpass filters [200], and even multiplexers [201].

E. VLSI Interconnects

Neural network techniques have also been introduced
to very large-scale integration (VLSI) interconnects.

Structure of the deep neural network high-dimensional parameter-extraction model for the six-order filter [91]. The 41 input neurons represent the

For example, Veluswami et al. [93] have discussed a
neural network-based approach to the EM simulation and
optimization of interconnects in high-speed VLSI circuits.
Ding et al. [99] have applied ANN to EM-based signal
integrity analysis and optimization of a high-speed VLSI
interconnect circuit with embedded passive terminations and
a nonlinear buffer. [lumoka [202] has applied the modular
ANN model consisting of groups of networks competing to
learn different aspects of a problem to complex interactions of
3-D interconnect. To alleviate the time-consuming iterations
of the full-wave simulations procedure, Hsu et al. [203]
have utilized the neural network-based approach to efficient
design of reflectionless via structures with single-ended
interconnections. The deep neural network approach has been
applied by Lu et al. [204] to high-speed channel modeling
for signal integrity analysis, which saves complex circuit
simulations and substantial domain knowledge altogether.
Chiu et al. [205] have adopted ANN optimization to facilitate
the design of signal integrity. Swaminathan et al. [206]
have discussed the neural network applications for signal
and power integrity in packaging. To overcome the problem
that the reliability simulation process takes too much
time and resources, Tian er al. [207] have introduced a
neural network modeling method to analyze ultralarge-scale
integration (ULSI) interconnect reliability.
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FE. Behavioral Modeling Related to Oscillators

Behavioral modeling of oscillators is an important
application of neural network techniques. For example,
Yu et al. [117], [118] have developed a modeling method for
voltage-controlled oscillators (VCOs) using augmented neural
networks to improve computational efficiency. FFNNs are used
to predict the oscillatory output waveforms, and RNNs are
used to capture the nonlinear dynamic current—voltage relation
at the output port. Sen ef al. [119] have reported a neural-
network-based parasitic modeling and extraction verification
for RF/millimeter-wave integrated circuit design. They demon-
strate the verification approach using automatically generated
passive test structures and ring oscillators. This method helps
improve the extraction—verification efficiency and accuracy.

G. Transmitter and Receiver Modeling and Design

Transmitter and receiver modeling and design using neural
networks have gained attention in recent years. For example,
Yin et al. [208] have discussed the behavioral modeling of
millimeter-wave beamforming transmitters. They have utilized
concurrent dynamic configurations with heterogeneous neural
networks and achieved good performance on both training
and validation sets, which provides a promising high-accuracy
OTA model for mmW beamforming transmitters with concur-
rent configurations. Zhang et al. [209] have presented to use a
RVTDNN for the calibration of multiport wideband receivers.
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They have considered all the system impairments, including
the non-ideal six-port correlator, the nonlinearity of the diodes,
and the memory effects under the excitation of the wideband
signals. The performance achieved using the method in [209]
for most commonly used communication signals is better than
the previous methods.

H. Neural Network-Based Multiphysics Modeling

Multiphysics simulation of microwave components involves
the simultaneous solutions of EM and other physics
domains [210]. Multiphysics simulation can provide more
accurate results but is more time-consuming than pure EM
simulation. The ANN technique has also been introduced
to the multiphysics modeling and design of microwave
components. For example, neural network-based modeling
approaches have been introduced to improve the efficiency
of multiphysics modeling with limited training samples [100],
[101]. The multiphysics optimization technique has also been
developed using KBNNs to accelerate the multiphysics design
process [102], [103], [104].

L. Further Applications of ANN in Microwave CAD

There are further applications of ANN in microwave CAD.
For example, Kabir et al. [120] have discussed a neural
network method for RFIC inductors to make the large space
model efficient. The neural network model is used to compute
coefficient values for the empirical equation, which produces
the values of lumped elements of the double Pi network.
An ANN-based modeling approach for the design of RF
microelectromechanical system (MEMS) switches has been
presented by Lee and Filipovic [105] to improve the mod-
eling efficiency while maintaining the modeling accuracy.
Gall et al. [211] have applied neural networks to spectrum-
based direction-of-arrival estimation for automotive radar to
achieve super-resolution performance and the capability of
estimating. Jeong et al. [212] have discussed the implemen-
tation of a neural network-based machine learning strategy
for real-time range-adaptive automatic impedance matching
of wireless power transfer (WPT) applications. This method
can effectively predict the optimal parameters of a tunable
matching network and select the range of adaptive transmitting
coils. Viveros-Wacher et al. [121] have applied an analog
gross fault diagnosis method based on ANNs and constrained
parameter extraction to analog fault diagnosis. Wei et al. [213]
have introduced self-attention bidirectional LSTM (Bi-LSTM)
networks for radar signal modulation recognition. The devel-
oped model has better recognition performance, especially
at low SNRs with much lower computational complexity.
Klinefelter and Nanzer [214] have applied the ANN-based
approach to design millimeter-wave interferometric radar for
automotive velocity sensing to achieve better estimation than
the Bayesian estimator.

VIII. CONCLUSION AND FUTURE DIRECTIONS

This article has reviewed the state of the art of the ANN
techniques for microwave CAD. Fundamental concepts and
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advanced techniques of ANN structure and training have been
introduced. The KBNN has been presented for improving
the accuracy and reliability of modeling and design opti-
mization. Various ANN techniques, such as neuro-TF, neural
network inverse modeling, and hybrid deep neural network
technique, have been discussed. Further applications of ANN
in microwave CAD have also been reviewed in this article. The
literature review in this article covers the samples of the exist-
ing works on microwave ANN. However, our review is not
exhaustive, and there are more papers existing in the literature,
which are also valuable contributions to microwave ANN.

There are tremendous opportunities for further innovations
and applications of ANN for microwave modeling and design,
from advanced microwave-oriented ANN structures and train-
ing algorithms to novel applications. New methods will be
needed for ANN models capable of wider input range, higher
input dimensions, and, at the same time, allowing further
reductions in the need of large amount of training data. Since
the quality of ANN inherently depends on the quality and
adequacy of training data, yet the expense of data generation
in microwave problems is typically high, further advances
in microwave-oriented ANN structures, data sampling, and
training methods will remain important. Further advances in
knowledge-based modeling methods continue to be another
important direction, exploring new ways to incorporate dif-
ferent microwave knowledge into various intermediate parts
of neural structures and training, and more generic methods
to combine mapping of different subspaces of knowledge
and neural network models. Incorporation of EM and mul-
tiphysics internal formulations into neural-based modeling
process may lead to new solutions to conquer the expense
of EM/multiphysics-based parametric modeling. Design is
inherently an inverse problem to simulation. Subsequently,
exploration of inverse modeling for fast and direct design
solutions continues to be an attractive direction. Coupled with
this design-oriented direction, there are many design steps
that presently heavily require human experience and judgment.
The exploration of machine learning algorithms to mimic the
process of knowledge abstraction and knowledge utilization
to accelerate the design process continues to be an open and
strategic direction.
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