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Abstract— Piecewise behavioral models are commonly adopted
for modeling and linearization of RF power amplifiers (PAs)
that exhibit strong amplitude-dependent nonlinear distortion
characteristics, as global polynomial approximations tend to
underperform in such scenarios. In this article, we consider a new
piecewise model for PAs based on the mixture of experts (ME)
approach, which builds on a probabilistic model that allows the
different submodels to cooperate—as opposed to operating in
an independent fashion that is commonly the case in existing
reference methods. We first introduce the ME framework theory
while also extend it such that it can be applied to model complex
baseband signals and nonlinearities. Then, we show how the
ME model allows overcoming some of the intrinsic shortcomings
that existing piecewise behavioral models commonly exhibit,
which translates into improved modeling accuracy and improved
linearization performance. Furthermore, the extension of the
ME approach to a tree-structured regression model, referred to
as the hierarchical ME model, is also introduced and shown
to provide further performance improvements over the basic
ME approach. The proposed solutions are validated with exten-
sive RF measurements, covering both PA direct modeling and
digital predistortion (DPD)-based linearization, on a gallium
nitride (GaN) load-modulated balanced PA, on a GaN Doherty
PA, and on a class AB GaN high electron mobility transistor PA,
while being compared against several state-of-the-art piecewise
methods. The results demonstrate that the ME framework-based
models outperform the state of the art.

Index Terms— Behavioral modeling, digital predistortion
(DPD), 5G New Radio (NR), mixture of experts (ME), nonlinear
distortion, piecewise models, power amplifiers (PAs).

I. INTRODUCTION

OVER the years, multiple power amplifier (PA) tech-
nologies have been developed with the goal of deliv-

ering enhanced power efficiency at different power back-off
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levels and over wide bandwidths [1]–[4]. Good examples
are the Doherty PA (DPA) [5], [6] and the load-modulated
balanced (LMBA) PA [2], [7], which leverages the concept
of load modulation that allows the power efficiency to be
optimized dynamically at a specific power back-off, by tuning
the load impedance. In order to further increase the power
efficiency, digital predistortion (DPD) solutions are commonly
deployed to compensate for the strong nonlinear distortion
that originates inside the PAs while being operated with
high efficiency [4], [8]–[11]. However, due to the opera-
tion principle of DPAs and LMBA PAs, their nonlinear dis-
tortion characteristics become strongly amplitude-dependent.
This makes their modeling and linearization through classical
global polynomials (GPs) very challenging due to the global
dependence on local effects [12].

Piecewise models, on the other hand, utilize separate sub-
models that operate over specific subregions of the overall
PA response [13], [14]. Thus, they are capable of conve-
niently modeling such distinct amplitude-dependent behav-
ior. Another important feature of piecewise models is the
fact that global dependence on local effects can be largely
avoided [12]. Consequently, piecewise models are well suited
to model more complicated nonlinearities, and a number
of piecewise models have been proposed in the literature
[13]–[16]. To this end, a vector-switched (VS) model was
proposed in [13] and is based on hard partitions of the PA
input signal space, which defines the range of operation of
each of the submodels. Zhu et. al. [15] proposed a decom-
posed piecewise (DPW) Volterra model, where each transmit
sample is decomposed into several subsamples that are then
processed by the different submodels before the final sample
is reconstructed. A piecewise behavioral model based on
a vector rotation decomposition of the canonical piecewise
linear (CPWL) basis functions (BFs), referred to as DVR
model, was proposed in [16] and was shown to require less
amount of coefficients when modeling systems with non-
Volterra-like behavior, e.g., as that exhibited by DPA or
LMBA PAs.

Despite the noted piecewise models provide significantly
better modeling accuracy than GPs, they have some inher-
ent limitations. Specifically, the VS model does not impose
any continuity constraint between the submodels, potentially
compromising its performance [14], [16]. The DVR model
in [16] considers an approximation of the original CPWL BFs
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so that the model is linear in parameters, which may limit
its performance. In addition, in general, memory modeling
capabilities may be compromised in piecewise models as the
different submodels operate independently, whereas memory
effects may involve samples belonging to different subregions.
As the signal BW increases, which is a general trend in
wireless communication systems, such as 5G New Radio
(NR) [17], complicated nonlinearities and memory effects are
likely to appear, and hence, more robust models are needed.

In this article, we propose a new piecewise behavioral/DPD
model for RF PAs based on the so-called mixture of
experts (ME) framework, originally proposed in the context of
learning theories in [18] with some modifications introduced
in [19] and [20]. Furthermore, a good review of the ME
theory and its applications can be found in [21]. The ME
model is a probabilistic framework that allows to combine
multiple regression functions, the so-called experts, and make
them cooperate with a gating function to solve a regression
or classification problem. Since its introduction, different
experts based on support vector machine, Gaussian processes,
or hidden Markov models, among others, have been consid-
ered and shown to provide systematically better performance
when combined with ME [21]. ME is of special interest in
the context of regression with piecewise data, or with data
containing different patterns, where a given expert can focus
on a specific pattern, generally providing better accuracy than
the individual experts.

Motivated by the above, the ME approach can be of special
interest also in the field of PA modeling and linearization,
as shown in our early work in [22]. One distinct feature of
the ME model compared to other piecewise models is the fact
that ME utilizes soft partitions of the data. This implies that
the submodels work across overlapping regions. This is a very
important feature, as it avoids potential nonsmooth transitions
between submodels, and facilitates the modeling of memory
effects between regions. Furthermore, the soft partitions or
gating networks are themselves nonlinear, which can enhance
the overall nonlinear modeling capabilities. In addition, more
sophisticated decision boundaries and regions can be defined
by implementing a tree-structured regression model, referred
to as the hierarchical ME (HME) model [20]. Hence, the ME
framework stands as a very flexible and capable solution for
modeling and linearization of RF PAs.

In this article, we extended our preliminary work in [22],
where the basic single-layer ME model was considered for
direct modeling of RF PAs. The main contributions of this
article can be summarized and described as follows.

1) The ME framework is proposed for modeling and lin-
earization of RF PAs. The classical ME theory that is
commonly applied to model real-valued data is extended
so that it can be applied to model complex baseband
signals and nonlinearities. The ME fundamentals are
carefully revisited, and the training algorithm to learn
the parameters of the model is detailed.

2) The extension of the ME model to a multilevel regres-
sion tree is introduced and shown to provide bet-
ter nonlinear modeling capabilities and linearization

Fig. 1. Block diagram illustrating the ME principle for estimating or
approximating y(n).

performance than more ordinary single-layer ME due to
the stronger nonlinear behavior of the composite gating
network.

3) Extensive sets of measurement results on a number
of different PA technologies are reported to validate
and showcase the capabilities of the ME framework
in the context of PA direct modeling and DPD-based
linearization. The ME model is compared against several
state-of-the-art piecewise models in terms of complexity,
modeling accuracy, and linearization performance.

The rest of this article is organized as follows. The ME
theory and its extension to model complex baseband signals
and nonlinearities are introduced in Section II, covering also
the tree-structure HME model. The algorithm to train the
parameters of the ME and HME model is described in III. The
complexity analysis of the proposed models and corresponding
comparisons against selected state-of-the-art piecewise models
are provided in Section IV, whereas RF measurement results
and their analysis are reported in Section V. Finally, Section VI
provides the main concluding remarks.

II. MIXTURE OF EXPERTS FRAMEWORK FOR PA
MODELING AND LINEARIZATION

A. Basic ME Model

In general, linear-in-the-parameters models are preferred
in PA modeling and linearization as they can be trained by
utilizing simple linear regression techniques, e.g., the least-
squares (LS) fit or gradient-based methods, such as the least-
mean-squares algorithm [23]. For instance, polynomial-based
models from the Volterra-series family [8], [14], [15] or the
modified CPWL BFs in [16] are good examples of such
models and are very widely adopted in the literature. In this
work, in the context of the ME framework, we, thus, also
consider linear-in-the-parameters experts, more specifically,
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polynomial-based experts, while note that any other expert
model can basically be adopted.

Let now x(n) and y(n) denote the I/Q samples of the
input and target signals, respectively, in the context of the
ME framework illustrated in Fig. 1. Considering a linear-in-
the-parameters model, the target signal can be estimated or
approximated as

ŷ = �(x)α (1)

where ŷ = [ŷ(1), ŷ(2), . . . , ŷ(N)]T , with ŷ(n) being an esti-
mate of y(n), and x = [x(1), x(2), . . . , x(N)]T . Furthermore,
�(x) ∈ CN×B is the matrix containing the regressors of the
model, B is the total number of regressors, and α ∈ CB×1 are
the model coefficients. In the context of PA direct modeling, x
is the PA input signal, whereas y corresponds to the PA output
signal. On the other hand, when adopting the ME model as a
postdistorter in the context of the indirect learning architecture
(ILA) [24], x and y correspond to the PA output (divided by
the target gain) and PA input data, respectively.

Assuming N statistically independent data points and I
experts, the ME model can be formulated as the following
decomposition of the input/output data [19], [21]:

P(y|x) =
N∏

n=1

I∑
i=1

P(zi(n)=1|x(n), vi)P(y(n)|x(n), wi ) (2)

where zi (n) is a hidden/latent variable and P(zi (n) =
1|x(n), vi) is the gating function of parameters vi , mea-
suring the probability of the i th expert given the input.
P(y(n)|x(n), wi ), in turn, denotes the probability of the i th
expert, with parameters wi , for generating y(n).

In general, the gating function can adopt multiple forms,
the so-called mixture model being the most commonly adopted
one [19], [21]. Such mixture model is defined as a convex sum
of different density functions P(x|π , vi) [25], that is,

P(x|π, v) =
I∑

i=1

πi P(x|vi) (3)

where πi are the so-called mixing probabilities that sum up to
one. By invoking Bayes’ rule and the total probability theorem,
the gating functions P(zi (n) = 1|x(n), vi) can be expressed
as

P(zi(n) = 1|x(n), vi ) = ai P(x(n)|zi (n) = 1, vi)∑I
j=1 a j P

(
x(n)|v j

) (4)

where ai/
∑I

j=1 a j P(x(n)|v j) is the effective mixing proba-
bility, ai = P(zi (n) = 1) is the prior probability of the i th
gate, and

∑
i ai = 1. In this work, P(x(n)|vi) is considered

to be a density among the exponential family, and specifically
a Gaussian density, which allows obtaining vi in the closed
form [19]. Furthermore, as the PA nonlinearities act on the
envelope of the transmit signal, the gates are assumed to make
soft partitions based on the amplitude of the input signal,
denoted as A(n) = |x(n)|, similar to other piecewise mod-
els [13], [14]. Hence, in the following, P(zi (n) = 1|x(n), vi)
will be expressed as a function of A(n) rather than of x(n).

As for the experts, they are also commonly chosen from the
exponential family so that their parameters can be obtained in

closed form too. In this work, the experts are assumed to be
Gaussian distributed, i.e.,

P(y(n)|x(n), wi ) = N (
y(n)|� i (x(n))αi , σ

2
ei

)
(5)

where wi = {αi , σ
2
ei
}, ŷi(n) = � i(x(n))αi is the mean, and

σ 2
ei

is the variance. As y(n) is complex-valued, the probability
density function reads

P(y(n)|x(n), wi ) = 1

πσ 2
ei

exp

(
−|y(n) − ŷ(n)|2

σ 2
ei

)
. (6)

It is important to note that, for a perfect sample estimate,
i.e., ŷ(n) = y(n), P(y(n)|x(n), wi ) reaches its maximum
value. This is one of the probabilities that the training
algorithm will try to maximize, resulting in the ME model
iteratively yielding better sample estimates.

In order for the ME model to make a single prediction,
the expectation of (2) is used, given as [21]

ŷ(n) =
I∑

i=1

gi(A(n), vi )ŷi(n) (7)

which is a weighted sum of the outputs of the estimates of
the individual experts, and where gi(A(n), vi) = P(zi (n) =
1|A(n), vi).

B. Hierarchical ME Model

The nonlinear modeling capabilities of the ME model can,
in general, be enhanced by making the experts more nonlinear,
e.g., by increasing the nonlinear order of the polynomial-based
regression functions. However, high-order polynomials com-
monly have poor extrapolation properties and may easily
overfit the data [26]. Alternatively, the gating networks are
nonlinear too; hence, it is possible to make them more
nonlinear by considering that the experts themselves are ME
models. This approach results in an HME model [20], [21],
which can be thought of as a tree-structured regression system,
which essentially adds additional nonlinear decision layers.
The leaves of the tree model contain the experts, whereas the
nonterminal nodes of the tree contain the gating functions.

An example two-level HME model is depicted in Fig. 2. The
gating network consists now of two layers, and each of them
must take into consideration the nodes beneath. Considering a
two level decision tree, the probabilistic model in (2) can be
rewritten as follows [20]:

P(y|x) =
N∏

n=1

⎛
⎝ J∑

j=1

P
(
z j(n) = 1|A(n), v j

)

×
I j∑

i=1

P
(
z j (n) = 1|zi(n) = 1|A(n), vi j

)
× P

(
y(n)|x(n), wi j

))
(8)

where P(z j (n) = 1|A(n), v j) is the probability of selecting
the j th gating network in the top layer given the current input
sample, whereas J is the number of nodes in the top layer. I j

stands for the number of experts connected to the j th gating
network, and P(z j (n) = 1|zi(n) = 1|A(n), vi j) is the i th
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Fig. 2. High-level illustration of the HME principle with two layers.

Fig. 3. Block diagram of the EM algorithm for ME model training.

gating function at the bottom layer in branch j and is also
of the form of (4). The model formulation for an arbitrary
tree depth is done in a similar fashion. Similarly, we may
rewrite (7) as

ŷ(n) =
J∑

j=1

g j
(

A(n), v j
) I j∑

i=1

gi| j
(

A(n), vi j
)
ŷi j(n) (9)

where gi| j(A(n), vi j) is used as shorthand for P(z j (n) =
1|zi(n) = 1|A(n), vi j).

In Section III, the algorithm to train the ME model para-
meters is described.

III. ME PARAMETER LEARNING: THE

EXPECTATION–MAXIMIZATION ALGORITHM

A. EM Algorithm for the Basic ME Model

To train the ME model, the expectation–maximization (EM)
algorithm is usually considered [19], [20], [27]. EM is an
iterative algorithm that calculates the maximum-likelihood
(ML) parameters of a probabilistic model, in which some vari-
ables are observed and others are hidden/latent. For simplicity,

the EM algorithm is formulated in the context of the basic
ME, that is, a single layer model, whereas specific steps for
training the HME model are detailed after the basic concepts
are introduced.

The observable data are the input and target vectors x and y,
whereas it is unknown which expert generated each data point,
formally expressed through the latent variable z. As discussed
above, in order for the gate and expert parameters to be
analytically solvable, the densities must belong to the family
of the exponential densities, and additionally, instead of the
likelihood function in (2), one should consider the joint density
P(x, y) = P(y|x)P(x) [21], which reads

P(x, y) =
N∏

n=1

I∑
i=1

ai gi(A(n), vi)P(y(n)|x(n), wi ). (10)

The joint density essentially allows canceling out the
denominator of the gating function in (4), which makes the
optimization analytically solvable.

In order to train the ME parameters, the ML is calculated
for lnP(x, y, |v, w) and is done by iterating the EM algo-
rithm [21], [27], which consists of the following two steps.
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1) E-Step: In the kth iteration of the E-step, the expec-
tation of the latent variables hk

i (y(n)|x(n)) =
E{P(z(n)|y(n), x(n))} is computed as

hk
i (y(n)|x(n))= ak

i gi
(
A(n), vk

i

)
P

(
y(n)|x(n), wk

i

)
∑

j ak
j g j

(
A(n), vk

j

)
P

(
y(n)|x(n), wk

j

)
(11)

which measures the relative probability of x(n) belong-
ing to expert i , commonly referred to as membership
probability or responsibility.

2) M-Step: Compute the maximum likelihood parame-
ters weighted by the membership probabilities [19],
expressed as

wk+1
i = arg max

wi

∑
n

hk
i (y(n)|x(n))lnP

(
y(n)|x(n), wk

i

)
vk+1

i = arg max
vi

∑
n

hk
i (y(n)|x(n))lnP

(
A(n)|vk

i

)
ak+1

i = arg max
ai

∑
n

∑
i

hk
i (y(n)|x(n))ak

i . (12)

To compute the ML parameters in (12), one needs to
differentiate with respect to the parameters and solve for them.
As the densities are considered to be Gaussian, the parameters
can be calculated in a straightforward manner. The gate
parameters v = {μgi , σ

2
gi
} are given by

μk+1
gi

=
∑

n hk
i (y(n)|x(n))x(n)∑

n hk
i (y(n)|x(n))

σ 2k+1

gi
=

∑
n hk

i (y(n)|x(n))
(
x(n) − μk+1

gi

)2∑
n hk

i (y(n)|x(n))
(13)

which are essentially the ML estimates of the mean and
variance of a Gaussian distribution, i.e., the sample mean
and the sample variance but weighted by the membership
probabilities.

Similarly, the expert parameters wi = {αi , σ
2
ei
} are calcu-

lated as

αk+1
i = (

�H (x)Wk
i �(x)

)−1
�H (x)Wk

i y

σ 2k+1

ei
=

∑
n hk

i (y(n)|x(n))|y(n) − ŷ(n)|2∑
n hk

i (y(n)|x(n))
(14)

where Wk
i ∈ RN×N is a diagonal matrix containing the

responsibilities hk
i (y(n)|x(n)), n = 1, 2, . . . , N . The expres-

sion for αk+1
i is of the form of a weighted least-squares

solution, where the responsibilities allow the expert parameters
to be trained by giving more relevance to the samples that
lie on the span of the corresponding expert. Alternatively,
one could calculate the first- and second-order derivatives
with respect to α and approximate the closed-form solution
with an iterative algorithm based on gradient-descent. This
is the common approach when the model parameters are not
analytically solvable, e.g., when soft-max gating networks are
adopted [18].

Finally, the prior probabilities are updated as [19]

ak+1
i = 1

N

∑
n

hk
i (y(n)|x(n)) (15)

Algorithm 1 EM Algorithm
1: Inputs: x, y, �(x) and I
2: Initialize: μ0

gi
, a0

i , σ 20

gi
, σ 20

ei
and α0

i
3: while learning do
4: Calculate P(A(n)|vi) and P(y(n)|x(n), wi )
5: Update hk

i (y(n)|x(n)) as per (11)
6: Update μk

gi
and σ 2k

gi
as per (13)

7: Update σ 2k

ei
and αk

i as per (14)
8: Update ak

i as per (15)
9: end while

10: return: μgi , σ 2
gi

and αi

which represents the average membership probability of the
i th expert, or in other words, the proportion of the data that
are assigned to the i th model.

Prior to executing the EM algorithm, the gate and expert
parameters need to be initialized. In the first place, the means
of the gates μ0

gi
are initialized, either randomly, or through

K -means clustering [28]. Once the means are initialized,
the membership probabilities are assigned in a hard sense,
i.e., hk

i (y(n)|x(n)) = 1 if the data point belongs to cluster i ,
and 0 otherwise. Then, the variances σ 20

gi
can be calculated

as per (13). Once the responsibilities are known, the expert
parameters can be calculated as per (14), and the EM algo-
rithm can be iterated until convergence. The EM algorithm is
graphically illustrated in Fig. 3, and its pseudocode is provided
in Algorithm 1. A stopping criterion can be set based on the
maximum number of iterations or by checking the convergence
of lnP(x, y). In the measurement experiments reported in
Section V, the convergence criterion is utilized, by comparing
the increase in lnP(x, y) in successive iterations against a
threshold.

B. EM Algorithm for HME

The EM algorithm for the HME structure follows the same
principle as the one discussed above, i.e., the maximization
of the joint density is pursued. However, as there are now
two gating layers that are mutually dependent, it is necessary
to define the conditional posterior probability of the latent
variables, which reads

hk
i| j (y(n)|x(n)) =

ai| j gi| j

(
A(n), vk

i j

)
P

(
y(n)|x(n), wk

i j

)
∑

i ai| j gi| j

(
A(n), vk

i j

)
P

(
y(n)|x(n), wk

i j

)
(16)

and corresponds to the bottom layer responsibilities or mem-
bership probabilities, and where ai| j is the prior probability
of the bottom layer gates and

∑
i ai| j = 1, i.e., the prior

probabilities of the gates within the same parent node sum
up to one. On the other hand, the top layer responsibilities are
of the same form as those for the single-layer case in (11),
that is, hk

j (y(n)|x(n)) = E{P(z j (n)|y(n), x(n))}. Finally,
a joint posterior probability is also defined as hi j(y(n)|x(n)) =
hi| j (y(n)|x(n))h j(y(n)|x(n)).

The learning rules for the parameters of the top layer gating
function are of the same form as those in (13). On the other
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TABLE I

DPD MAIN PATH PROCESSING COMPLEXITY PER LINEARIZED SAMPLE

hand, the learning rules for the bottom layer parameters are
given by the following expressions:

wk+1
i j = arg max

wi j

∑
n

hk
i j(y(n)|x(n))lnP

(
y(n)|x(n), wk

i j

)
vk+1

i j = arg max
vi j

∑
n

hk
i j(y(n)|x(n))lngi| j

(
A(n), vk

i j

)
ak+1

i j = arg max
ai j

∑
n

∑
i

hk
i j(y(n)|x(n))ak

i j (17)

where ai j = ai ai| j .
It is noted that the original HME work [20] is formulated

in the context of soft-max gating functions. Hence, the steps
detailed in [19] to derive the simplified learning rules when
Gaussian mixtures are adopted need to be considered.

Similarly, as in the single-layer model, the gate and expert
parameters need to be initialized. To that end, the parameters
of the top layer gating networks can be initialized following
the same principle as that of the basic ME model. Then,
we proceed with the initialization of the bottom layer gating
networks. In this case, it is important that the means of the
gates lie within the span of the gate in the parent node;
otherwise, the conditional probabilities will be zero, and the
algorithm would not be able to train the parameters. Then,
the top and bottom layer responsibilities are calculated by
assigning the data in the hard sense, and the expert parameters
are initialized accordingly. For notational simplicity, it is
assumed that all the submodels utilize the same parameter-
ization, but these can be chosen freely in practice.

IV. ME COMPLEXITY ANALYSIS AND COMPARISON

In this section, we analyze the computational complexity of
the ME and HME models and compare against the VS model
in [13], the DPW model in [15], and the DVR in [16]. Here,
we focus only on assessing the main path complexity, i.e., the
complexity stemming from predistorting the transmit signal.
The reason for this is that, in general, the main path complexity
is far more critical than that of the learning path, as the
predistortion process is to be executed in real time along with
the data transmission, whereas the learning is executed at a
much lower rate. In addition, it is noted that the iterative
fashion in which the parameters of the ME model are trained
seeks to find the optimal soft partition of the input data.
Once the partition is known, the model parameters of the
regression functions are learned with a single iteration of
the weighted least-squares in (14). Consequently, assuming
that the amplitude distribution of the transmit signal does
not change significantly over time, the EM algorithm can be
executed offline, while occasional parameter adaptation can be

pursued to keep track of changes in the operating conditions of
the transmitter system, e.g., due to device aging or temperature
drifts through a single weighted least-squares fit.

It is assumed that the VS, the DPW, the ME, and the HME
models build on polynomial-based regressors of the following
form:

y(n) =
P∑

p=1
p odd

M∑
m=0

αp,m x(n − m)|x(n − m)|p−1

+
P∑

p=1
p odd

M∑
m=0

G∑
g=1

βp,m,g x(n − m)|x(n − m − g)|p−1

+
P∑

p=1
p odd

M∑
m=0

G∑
g=1

γp,m,g x(n−m)|x(n−m+g)|p−1 (18)

where P is the maximum nonlinearity order, M is the memory
depth, and G is the maximum envelope delay. On the other
hand, the DVR model considers the BFs described in [16,
eq. (17)].

The complexity analysis is done in terms of floating-point
operations (FLOPs). It is assumed that a complex multipli-
cation involves 6 FLOPs, whereas a complex addition and a
real/complex multiplication both cost 2 FLOPs [29]. In order
to generate the pth-order polynomial-based instantaneous
BFs, it is considered that the process is done recursively,
i.e., first the term |x(n)|2 is calculated, and then, the pth-order
instantaneous BFs denoted as ϒp(n) are built as ϒp(n) =
ϒp−2(n)|x(n)|2, with ϒ1(n) = x(n). It is further assumed
that generating the time-aligned memory BFs, i.e., the BFs
corresponding to m �= 0 on the first line of (18), does not cost
any FLOP, as they are delayed versions of the instantaneous
BFs. As all the piecewise models rely on the envelope of the
transmit signal, it is assumed that it is known by all models,
and hence, the cost involved in its computation is excluded
from the comparison.

The exact complexity expressions for each of the models
have been gathered in Table I, whereas specific complexity
numbers are reported in Section V along with the correspond-
ing experimental results. For completeness, the execution time
required to train the different PW models is also provided.
In Table I, R is the number of submodels/regions of the refer-
ence solutions, whereas BCPWL and MCPWL stand for the total
number of regressors and memory depth of the DVR model.
B stands for the number of regressors per submodel. The
main path processing involves generating the corresponding
BFs and the actual predistortion or filtering of the transmit
signal. The BF generation for the VS, the ME, and the HME
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Fig. 4. (a) Hard and soft partitions provided by K -means and the ME model, respectively. (b) Measured and modeled AM/AM and AM/PM responses.
(c) Measured and modeled spectra by different piecewise models.

model consists of generating the BFs given by (18). The DPW
model is also assumed to utilize BFs of the form of (18);
however, before doing so, it requires decomposing every trans-
mit sample into subsamples by following the vector threshold
decomposition approach in [15, eq. (3)]. Such decomposition
is assumed to cost, on average, 2 FLOPs per region. On the
other hand, the DVR is assumed to utilize the BFs in [16,
eq. (17)]. The ME predistorting process basically builds on
two steps: first, the linear transformation in (1) is computed for
every expert, and then, their outputs are combined as per (7)
and (9), for the ME and HME models, respectively. This
implies that all regression functions are active at the same
time. Similarly, for the DPW model, every transmit sample
is decomposed into as many subsamples as submodels are
defined, and each subsample is predistorted by its correspond-
ing submodel prior to reconstructing the composite output
signal, i.e., all submodels are active simultaneously. As for
the DVR, the submodels are built in the actual CPWL BFs,
which are all used to predistort every transmit sample. On the
other hand, the VS model in [13] only computes the linear
regression in (1) for the active submodel, as the gating network
can be thought of as a binary decision.

V. RF MEASUREMENT RESULTS

In order to evaluate the capabilities of the proposed ME and
HME models, both in terms of direct modeling accuracy and
linearization performance, several RF experiments, including
different PA technologies, such as a gallium nitride (GaN)
LMBA PA, a GaN DPA, and a GaN HEMT class AB PA,
are conducted. As figures of merit, we consider the normal-
ized mean squared error (NMSE), the adjacent channel error
power ratio (ACEPR), and the adjacent channel leakage ratio
(ACLR) [30]. The MATLAB implementation of the ME model
and the EM algorithm is shared along with this article.

A. ME for Behavioral Modeling of RF PAs

The modeling accuracy of the different piecewise models is
evaluated through RF measurements on an in-house designed
LMBA GaN PA. The LMBA PA operates at 2.1-GHz carrier
frequency with an average power of +37 dBm and 41% drain
efficiency under the stimulus of a 320-MHz wide OFDM

TABLE II

MODELING ACCURACY OF DIFFERENT CONSIDERED MODELS IN TERMS

OF NMSE, ACEPR, AND AMOUNT OF MODEL PARAMETERS

Fig. 5. Illustration of the outputs of the individual experts weighted by their
corresponding gating functions and the composite model output. Direct PA
modeling experiment with LMBA GaN PA at 2.1 GHz.

waveform composed of 16 20-MHz component carriers. Fur-
ther details on the PA design and its characteristics can
be found in [2]. The sampling frequency of the signal is
1.2 Gsamples/s, and its sample-level PAPR measured at 10−4

CCDF is ca. 8 dB.
The ME model is assumed to utilize three experts, each of

them utilizing the BFs given by (18) with P = 7, M = 7, and
G = 4. The VS and DPW reference models are considered to
utilize three regions, given by K -means, and have the same
parameterization as the ME model, whereas the HME model
considers J = 2 top layer nodes, each of them having I j = 2
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Fig. 6. RF measurement setup utilized in the DPD experiments containing the PXIe-5840 VST, the ZFL-2500VH+ driver amplifier, the DUTs, and a
high-power attenuator.

experts with BFs parameters P = 5, M = 10, and G = 2.
The DVR model utilizes 15 uniformly spaced regions and
memory depth of MCPWL = 12 [16]. The GP model utilizes
P = 7, M = 9, and G = 4 and is assumed to also utilize even
order nonlinear BFs on top of the odd order ones described
in (18). The reason for this is that even order BFs can help
in the modeling of complicated nonlinearities [31]. The PA
output data are recorded, taken to baseband and synchronized
to the digital waveform. Then, the reference models are fit by
utilizing an LS approach, whereas the proposed ME and HME
models are fit by iterating the EM algorithm until convergence.

The hard partitions provided by the K -means algorithm
utilized in [13] and the soft partitions given by the ME model
after the convergence of the EM algorithm are illustrated
in Fig. 4(a). The vertical blue lines define the amplitude inter-
vals over which the different submodels operate. On the other
hand, the soft partitions should be interpreted as how much a
given expert contributes—from zero to one—to generating a
given output sample, whereas, with the hard partitions, these
contributions are either one or zero. The different experts in the
ME model can be interpreted as GPs that learn to specialize
due to the responsibilities in the weighted least-squares fit.
Fig. 5 illustrates the output of every expert weighted by
its corresponding gating function, which corresponds to the
terms gi(A(n), vi)ŷi(n), as well as the composite output of
the ME model, which is the sum of the three submod-
els. This figure essentially shows the operation principle of
the ME model, i.e., a set of experts cooperate to execute
regression.

The performance of the different models is compared in
terms of the NMSE and the ACEPR metrics and is given
in Table II along with the number of coefficients of each
model. As it can be seen, the modeling accuracy of the GP
falls significantly behind the accuracy of the piecewise models
due to the strong amplitude-dependent characteristics of the
LMBA PA. The best modeling accuracy is provided by the
proposed ME and HME models, both for the NMSE and
the ACEPR metrics, as a result of its improved memory-
modeling capabilities. The HME achieves a similar modeling
accuracy with much fewer model parameters. This is due

Fig. 7. Example convergence of the EM algorithm for ME-DPD parameter
learning, within a single ILA iteration, with GaN DPA at NR band n3.

to the better nonlinear modeling capabilities provided by
the two-layer gating network, which allows adopting lower
polynomial orders for the experts.

In the following, the linearization capabilities of the dif-
ferent PW models are assessed. As GPs are known to
largely underperform in the linearization of wideband DPAs,
as reported for instance in [13] and [14], they will not be
considered in the following experiments.

B. ME for Linearization of RF PAs

The measurement setup for the DPD experiments is depicted
in Fig. 6 and includes a National Instruments PXIe-5840 vector
signal transceiver (VST), which serves both as a vector signal
generator and as a vector signal analyzer. The baseband I/Q
samples of the transmit waveform are generated with MAT-
LAB in the VST environment, and the modulated waveform is
upconverted to the desired carrier frequency utilizing the VST
TX chain. The TX waveform is preamplified with a linear
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Fig. 8. (a) Soft partitions provided by the ME model. (b) Top layer soft partitions provided by the HME model. (c) Composite soft partitions provided by
the HME model.

Fig. 9. Measured spectra at the GaN DPA output for a TX power of
+39 dBm.

driver amplifier (ZFL-2500VH+) and then fed to the actual
device under test (DUT). A GaN DPA and a class AB GaN
HEMT PA are considered as DUTs. The DUT output signal
is then attenuated with a high-power attenuator, whose output
signal is observed via the VST receiver, where the signal is
taken to the baseband and sampled. The received samples
are processed in the VST environment utilizing MATLAB,
where the different DPD solutions are trained and executed.
All the models are learned through the ILA, and the reference
models’ parameters are fit through LS. The learning consists
of three ILA iterations with a block size of N = 10 000
samples. Within every ILA iteration, the ME and HME models
run the iterative EM algorithm until convergence, an example
of which is depicted in Fig. 7 for the ME model, where
it can be seen that convergence is achieved within 40 EM
iterations for the experiment considering the GaN DPA. It is,
however, noted that the convergence speed heavily depends
on the initialization of the gate parameters. For complexity
assessment, we consider the expressions derived in Table I.

1) Measurement 1: GaN Doherty PA: The first DPD mea-
surement experiment focuses on a GaN DPA operating at the

1.8425-GHz center frequency (NR band n3) at an average
output power of +39 dBm, which corresponds to an output
power back-off of ca. 7.5 dB with respect to saturation.
The test waveform is composed of five 15-MHz component
carriers, resulting in a total BW of 75 MHz that spans the
whole NR band n3 and the PA BW. The PAPR of the
test waveform, after iterative clipping and filtering (ICF),
at 10−4 CCDF is ca. 7 dB, and the sampling frequency is
368.64 Msamples/s.

The ME and HME models are assumed to have I = 6
experts, each of them utilizing the polynomial-based BFs
in (18) for P = 5, M = 5, and G = 2. The HME model
considers J = 3 top layer nodes, each of them having I j = 2
experts. The gating networks for the ME and HME models
are shown in Fig. 8, together with the linearized amplitude
response of the PA. Fig. 8(a) illustrates the soft partitions
provided by the ME model, whereas Fig. 8(b) and (c) shows
the top and composite, i.e., top times bottom layer, gates. The
means of the gates of the ME model and the top layer gating
network in the HME model are randomly initialized, whereas
those of the bottom layer gating network are initialized so that
they lie in the span of their corresponding top layer gating
function.

The VS and DPW reference models are considered to
utilize R = 6 regions, given by K -means, and have the
same parameterization as the ME and HME experts. The DVR
model utilizes R = 9 uniformly spaced regions and memory
depth of MCPWL = 8 [16].

The spectra at the output of the DUT when considering the
different piecewise models are illustrated in Fig. 9, whereas
their corresponding ACLR values are gathered in Table III.
As it can be observed, the proposed ME models offer supe-
rior linearization capabilities compared to the state-of-the-
art piecewise DPD models, with the HME providing the
best performance due to its enhanced nonlinear modeling
capabilities due to the two-layer gating network. To the
best of our understanding, the overall improvement in the
linearization/modeling performance is a result of the improved
modeling between submodels due to the soft partitions and
better modeling of the memory effects.

As for the complexity, all the models employ a similar
number of model coefficients; however, the corresponding
complexity in terms of FLOPs/sample depends heavily on their
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Fig. 10. Measured AM/AM and AM/PM responses for the GaN DPA w/o
DPD and w/ the HME DPD for a TX power of +39 dBm.

TABLE III

LINEARIZATION PERFORMANCE IN TERMS OF ACLR, AMOUNT OF

MODEL PARAMETERS, AND ASSOCIATED COMPLEXITY IN TERMS OF
FLOPS/SAMPLE FOR THE GaN DPA EXPERIMENT

operation principle. The VS, ME, and HME models require
the lowest amount of operations to generate the required BFs
because all the submodels employ the very same regressors,
whereas the piecewise processing is embedded in their switch-
ing/gating functions. On the other hand, the DPW and DVR
models incorporate the piecewise operations within the BFs;
hence, the different submodels employ different regressors.
The VS model presents the lowest filtering complexity, essen-
tially because of its switching principle, in which only one of
the submodels is active at a given time instant. On the other
hand, the rest of the models requires filtering every transmit
sample with all the submodels or the whole set of BFs.
In addition, the ME and the HME models require applying
the gating function to weigh the output of every submodel.
However, the ME and HME models offer significantly better
performance compared to the VS model, and it also outper-
forms the DPW and DVR at a similar overall computational
cost. Fig. 10 illustrates the AM/AM and AM/PM responses of
the PA without DPD and with the HME DPD model.

2) Measurement 2: GaN HEMT PA: The second DPD
measurement experiment considers a GaN HEMT-based class
AB PA (CGHV27030S-AMP1) operating at a 2.6-GHz center
frequency at +35.5-dBm average output power. The test
waveform is composed of eight 20-MHz component carriers,
resulting in a total BW of 160 MHz. The PAPR of the test
waveform, after ICF, at 10−4 CCDF is ca. 7 dB, and its

Fig. 11. Measured spectra at the HEMT-based PA output for a TX power
of +35.5 dBm.

TABLE IV

LINEARIZATION PERFORMANCE IN TERMS OF ACLR, AMOUNT OF

MODEL PARAMETERS, AND ASSOCIATED COMPLEXITY IN TERMS OF

FLOPS/SAMPLE FOR THE HEMT-BASED PA EXPERIMENT

sampling frequency is 645.12 Msamples/s. The ME and HME
models are assumed to have I = 6 experts, each of them
utilizing polynomial-based BFs with P = 5, M = 5, and
G = 1. The HME model considers J = 3 top layer nodes,
each of them having I j = 2 experts. The VS and DPW
reference models are considered to utilize R = 6 regions,
given by K -means, and have the same parameterization as the
ME and HME experts. The DVR model, on the other hand,
utilizes R = 7 uniformly spaced regions and the memory depth
of MCPWL = 7 [16].

The linearized spectra at the PA output are illustrated
in Fig. 11, and the associated complexity and specific ACLR
values are gathered in Table IV. As it can be observed, the ME
models again achieve the best linearization performance, giv-
ing up to 2 dB ACLR improvement while entailing similar
complexity to that of the reference piecewise models. Based
on the different conducted measurement experiments, it can be
stated that the ME framework stands as a flexible and robust
model for modeling and linearization of RF PAs. It allows
working around some of the inherent limitations that state-of-
the-art piecewise models commonly exhibit, which are mostly
related to the way such models handle memory effects in the
system.
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C. Model Adaptation Runtime Comparison

In order to provide a more complete complexity comparison
between the different PW models, their adaptation time is
shortly discussed in the following.

The iterative principle of the EM algorithm seeks to find the
optimal soft partition. Since the amplitude distribution of the
transmit signal remains rather constant over time, the partition
can be calculated offline and is then seldom updated. Once
the partition is known, a single iteration of the weighted LS
is utilized to calculate the DPD coefficients, which needs
to be updated at a faster pace than the soft partitions (e.g.,
whenever the PA operating characteristics change). The fol-
lowing runtime numbers consider an Intel Core i7-10850H
CPU @ 2.70-GHz machine running MATLAB 2021 and the
parameterization of Measurement 1.

It is important to differentiate between the runtime required
to obtain the region partitioning, which is 5.33 s for the ME
model and 8.876 s for the HME model, and the runtime of
the BF generation plus the weighted LS fit to estimate the
DPD model parameters, which is 0.0787 s. Similarly, for the
VS model, we differentiate between the runtime of 0.0216 s of
the K-means algorithm to find the region partitioning, which is
seldom executed, and the runtime of the BF generation plus LS
fit, which totals 0.0667 s. On the other hand, the DPW model
also requires to execute the K-means algorithm, whereas the
BF generation plus the LS fit takes 0.1532 s. The DVR model
considers equally spaced regions, which is assumed to require
no computing time, whereas the BF generation plus the LS fit
require 0.1359 s.

Overall, the adaptation complexity of the ME, HME, and
VS models is rather similar, whereas the DPW and DVR
models need approximately twice the time for adapting their
coefficients.

VI. CONCLUSION

In this article, a new piecewise model for modeling and
linearization of RF PAs based on the ME framework was
proposed. The ME model utilizes soft partitions of the data,
which implies that the different submodels overlap with one
another. This ensures that the overall regression function is
smooth and can thus facilitate accurate modeling of memory
effects between regions. This feature is a notable improve-
ment over the other existing piecewise models, wherein the
partitions are commonly disjoint and the models operate
and are also being learned independently. The ME model
was also extended to a tree-structured regression model with
multilayer nonlinear gating networks, which allows for further
enhanced nonlinear modeling capabilities. The proposed ME
approach was shown to provide the best modeling accuracy
and linearization performance among the tested models in a
large variety of RF measurement experiments on different PA
technologies.

In the reported results, the gating network was considered to
make partitions based on the envelope of the signal. However,
more sophisticated decisions can be studied and incorporated
in the model, e.g., by considering bivariate densities or by
exploiting the multilayer gating network structure. Overall,

the ME approach is a new framework for PA modeling and
DPD research, with rich opportunities for further develop-
ments and tailoring to different linearization tasks.
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