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Abstract—High power radio frequency (RF) breakdown
testing is a subject of great relevance in the space industry,
due to the increasing need of higher transmission power and
smaller devices. This work presents a novel RF breakdown
detection system, which monitors the same parameters as the
microwave nulling system but with several advantages. Where
microwave nulling—a de facto standard in RF breakdown
testing—is narrowband and requires continuous tuning to keep
its sensitivity, the proposed technique is broadband and maintains
its performance for any RF signal. On top of that, defining
the detection threshold is cumbersome due to the lack of an
international standardized criterion. Small responses may appear
in the detection system during the test and, sometimes, it is
not possible to determine if these are an actual RF breakdown
or random noise. This new detection system uses a larger
analysis bandwidth, thus reducing the cases in which a small
response is difficult to be classified. The proposed detection
method represents a major step forward in high power testing
as it runs without human intervention, warning the operator or
decreasing the RF power automatically much faster than any
human operator.

Index Terms— Corona, microwave devices, multipactor, radio
frequency (RF) breakdown, RF high power.

I. INTRODUCTION

ICROWAVE devices for space applications might suf-
fer from radio frequency (RF) breakdown discharges,
which only happen in reduced pressure or high vacuum condi-
tions, the multipactor breakdown being of specific interest in
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this article [1]. Ensuring that the microwave and RF devices
will not suffer from these effects is crucial as, once in orbit,
the only option to mitigate them is to reduce the transmitted
power, thus leading to a data throughput reduction, if not a
total mission failure.

Multipactor discharge is a vacuum breakdown in which an
initial electron present inside the structure can stimulate an
avalanche of electrons. The region in which the discharge
happens at the lowest RF power is known as the critical gap.
The electron kinetic energy increases due to its interaction with
the RF field and, due to the vacuum environment, it impacts on
the device’s inner surfaces. For a certain kinetic energy range,
these collisions can release more than one electron, due to
the material secondary emission [1], [2]. The RF breakdown
happens when the number of electrons grows exponentially.

To produce robust RF component designs, multipactor sim-
ulation and testing must be done. Because of its high cost,
testing must not be considered as an intermediate stage in
the design process, but a final verification which certifies
the correct operation of the device. However, with increasing
complexity in terms of geometry [3], [4], materials [5], [6], and
surface finishing, achieving accurate multipactor simulations
becomes a challenge. Modeling tools have seen large advances
recently [7]-[9], and simulations with modulated signal [10],
[11], space charge [12], multiple materials [13], [14], or simple
noise characterization [15] are common nowadays. All of
these advances in the simulation field are driving designers
to request that their devices are tested against the same
conditions that they were simulated—in terms of RF power,
signal modulation, and temperature [16].

When dealing with modulated signals, designers find that
test routes and required detection systems are not properly
specified in the international standards [17], [18]. Test sites
have relied, for many years, on a set of local and global
detection methods [19]-[21]. The drawback of these methods
is that many of them have been developed for operation with
continuous wave (CW) or pulsed CW signals.

The detection methods can be classified either in rela-
tion to their detection range—local and global meth-
ods [20], [21]—or to the type of measured physical
parameter— RF signal magnitude at fundamental or harmonic
frequencies, quantity of free electrons (electron current), emit-
ted ultraviolet light, and pressure in the test environment.

The local detection methods are those which can detect the
RF breakdown in the vicinity of the critical area and indicate
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TABLE I

TYPICAL BACKGROUND NOISE AND MINIMUM CHANGE OF OUTPUT
PARAMETERS FOR RELIABLE MULTIPACTOR DETECTION

Detection system Background noise ~ Minimum change

Nulling 20 to 40 dBc 5—10 dB
Harmonic > 90 dBc 5—10 dB
Electron monitoring <1071 A 5—10 dB
Light monitoring <01V 5—10 dB
Close to carrier noise > 40 dBc > 10 dB
Pressure < 10~5 mbar > 10 dB

the critical gap location. Electron current and/or emitted light
monitoring [17] are examples of local detection methods.
However, global detection systems cannot determine where
in the test system it has happened. Some of these methods are
microwave nulling, harmonic detection, close to carrier noise,
electron monitoring in the inner coaxial conductor [22], etc.

The sensitivity of the previous methods is not related to
being global or local, as shown in Table I. It can be noted
that some are very sensitive, thus detecting discharges that
only change their output parameters by a factor of 5 and
10 dB, while others require a change of 10 dB or more. With
specific attention on microwave nulling, it must be stated that
its high sensitivity is only achieved when properly tuned and
only for CW frequency, with sensitivity decaying rapidly when
de-tuned or for modulated signals.

The novel detection system monitors the same parameters
as the microwave nulling: RF signal at the fundamental
frequency. But, instead of canceling two waves to obtain a null,
it performs a statistical analysis of the measured in-phase and
quadrature data. By fitting the data noise to a given model,
it determines if the current measurement fits the model (no
discharge) or does not (discharge).

The main benefits of the proposed method compared to the
previous ones are that it does not require continuous tuning
and that its sampling rate is higher (only limited by the RF
equipment and system background noise). For comparison,
the acquisition rate in this method goes beyond 40 MHz (see
Section III), whereas it is limited to 1 kHz or less in the
electron or light monitoring detection systems and to 3 MHz
in the microwave nulling method [2]. So, due to its larger
analysis bandwidth, this method is better suited to cope with
small discharges (see Section III-D).

Also, this detection method provides the same sensitivity
for CW signals, improves the accuracy when dealing with
modulated signals—such as the ones used in [9] and [10]—
and requires less RF components to set up. Furthermore,
the proposed method benefits from its high detection rate.
When operating the traditional microwave nulling system,
the operator performs the “detection” by observing the signal
analyzer. Even for skilled operators, the response time is
no shorter than 1 sec. For the in-phase and quadrature (IQ)
detection system [23]-[27], the execution time is shorter than
5 ms.

This work introduces the microwave nulling in Section II,
since it is the predecessor. and monitors the same physical
magnitudes as the proposed detection system. Next, the pro-
posed IQ detection method is detailed in Section III. The
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Nulling depth (dB)

Fig. 1. Nulling depth in dB depending on the amplitude imbalance (%) and
phase imbalance in degrees, clearly showing that small changes in amplitude,
and specially in phase, will change the nulling detector output.

experimental validation is carried out in Section IV, where
it is applied to CW, analog modulated (chirp), and digitally
modulated quadrature amplitude modulation (QAM) signals.
Finally, Section V summarizes the main conclusions of this
work.

II. MICROWAVE NULLING

The microwave nulling [17] was designed to convert phase
and amplitude variations into a scalar magnitude. Given that
not many years ago vector signal analyzers were not so
common, the signal phase information could not be directly
measured. As RF breakdown produces more phase than
amplitude changes, a physical mechanism to translate phase
and amplitude imbalance into large amplitude changes was
required.

This detection system is based on the out-of-phase addition
of the equalized amplitudes of the forward and reverse signals.
In an ideal signal case, the output of this addition should
be zero and only the signal analyzer noise level would be
measured. Due to the fact that non-ideal signals are being
used, this sum has a very low level instead of zero. The
maximum accuracy that can be obtained in a real microwave
nulling system depends on the precision of the phase shifter
and of the variable attenuator used to perform the counter-
phase addition, as well as on the inherent noise of the signal
source and power amplifier used for the signal generation and
power amplification [2].

The main advantages of this method are: the high degree
of sensitivity and the relative ease in its setting up. But its
main drawbacks are: the need of being constantly re-tuned,
its narrowband nature, the human intervention for discharge
detection, and the cost of the involved RF passive equipment
(especially if it is used exclusively for such tests). This
detection method, which is still widely used in RF breakdown
tests for CW and pulsed signals [2], is not fully suitable for
modulated or multicarrier signals.

Fig. 1 shows the effect of the phase and amplitude imbal-
ance in the nulling depth. From the plot, it is clear that small
phase changes cause the detector output (nulling depth) to
vary substantially. As the phase shifter is implemented with
a transmission line of a variable length, this nulling depth
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Fig. 2. Side-to-side comparison of the (a) IQ detection and the (b) microwave
nulling implementations.

is only achieved at a single frequency. For modulated signals,
only frequencies around the center one will have a sufficiently
good nulling depth.

In a real implementation, temperature changes in the device
under test (DUT), or amplifier gain impact on the amplitude
modulation (AM) and phase modulation (PM) [28], make
this imbalance larger over time, thus making it necessary to
periodically adjust the nulling system.

Due to the strong push in digital communications for satel-
lite and terrestrial applications, RF measurement technology
has improved dramatically in recent years [9], [16]. Current
hardware is capable of directly measuring the amplitude and
phase information, known as 1Q data, with high accuracy. But
the microwave nulling system only measures scalar data.

In terms of physical implementation, Fig. 2 shows both
methods side to side. It is clear, from the figure, that less
hardware is required in the proposed detection system. For
a test laboratory, less hardware implies lower cost and less
chances of having RF connection issues.

The next section introduces the novel method in which
IQ measurements and data processing are used to detect the
presence of RF breakdown. The inputs of this new detection
system are the same as for the microwave nulling (i.e.,
RF signals in the test bed at the fundamental frequency). But,
in this case, it does not require any signal preconditioning
performed by passive components. The 1Q detection method
has the benefit that it shows a similar performance to the
classic nulling system for CW and pulsed CW signals, but
it also copes well with modulated and multicarrier signals of
any type. The only requirement is that the measured signal
bandwidth is smaller than the IQ analyzer bandwidth, which
is not only determined by the equipment sampling rate, but
also by its analog front-end limitations.

III. IQ DETECTION METHOD

The IQ detection method is based on the mathematical
analysis of the in-phase and quadrature information of the
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Fig. 3. Waves involved in a two-port device which can be acquired in order
to detect the presence of the RF breakdown discharge.

high power RF signal. Its operation principle relies on the fact
that the RF breakdown generates additional noise that overlaps
the already present system background noise. For each new
measurement, the algorithm determines if the measured noise
is what should be expected (system background noise) or not
(background noise plus RF breakdown noise).

The first step is to identify the noise sources in the test bed.
Given that the propagation of the RF signal in a typical mul-
tipactor test bed is conducted (through coaxial or waveguide),
the passive elements will not introduce extra noise, and the
main noise sources will be the signal generator and the high
power amplifier (HPA) [28]. For simplicity, the losses in the
test bed are considered negligible. The signal-to-noise ratio (in
dB) at the DUT input is defined as

(E) :(i) — NFupa (D
N fwd N gen

where NFpp, is the noise factor of the HPA. As the algorithm
tries to identify the breakdown noise (Ngs) out of the system
ground noise (Ng), the path in which the system noise is
lower is the one leading to a larger “breakdown noise” to
“system background noise” ratio, thus improving the detection
accuracy.

Under the scenario of a two-port DUT (see Fig. 3), there
are three signals which can be measured at the DUT ports:
forward, output, and reflected.

Following the signal path, the forward signal should not be
significantly affected by the extra noise due to the discharge.
For the reflected and output signals, the one showing a larger
Nuse/Ng ratio will depend on the DUT scattering parameters.
Assuming a scenario in which the DUT is symmetrical, and the
discharge happens at its middle point, the following equations
define the noise at the reverse (N,) and output (Nyy) paths:

Neev = Ns|Sul? 4 0.25 Nase| S
Nowt = Ns|Sa11* 4 0.25 Nae| S . )
From (2) it is clear that, as long as |Sj;| < |S21], the dis-

charge to system noise level will be larger in the reverse signal
than in the output signal.

A. Noise Modeling

Once the location of the detection system with respect to the
DUT has been defined, it is time to model the system noise.
As the discharge noise has an unknown statistical distribution,
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it is easier to model the normal system noise and use the
hypothesis testing to verify whether the noise being measured
fits the expected characteristics or not.

In this case, it is assumed that the in-phase and quadrature
signals can be modeled as a Normal distribution. If the real and
imaginary parts of the noise each follow a Normal distribution,
then the error vector noise (EVN) calculated as the absolute
value of the complex error follows a Rayleigh distribution.

A random variable R ~ Rayleigh(c?) follows a Rayleigh
distribution if R = (I>+ 0*»'?, where I ~ N(0,0?%)
and Q ~ N(0, 0?) are Normal independent distributions. The

Rayleigh PDF is
~ | 1 N 2 3
o~ 2N 120 }"i . ( )

The hypotheses used to determine if there has been a
discharge in a given measurement are (see Fig. 4) as follows.

1) Hy: There is no RF breakdown discharge.

2) H;: There is an RF breakdown discharge.

RF breakdown detection occurs when H; is true and,
moreover, H; is decided (Pp = P{H|H;}). Nonetheless,
false alarm RF breakdown occurs when Hj is true but H,
is decided (Pga = P{H;|Hy}). Since the probability density
function (PDF) for the RF breakdown noise is not currently
known, it is easier to calculate the false alarm probability
instead of the detection probability (Pga). Hence, in that case

+00

S, ()7 “)

fr(rio) = S5,
o

Pra =
1
where fy, is the Rayleigh PDF defined in (3) and 7 is the
noise power.

In order to define the IQ detection method in a way that is
closer to the microwave nulling system operation, instead of
fixing a detection error (probability), a threshold # setting (in
order to achieve a certain false alarm probability) provides a
good compromise.

However, knowledge of the optimal # value requires some
experience on test bed background noise and signal modula-
tion. On top of that, a relevant standard to be followed is not
available yet. Therefore, the procedure used here consists of
estimating the EVN distribution using the concatenated EVN
traces from the first N measurements, which are presumed not
to have suffered from RF breakdown because the power level
is low. From that large set of data, the EVN distribution is
modeled, and 7 is determined from the false alarm probabil-
ity (5). As the data has discrete values instead of continuous,
the false alarm probability is given by

N-P
Pia =D At fu,(x) )
i=q

where A7 is the discretization interval, P is the number of
points in each measurement, and ¢ is the index position where

T =1

B. Signal Under Test

The RF signals used in this work have three parts which
include, but are not limited to, the signal of interest. Due to
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Fig. 4.  Hypotheses tests. (a) Given that the noise PDF is not known,
the hypothesis testing is done using Hp, which is assumed to follow a
Rayleigh distribution. The probability of false alarm is the degree of freedom
which determines the EVN threshold used for the RF breakdown detection.
(b) Hypothesis testing using H; is not used as the multipactor noise distrib-
ution is not known.

the nature of RF breakdown testing, data throughput is not a
critical requirement, so additional signal parts can be appended
for the sake of a better detection performance. In particular,
all the signals that have been experimentally validated are
created by concatenating three segments whose purpose is very
specific.

The first segment (training segment) is used for amplitude
normalization and phase alignment between the RF source
and the analyzer, and for a frequency correction if required.
The amplitude of this segment must be set to prevent RF
breakdown discharge from occurring.

The second segment is an RF OFF interval, used to relax
the electrons inside the RF device, so they lose kinetic energy
and any already existing resonance.

The third segment is the actual signal of interest, which
means the signal portion in which the RF breakdown must
happen when increasing the RF power.

In this work, the time and amplitude characteristics of these
three segments are: 1) Segment 1: RF ON with an initial
CW signal (50-us long) at —10 dBc and with 0° phase;
2) Segment 2: RF OFF (50-us long); and 3) Segment 3: RF
ON with the signal of interest (any length) with a peak level
of 0 dBc. An example of this signal configuration is shown in
Fig. 5.

Once a new acquisition is available (sj,(¢)), the complete
signal is normalized (sou(¢)) before computing the EVN.
The scaling factors, computed from the training segment
(s7(t) = sin(t) for 0 <t < 50 us), are obtained as follows:
1) amplitude scaling factor a, computed so that sy (r) has
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Fig. 5. Example of the three parts composing the typical signal structure used
in this work. The signals start with an initial 50-us CW pulse at —10 dBc
used for calibration purposes. Next, there is a 50-us interval with RF OFF
for electron relaxation. Finally, the signal of interest is found at 0-dBc peak.
In this particular example, the signal is an analog linear-frequency modulated
chirp with two up-down intervals of £20 MHz each lasting for 100 us.

1 Vims; 2) phase correction factor ;: average phase of sz (1);
and 3) frequency offset factors (0, and 0yp): obtained from
the linear regression to sy(¢#) phase. Then, the normalized
signal is computed as

Sout (1) = aySin (1) - e/% el Cretfnn), (6)

C. Reference Signal

Once the current measurement has been normalized, its
EVN is obtained. The next question to solve is which reference
signal, when used to compute the EVN, gives the best sensi-
tivity for RF breakdown detection. This section discusses the
reasons why the DUT input signal is not optimal for computing
the EVN, and how the previous measured signals are stored
in order to compute the reference signal.

Following the way in which the nulling system is imple-
mented, it would make sense to use the input signal as the
reference in order to compute the EVN. However, in prac-
tice, there are several considerations that do not support
this approach: 1) it requires a second analyzer, which is
expensive; 2) due to unequal frequency response in both paths
(measurement and reference), the EVN would be larger if
equalization is not used; and 3) there is a trigger jitter error
between both devices.

For these reasons, the reference signal is defined as the
average of the previous N measurements with no RF break-
down. In order to build this reference, a buffer spanning the N
previous acquisitions is implemented in this work. The buffer
follows a first in first out (FIFO) scheme, so once it is full,
the oldest measurement is replaced by the newest one. This
FIFO buffer follows the actual signal and, as the oldest traces
are replaced, any possible distortion in the amplifier or the
signal generator is taken into account.

From the authors’ experience, the value for N is dependent
on the HPA being used, system return losses, the DUT char-
acteristics, and environmental parameters such as temperature.
Therefore, there is not an optimal value for N which can be
applied in all the possible scenarios.

Finally, once the current and reference signals are available,
the EVN is computed as the difference between them.
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D. Handling Small Discharges

Small discharges are difficult to handle in multipactor
testing. Slow sampling rates in the local detection methods
(about 1 kHz), and relative low sampling rate in the microwave
nulling and harmonic detection systems (about 3 MHz), make
them difficult to detect, as they are averaged out.

The small RF breakdown discharges can be classified into
three groups: 1) fast events (in the order of ns) of moderate
or even high amplitude; 2) moderate length events (<1 us)
of weak amplitude; and 3) fast events of weak amplitude.

Although from the perspective of the proposed algorithm,
it always returns a statistically correct pass/fail result, and from
the actual RF breakdown point of view, reliable results are
to be expected mainly in cases 1 and 2. This is due to the
larger acquisition bandwidth of this method, only constrained
by the RF equipment, which provides more samples per second
(> 40 MHz). Nevertheless, small discharges of type 3 may,
as it happens with all the other detection systems, be incor-
rectly detected or even missed.

In the experimental validation, it was observed that fast
random values in the EVN were reported as discharges.
At that stage, pulsed CW signals were being tested, which
inherently could not suffer from extremely short discharges.
This was confirmed by independent detection systems running
in parallel, which did not record any discharge. For that reason,
the algorithm was enhanced to require a minimum discharge
length (i.e., certain amount of consecutive samples M failing
the hypothesis test). This requirement ensures that random
noise peaks, which do not fit the Rayleigh distribution but
are not RF breakdown, do not produce a false detection.
However, setting a large M value (i.e., >20) reduces the
method responsiveness for small multipactor discharges.

Finally, the algorithm has the following three tuning para-
meters, which allow it to be either more responsive to small
discharges or more robust against false detection: probability
for the hypothesis test (#), number of consecutive samples
failing the hypothesis test (M), and FIFO buffer size (N).

E. Algorithm Flowchart

The flowchart of the proposed detection algorithm is shown
in Fig. 6. The threshold value (but not the false alarm
probability) is updated during the test in order to take into
account possible changes in the signal. In case RF breakdown
is detected, the algorithm: 1) notifies the operator; 2) does
not include the corresponding measurement in the buffer; and
3) reduces the RF power level (optional).

IV. EXPERIMENTAL VALIDATION

This section presents the experimental validation of the
proposed RF breakdown IQ detection system. Out of all the
possible signals to be used in multipactor tests, the following
ones have been selected: 1) pulsed CW; 2) linear frequency
modulated CW (FM chirp); and 3) QAM digitally modulated
signal.

The first signal, pulsed CW, is the standard waveform used
in multipactor tests as defined in [17]. The FM chirp has
been selected as the most interesting analog modulation for
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Fig. 6. Simplified IQ detection method flowchart. The management of the
FIFO buffer is not detailed.

Fig. 7. Picture of the test bed, with the PXI chassis on the left, the TVAC on
the center, and the output branch on the right. The test sample was installed
in the TVAC.

space applications, being widely used in radar systems. Finally,
the third signal is a very common digitally modulated signal.
The test bed was operated at L-band using very high-quality
RF equipment, so that the detection is not compromised.
Thus, a Keysight vector signal generator M9383A and a signal
analyzer M9393A have been used, both with a sample rate
of 200 MHz in order to cope with 160 MHz of 1Q bandwidth.
Both RF devices provide an amplitude flatness better than
0.5 dB and a deviation from linear phase < =£1°. The signal
amplification was carried out with an R&S BBA150, which
is a 1-kW solid state power amplifier (SSPA). The actual test
bed is shown in Fig. 7, while Fig. 8 shows its schematic.
The multipactor reference sample is a reduced gap coaxial
transmission line operating at L-band, with a multipactor
threshold about 60-W peak for a CW signal. The sample
threshold was verified with standard detection systems such
as electron measurement, harmonic monitoring, and the classic
nulling system (for the CW case). Periodic CW measurements
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were run between tests in order to detect any conditioning in
the DUT. Harmonic and electron current monitoring systems
were working all the time in parallel with the IQ detection.

For the following examples, the proposed method runs in
about 1-2 ms, measured from the moment a new trace is
received by the algorithm until a pass/fail decision in made.
But the overall execution time is limited by the acquisition
and trace transfer actions. For short signals (<300 us), the
complete execution time (including acquisition) is about 5 ms,
although this time increments with the number of samples.

To obtain the maximum multipactor detection responsivity,
the minimum discharge length should be set to 1. This requires
a very low system noise, as if only one sample does not pass
the hypothesis test, and then multipactor detection is triggered
on.

In the validation stage, it was observed that, with the used
setup, it was not possible to remove these short random
noise events. As a consequence, several false detections were
observed. In order to obtain robust multipactor detection,
capable of handling these short errors, a minimum discharge
length of M = 10 was found to be enough for this setup. This
value remained the same for all the tested cases.

In terms of sensitivity, for the tested cases, the novel
detection system recorded all the discharges simultaneously,
i.e., same power step, or even before the harmonic and electron
monitoring systems, which were running in parallel, as shown
in Fig. 8.

A. Pulsed Continuous Wave

This signal scenario is the standard one in which the
microwave nulling system shows its best performance.
As defined in [17], the signal under test is a 20-us CW pulse.
As shown in Fig. 9, the residual EVN is better than —35 dB,
which is a value comparable to the one that can be normally
achieved in the nulling system when the operator is constantly
tuning it, using a very precise phase shifter and a variable
attenuator.

Fig. 10 shows how the response appears when there is
an RF breakdown discharge with a clear increment in the
EVN. This increment translates into the noise PDF which is
shown in Fig. 11, where extra noise due to the RF breakdown
discharge can be observed on the right-hand side of the figure.

B. Analog Modulation: FM Chirp

The next validation example consists of using an analog
modulated signal. In this case, a chirp signal has been selected
due to its constant power but linearly varying frequency. The
chirp signal is the one shown in Fig. 5. The microwave nulling
system cannot be used for this modulation type, as the signal
only stays at a given frequency for a few time intervals along
its whole duration. This implies that for most of the time, the
nulling system would not be tuned at the chirp instantaneous
frequency.

As depicted in Fig. 12, the response is not flat. This is due
to the response of the passive elements, but also due to the
RF generator (which is not pre-distorted). For this verification,
the residual effect is not important and, indeed, adds value
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Schematic of the test bed used for the IQ validation test campaign. During the initial threshold verification, the IQ detection system was replaced by

the well-known microwave nulling system. The following detection methods were also continuously monitored during the validation of IQ detection system:
RF harmonic detection system (1x, global) and electron monitoring (2x, local).
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Fig. 9. Complete signal sequence for a CW payload in which there is no
RF breakdown discharge. The small plot shows that EVN remains lower than
—35 dB during the whole sequence.
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Fig. 10. Complete signal sequence for a CW payload in which there is an
RF breakdown discharge. The small plot shows that EVN increases by 40 dB
when the discharge happens.

to the experimental results, as they show that the algorithm
is able to cope with this residual AM. The EVN level is
lower than —30 dB, which provides enough margin for reliable
detection.

Fig. 13 shows how the response appears when the discharge
happens and the corresponding increment in the EVN level.
This response translates into the noise PDF which is shown
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Fig. 11. PDF for the pulsed CW when there is a discharge and when there is

not. The extra noise out of the Rayleigh distribution can be clearly identified
on the right.
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Fig. 12.  Complete signal sequence for an FM chirp payload in which there
is no RF breakdown discharge. The small plot shows that EVN remains lower
than —30 dB during the whole sequence.

in Fig. 14, where extra noise due to the RF breakdown
discharge can be observed on the right-hand side of the figure.

C. Digital Modulation: QAM

The final validation is done with a QAM signal of 500-kHz
bandwidth. These signals are not properly detected using the
nulling system, due to its constant frequency and amplitude
changes.
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Fig. 13. Complete signal sequence for an FM chirp payload in which there

is an RF breakdown discharge. The small plot shows that EVN increases by
20 dB when the discharge happens.
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identified on the right.
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than —30 dB during the whole sequence.
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Fig. 16. Complete signal sequence for a QAM payload in which there is an
RF breakdown discharge. The small plot shows that EVN increases by 20 dB
when the discharge happens.

The EVN background level stays close to —30 dB as shown
in Fig. 15. The effect of the multipactor discharge is shown
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Fig. 17. PDF for the QAM payload when there is a discharge and when

there is not. The extra noise out of the Rayleigh distribution can be clearly
identified on the right.

in Fig. 16. This increment translates into the noise PDF
which is shown in Fig. 17, where extra noise due to the RF
breakdown discharge can be observed on the right-hand side
of the figure.

V. CONCLUSION

This work has shown a novel high power RF breakdown
detection technique, which surpasses the microwave nulling
system while keeping its sensitivity and improving the related
robustness and capabilities. The detection algorithm is based
on the analysis of the signal noise using hypothesis testing.
It has been experimentally validated with CW, analog, and
digital modulated signals. The detection limitations of the
technique are only constrained by the signal analyzer being
used, which must be of high quality, and the test system
residual noise level. These parameters will determine the
residual EVN level, which must be as low as possible. The
execution time of the proposed technique has proved to be
about 5 ms or less.

Because of being a detection method which is not dependent
on the manual adjustment of an operator and which provides
quantitative results, it can be considered as a candidate for
standardization in the RF breakdown testing field. It is impor-
tant to note that it only relies on specifications and parameters
that are set in advance and maintained during the complete
RF test.

Finally, this testing approach, in which the signals are
acquired and analyzed, allows the operator to store all the
transmitted pulses, thus being possible to analyze them with
other parameters or algorithms once the test has been com-
pleted.
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