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Boosted Model Tree-Based Behavioral Modeling
for Digital Predistortion of RF Power Amplifiers

Yue Li

Abstract—1In this article, we propose a new behavioral mod-
eling approach, called boosted model tree, to characterize and
compensate for the complex nonlinear distortions induced by
wideband high-efficiency radio frequency power amplifiers. With
the proposed model, the input data are classified into different
zones by decision trees and each zone is assigned separate
submodels. We also employ a model boosting technique to
build multiple parallel tree structures that jointly model the
desired nonlinear behavior. By designing dedicated optimization
procedures, both tree structures and submodel coefficients can
be efficiently identified. It is demonstrated that the combination
of piecewise and parallel structures provides a powerful and
hardware-efficient way to model nonlinear memory effect and
cross terms. Based on the experimental results, the proposed
method can achieve improved linearization performance with low
hardware complexity under challenging wideband predistortion
scenarios.

Index Terms—Behavioral modeling, boosting, decision
tree, digital predistortion (DPD), machine learning, power
amplifier (PA).

I. INTRODUCTION

N THE 5G era, new technologies are expected to be

deployed in mobile communication systems to satisfy the
growing demand for better wireless networks. Key tech-
nologies, including new waveforms, advanced multiple-input—
multiple-output (MIMO), increased bandwidth, and network
densification, have been developed to meet the diverse require-
ments of the next-generation network [1]. Implementing
these new features while keeping high energy efficiency thus
becomes a challenging yet important task in the design of
future wireless communication systems.

Digital predistortion (DPD) is a widely adopted linearization
technique for mitigating nonlinearities caused by radio fre-
quency (RF) power amplifiers (PAs) [2], [3]. It allows PAs to
be operated at higher power levels for higher efficiency without
losing linearity, enabling a more efficient wireless system.
Nevertheless, the new specifications and operation principles
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of 5G transmitters pose challenges to the design of DPD [4].
On one hand, wider bandwidth and new high-efficiency
PA architectures lead to more complex PA characteristics [5],
which requires more sophisticated DPD models for lineariza-
tion. On the other hand, the use of MIMO and network
densification [6] techniques reduces the output power of indi-
vidual PAs, which lowers the power budget of DPDs. To tackle
these challenges, DPD systems with improved performance
and lower power consumption are desired.

In the past two decades, many DPD models have been
developed. Many classic models, e.g., memory polynomials
(MPs) [7], generalized MP (GMP) [8], and dynamic devia-
tion reduction (DDR) [9], are based on the Volterra series.
Such polynomial-based models provide an intuitive descrip-
tion of the PA nonlinearity, which eases the development
of interpretable models. The use of polynomials as basis
functions, however, suffers from high hardware complexity in
DPD implementation and potential ill-conditioning in model
extraction. Under this context, another important modeling
technique, lookup table (LUT), has regained popularity due
to its low hardware complexity [10]-[12]. The spacing of
LUTs can also be optimized to have a nonuniform pattern
for better accuracy [13], [14], but the achieved performance is
still limited by its simple structure. Other basis functions have
also been developed, e.g., decomposed vector rotation [15]
and splines [16], leading to new models with improved per-
formance and reduced complexity.

Besides the search for better nonlinear basis functions,
a few techniques have been proposed to boost performance by
aggregating a collection of different models. Parallel modeling
techniques include basis functions from multiple models to
generate a larger and more accurate behavioral model [17],
[18]. A different method is to arrange different models in
cascade [19], where the output of one model becomes the input
to the next. Another approach, piecewise modeling method,
keeps a number of models and selects one model each time
based on the input signal characteristics [20]-[22].

In this article, a novel behavioral modeling technique, called
boosted model tree (BMT), is developed to enhance the
linearization performance of conventional linear-in-parameters
DPD models. To achieve improved accuracy and lower com-
plexity, we use small-size pruned Volterra model as the
basic element and aggregate many of them using data-driven
machine learning techniques. Specifically, we design a piece-
wise model structure, named model tree, by using decision
trees to select the suitable submodel for each input data sam-
ple. To further improve the performance, we employ a model
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Fig. 1. AM-AM and AM-PM characteristics using 20- and 200-MHz signals.

boosting technique to build multiple model trees with distinct
tree structures and use them in parallel to produce the output
signal. The final BMT model with both tree-based piecewise
structure and boosting-based parallel architecture is shown
to provide strong linearization performance while consuming
few hardware resources. Dedicated model training algorithms
are also proposed to train both tree structures and submodel
coefficients efficiently. Compared with the exhaustive search
strategy, the proposed optimization techniques can achieve
satisfactory linearization performance with significantly lower
complexity.

The rest of this article is organized as follows. The
background of nonlinear memory effect modeling is briefly
discussed in Section II. Section III describes the proposed
model structure and explains the use of the two machine
learning techniques, i.e., decision tree and model boosting.
Subsequently, in Section IV, we show the training method for
the proposed model. The experimental results and complexity
analysis are reported in Section V, followed by a conclusion
in Section VI.

II. BACKGROUND

The evolution of emerging RF systems and communi-
cation standards has created significant new challenges for
DPD model development. Generally speaking, the reasons
are twofold. The first factor is the widespread adoption of
complex PA architectures, such as multiband/multimode and
multistage Doherty [23]-[25] and load-modulated balanced
amplifiers (LMBAs) [26]-[28]. While these techniques have
greatly improved the energy efficiency of modern RF systems,
these high-efficiency PAs are more difficult to model, because
of the sophisticated interaction between their internal blocks.
In particular, they often exhibit very different nonlinear char-
acteristics when driven to different power ranges.

The second consideration is the wider signal bandwidth,
which requires the DPD model to guarantee accurate fre-
quency response over a wider frequency range. Moreover, due
to the bandwidth limitation in circuit components, PAs typi-
cally exhibit more complicated characteristics with wideband
excitations. As discussed in [29], such frequency-dependent
nonlinearity can strongly affect the linearizability of PAs.
As shown in Fig. 1, with the same PA, the AM-AM and
AM-PM characteristics of 200-MHz signals have signifi-
cantly more dispersions than that with 20-MHz signals.
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Fig. 2. Different memory effect representation in existing DPD models:
(a) MP, (b) GMP, and (c) DDR.

To tackle these issues, DPD models should be designed to have
more powerful capability to represent PA’s memory effects.
Therefore, the design of DPD models must consider more
complicated nonlinearities and memory effects at the same
time. In this regard, proper formulation of nonlinear memory
effect is at the core of DPD model design.

In existing approaches, the nonlinear memory effect is typ-
ically decomposed into different components. Some common
configurations are shown in Fig. 2. The simplest decomposi-
tion is to address each memory sample separately, as in the
MP model. To represent more complex nonlinear memory
effect, previous studies employed a two-input nonlinear func-
tion. For example, in GMP model, each polynomial involves
two adjacent samples (such as ¥(n — 1) and ¥ (n — 2)), while
DDR model considers the instantaneous sample and the other
memory sample (such as ¥(n) and X(n — 2)). It is worth
noting that the nonlinear functions discussed here are not
restricted to polynomials. Other nonlinear operators, such as
LUTs [11], [30] or the combination of polynomials and
LUTs [12], are also used.

Following this line of thinking, it is easy to consider using
more complex nonlinear functions, such as three-input ones,
if we need to model ever more complicated nonlinear memory
effect, as in Fig. 3. This can be achieved by introducing more
terms from the full Volterra model [31], [32] or incorporating
LUTs with higher dimensions [33], [34]. Nevertheless, the size
and complexity of the model can grow exponentially with
the input dimension of nonlinear functions. In wideband
applications, as the model involves more memory samples,
such configuration will lead to prohibitive model complexity.
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Fig. 4. Illustration of a decision tree. (a) Tree structure. (b) Zone selection.

To solve this dilemma, in this work, we attempt to move
one step beyond the conventional “memory decomposition”
methodology and present a new BMT approach by integrating
two machine learning techniques, namely decision tree and
model boosting.

III. PROPOSED MODEL STRUCTURE

Decision tree, as a classification model, can divide the
input space into different zones [35]. An example of decision
tree is shown in Fig. 4(a), and Fig. 4(b) shows the divided
input space. The tree has two real-valued splitting features
w, and w,. When a new input sample X(n) comes in, it is
directed to one of the zones based on the value of splitting
features yq(n) and w,(n). In this example, if w(n) = 0.7
and w,(n) = 0.3, we have y(n) > 0.6 and y,(n) < 0.4, so
X(n) will be classified to Zone C.

To use decision trees to represent PA memory effects,
a simple way is to define splitting features with magnitude
of the signals, i.e., y,,(n) = |¥(n — m)|, making the model
outcome dependent on both current and past memory samples.

An important feature of the decision trees is that they
can perform automatic feature selection during the training
process. When a decision tree is trained, it will determine the
optimal splitting feature and threshold for each node in the
tree. Thus, it is possible to feed a large number of memory
samples to the decision tree, and we can simply let the
optimization algorithm select the dominant factors and model
the nonlinear relationship automatically.

However, a single decision tree will only pick a few most
important features. It may not be sufficient to fully characterize
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the PA behavior. To cope with this deficiency, we propose to
employ a model boosting technique to build multiple decision
trees and encourage each tree to involve different memory
samples. With a few more trees, the aggregated model is
able to cover all necessary memory samples and construct the
model efficiently.

In the following, we will discuss the detailed construc-
tion of the proposed model by applying the abovementioned
methodology.

A. Decision Tree-Based Piecewise Modeling

The decision trees need to be properly arranged in a
behavioral model to unleash their full expressive power. In this
work, instead of designing a model from scratch, we propose
to combine decision trees with small-size pruned Volterra
models. The resulting model is referred to as “model trees.”

As shown in Fig. 5, a model tree defines a set of inde-
pendent submodels, and each input sample selects one of the
submodels for DPD processing. The process of selecting the
corresponding submodel is labeled as “zone selection” and
realized by using a decision tree. In other words, the deci-
sion tree acts as switches to select the best model for each
data sample. For instance, in the previous example, if X(n)
belongs to Zone C, it will be processed by submodel C of
the DPD. With properly designed submodels, the flexibility
of the proposed method is greatly extended and it is possible
to take full advantage of the prior knowledge of the PA by
adopting models that are best suited for a specific PA.

Because of the piecewise structure, model trees also have
low power consumption because each input data sample will
only be processed by the relevant nonlinear operators, rather
than the full model. Compared with using a single submodel,
it greatly increases the degrees of freedom in the model and,
at the same time, makes the basis functions more diverse
because different submodels are naturally orthogonal to each
other. Therefore, the proposed model can achieve good mod-
eling accuracy with minimal hardware resources and power
consumption.

Compared with the existing piecewise models, the proposed
model tree approach has some unique and important features:

1) Supervised Threshold Optimization: As we will show in
Section IV, the optimization procedures can directly optimize
the splitting thresholds of all nodes in the decision tree jointly
with the submodel coefficients so that the DPD can be fully
optimized to achieve the best performance for the PA under
test. It is very different from the conventional approaches that
determine the threshold by analyzing the signal characteris-
tics [20] or the memoryless PA behavior only [36]. Thus,
unlike existing solutions, the proposed algorithm takes full
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Fig. 6. Cross-term generation mechanism in (a) conventional piecewise
models and (b) model trees.

account of PA’s memory effect and can robustly solve the
threshold values within reasonable complexity budget.

2) Optimized Selection of Memory Samples: In model trees,
the splitting feature of each node can be chosen freely from
memory samples of the input signal. While existing methods
must designate the splitting feature manually in advance,
the proposed approach performs the selection automatically by
the optimization algorithm, so the flexibility of the DPD model
is greatly extended. Moreover, as only one feature is selected
for every split, the proposed model tree can work effectively
even when there are large numbers of potential features,
S0 it can cover more memory samples than the conventional
methods.

3) Modeling of Complex Memory Effect: As discussed in
the literature [8], [9], cross terms, namely the interactions
between current and delayed samples, play an important
role in improving model accuracy and DPD performance.
In conventional piecewise models that use the magnitude of
the instantaneous input sample as index, the cross terms can
only be embedded in the model basis functions, as shown
in Fig. 6(a). In contrast, the proposed model tree method offers
a flexible way of cross-term generation. As shown in Fig. 6(b),
the decision tree is built with many splitting features, so dif-
ferent features can be naturally mixed to produce cross-term
effects. Moreover, the zone-dependent coefficients are further
multiplied with the model basis functions to create a more
diverse mixture of nonlinear memory effects. With the super-
vised optimization procedures, the two cross-term generation
mechanisms of model tree can be jointly optimized to generate
powerful cross terms to best model the target PA behavior.

B. Model Boosting and Full Model Structure

To compensate for the distortions excited by wideband
signals, the DPD model needs complex and diverse cross
terms to address the memory effect. Model trees can efficiently
construct such cross terms using the tree structure. However,
for one model tree, only the interactions involving the selected
splitting features can be modeled. Thus, a single model tree
can only include limited types of cross terms.
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To enhance the performance, we propose to employ
multiple parallel model trees using a model boosting
technique [35], [37]. The key idea of model boosting is to
aggregate many simple basic models to improve modeling
accuracy. In this way, the modeling residue from one model
can be compensated by the remaining models.

By applying the boosting technique to model trees,
we obtain the BMT model. In the BMT model, we construct
multiple model trees and let each model tree have distinct
tree structure and submodel coefficients. As each model tree
has a unique tree structure, we can integrate more different
cross terms into the model. It is worth mentioning that using
multiple trees has a very different effect than using more
zones in a single tree because every new tree involves different
memory samples and builds new types of cross terms, while
increasing the number of zones alone is only similar to
increasing the nonlinear order.

The architecture of the full BMT model is shown in Fig. 7.
The input signals are fed to different decision trees and the
tree structures make individual decisions on zone selection
for each model tree. The input data are then processed by
the corresponding submodels and each model tree generates
one output signal which is later summed up to produce the
final output of the model. While the full model has many
blocks, it can be implemented efficiently in hardware, as will
be detailed in Section III-C.

C. Implementation of BMT

In this work, as a proof of concept, we use the magnitude of
current and past input samples, |X(n—m)|, as splitting features
and employ pruned Volterra models as submodels. As the cal-
culation of |#(n—m)| or |X(n—m)|? is included in most pruned
Volterra models, there is virtually no additional complexity to
generate the splitting features. Moreover, the splitting features
have a much lower accuracy requirement than other parts of
the DPD model because we only need to know which zone the
sample lies in and do not need to know the exact value. Thus,
depending on the application, this feature may be exploited to
optimize the hardware utilization.
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The core feature of the BMT model, i.e., the tree structure,
can be implemented with very low hardware complexity
because the design of this part involves comparators and
multiplexers only. An example is shown in Fig. 8, which
implements the tree structure shown in Fig. 4(a).

The implementation of the full BMT model can be fur-
ther simplified because different arithmetic operations can
be shared in hardware implementation if the same model
expression is employed in all submodels. The first shared
component is the basis function generation block since the
same basis functions can be fed to all parts of the model.
In addition, in each model tree, instead of switching the sub-
models, we can just switch the coefficients, as shown in Fig. 8.
Another hardware simplification is the sharing of coefficient
multipliers between different model trees. Specifically, we can
add the coefficients from different model trees together before
multiplying them with the model basis functions, so the
complex multiplications between model coefficients and basis
functions can be shared.

As shown in Fig. 9, due to the proposed hardware sharing
techniques, the additional complexity for adding a new tree
is reduced to adders (for summing up coefficients) and mul-
tiplexers (for tree structures) only, and no complex multiplier
is needed. Note that one complex multiplier can consume
over 1000 LUTs on FPGA [38], whereas adders and mul-
tiplexers only need fewer than 100 LUTs [39], [40]. Thus,
by utilizing low-complexity components, the final model to
be implemented can have very low hardware utilization.
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Therefore, the BMT model derived in this section shows
great potential to achieve both powerful linearization perfor-
mance and low hardware complexity at the same time.

IV. MODEL TRAINING AND COEFFICIENT EXTRACTION

After deriving the model structure, we now present how
to extract the model parameters. The main framework of the
model training is shown in Fig. 10. The training follows
a stepwise strategy, and the trees are trained one by one.
As shown in the left of Fig. 10, the detailed training process
can be described as follows.

1) Add a new empty tree to the model.

2) Optimize every node of the new tree using a top-down
optimization strategy and a binary-split alternate mini-
mization (BAM) algorithm.

3) Fine-tune the coefficients of all existing submodels.

4) Update the target signal for the next model tree.

5) If more trees are needed, go to step 1 and continue the
optimization.

We will discuss each step in detail as follows.

To facilitate the discussion, we make the following def-
initions. All input and output samples are collected in
vector X and y, respectively. ¥ is a matrix where each column
is a splitting feature, and @ is a matrix where each column is
a basis function of submodel.

A. Construction of Tree Structures

To initialize the training algorithm, the modeling target for
building the first tree is the desired model output signal y.
Starting from the second tree, the target signal is the modeling
residue from the previous tree. With the proposed training
procedure, each model tree will be fit to the target signal.

To properly construct the tree, we employ a layer-by-layer
procedure, which starts from the top node and gradually moves
to nodes in lower layers. As shown in the middle of Fig. 10,
to optimize the ith node, we first treat the node as an end node
and assume that it has no child nodes. The splitting feature
and threshold of this node (v; and ;) is then optimized by
the BAM algorithm presented in the right of Fig. 10. The
BAM algorithm will be introduced in Section IV-B. Once the
optimal splitting feature and threshold are found, the dataset
is divided into two parts based on the optimal split and fed
to its two child nodes in the layer below. The optimization of
the child nodes can thus start by using a subset of the data.
This process is iterated until all nodes of the tree are built.

It is worth mentioning that once optimized, the splitting
feature and threshold of a given node will be fixed and are not
affected by the training of nodes in lower layers. In addition,
within one layer, the optimization of different nodes can be
parallelized for faster execution speed on certain hardware.

B. Binary-Split Alternate Minimization Algorithm

Different methods to determine threshold values have been
presented in the prior art, including uniform spacing [12],
k-means clustering [20], and memoryless nonlinearity analy-
sis [13], [36]. Nevertheless, since they do not consider the
memory effects of the PAs and require manual selection
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of splitting features, their performance may be limited in
wideband DPD scenarios.

To find the optimum splitting features and thresholds,
the training process must jointly optimize both the splitting cri-
terion and submodel coefficients. An intuitive model training
method is to do an exhaustive search of all possible splitting
features and splitting thresholds [41], [42]. For each candidate
split, we extract the submodel coefficients with least-squares
(LS) and calculate the total squared error for both sides. The
best split will be found after sweeping over all features and
thresholds. While this method is widely adopted [43], [44],
it has prohibitively high computational complexity because we
need to solve a large number of LS problems.

To reduce computational complexity, a novel BAM algo-
rithm is proposed. As shown in Fig. 11, the splitting criterion
to be optimized is y, < 7, where v is the index of the
feature to be split and 7 is the splitting threshold, so both
v and 7 are optimizable. The submodel coefficients for the
two sides are ¢, and cr. As shown in the right of Fig. 10,
the BAM algorithm alternately optimizes the splitting criterion
and submodel coefficients.

In the first step, the submodel coefficients are fixed, and
we optimize the splitting criterion. In this case, wherever the
splitting threshold is, each data sample must belong to one of
the two submodels, that is to say, an arbitrary input sample
X(n) must be processed by either ¢f, or cg. Suppose that the
modeling error with ¢, and cg is ey (n) and e (n), respectively.
As shown in Fig. 12, if the splitting threshold is moved by just
a little such that ¥(n) is processed by cg before moving and
by ¢, after moving, the variation of total error Ae(n) will
be ey (n) — eg(n). The modeling error with a given splitting
criterion y, < t can thus be obtained by accumulating Ae of

l CooT T 3’»’: N
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all samples below the threshold. Therefore, we can evaluate all
possible splitting thresholds simply by moving the threshold
value across the training data. The split with the lowest error
will be chosen for the current node, after sweeping over all
potential splitting features.

In the second step, the splitting threshold is fixed, so the
dataset can be divided into two parts. We can then update the
coefficients of the two submodels using LS.

By iterating between the two steps, the splitting criterion and
submodel coefficients can be jointly optimized. The complete
description of the BAM algorithm, as well as the implemen-
tation details, is presented in the Appendix.

C. Submodel Coefficient Extraction

Once the tree structures are determined by the top-down
tree construction strategy and BAM algorithm, we can extract
the submodel coefficients of all model trees.

With tree structure fixed, the model becomes linear in the
submodel coefficients and can be expressed in the matrix
format. For example, suppose that in the rth model tree,
we have (1), X(3), and ¥(4) in the first zone and X(2) in
the second zone. Then, the model matrix can be represented as

o) 0
0 Q)
X =|®G) 0 1)

D@ 0

where ®(n) is nth row of ® and 0 represents an all-zero
row vector with the same size as ®(n). Subsequently,
we concatenate the model matrices of all existing model
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trees, including both current and previous ones
X =[X,Xz,...] )
Coefficients of all model trees can then be extracted by LS
¢ = (X7x)7'x"y 3)

where € is a vector including all submodel coefficients.
Afterward, the target signal for tree construction is updated
to be the current modeling residue

r=y-Xe )

That is, the residue of the current BMT model is used as the
target for building the next tree.

This process is iterated until all trees are built, leading to
an optimized BMT model.

D. Dynamic Adaptation in Real Time Operation

After the DPD system is deployed for real-world operation,
the DPD model needs to be updated occasionally to track the
variation of PA characteristics. If the variation of PA behavior
is not significant, the model tree structure can be fixed and
only the submodel coefficients need to be updated. In this
case, the estimation can be done with (3), which is the same
as conventional LS method, leading to reduced computational
complexity.

V. RESULTS
A. Experimental Setup and Evaluation Metrics

To validate the model performance, a test platform was
set up, as shown in Fig. 13, which includes PC, sig-
nal generator, driver amplifier, PA, attenuator, and spec-
trum analyzer. The PA under test was an in-house designed
broadband gallium nitride (GaN) load-modulated balanced
PA operating at 2.1 GHz with 37-dBm output power and
42% drain efficiency [28]. The excitation input signals were
five-carrier 100-MHz and ten-carrier 200-MHz orthogonal
frequency-division multiplexing (OFDM) signals, both with
8-dB peak-to-average power ratio (PAPR). The sampling rates
were set to four times the signal bandwidths. Recorded 1/Q
input and output samples were time-aligned and normalized
before training the model. The model extraction and predis-
torted signal generation were both performed in MATLAB.

In the forward modeling case, the normalized mean square
error (NMSE) is used as the indicator for modeling accuracy.
In the DPD test, we employ both NMSE and adjacent channel
power ratio (ACPR) as performance metrics. For both types
of evaluation, 80000 samples were used for model extraction
and another set of 80 000 data points was used for performance
evaluation.

In the complexity analysis, we follow the same methodology
as in [45]. The main metric is the number of floating-point
operations per sample (FLOPs). Also, the complexity of sub-
models and zone selection is both included.

To evaluate the proposed BMT method, we compared the
proposed BMT technique with both conventional Volterra
models and other piecewise modeling methods, including
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VS [20], MLUT [34], and DLUTI [12] methods. In all
piecewise models, the submodels had the same model structure
as the pruned Volterra model but with different parameter
settings. The model extraction methods for these methods
followed the same procedures as the original papers.

In the evaluation, we used different pruned Volterra mod-
els to best suit the specific cases. For the 100-MHz test,
we used GMP model without leading cross terms as sub-
models. Both even- and odd-order terms were used. When
increasing the signal bandwidth to 200 MHz, the memory
effect becomes stronger, so an additional type of DDR term,
|%(n)|P3%2(n)x* (n — m), was added to the model.

B. Forward Modeling Performance

The modeling accuracy of the proposed BMT model is first
evaluated in a forward modeling setup.

1) Performance Comparison With Parametric Sweeps:
To systematically draw a comparison between the proposed
method and the conventional models, we performed a para-
metric sweep over the model parameter settings and evaluated
the best performance/complexity tradeoff for each model.

In the sweep using 100-MHz signals, we compared
our BMT model with GMP, VS-GMP, DLUTI-GMP, and
MLUT-GMP models. The swept parameters of GMP model
included memory depth M, polynomial order P, and
cross-term length L. Specifically, we swept P from 2 to 8§,
changed M from 3 to 6, and varied L from O to 2. In all
piecewise models, we used the same sweeping range for M
and L. Due to the piecewise operation, using high nonlinear
order is usually unnecessary, so we only considered P = 1
or 2. In VS and DLUTI models, the number of zones K had the
value of 2, 4, 8, or 16. For the MLUT model, the same settings
were used except for the number of zones. We considered
six cases, including three 1-D cases (K¢ = 4, 8, or 16), two
2-D cases (Kp = K1 =4 and Kp) = 8 and K| = 2), and a
3-D case (Kg = 4, Ky =2, and K, = 2), where K; refers to
the number of zones in dividing |X(n —i)|. The sweep of the
BMT model had the same sweeping range for P, M, and L
as other piecewise models. Ny could be 2 or 3 and N, was
swept from 1 to 3.

For 200-MHz signals, most settings were kept the same,
except that DDR terms were added and M was swept
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NMSE performance of GMP and BMT models with sweeping

from 4 to 8 instead. The two modifications were made to
address the wider bandwidth.

To give a quick impression of the results of the para-
metric sweep, we plot the performance of all model set-
tings for GMP and BMT models under 100-MHz excitation
in Fig. 14, where each marker represents the performance and
complexity for one model configuration. The solid lines in
the plot represent the best performance/complexity tradeoff
for the models. The comparison shows that the proposed
BMT model significantly outperforms the conventional GMP
model in terms of both modeling accuracy and computational
complexity.

The full sweeping results for the 100- and 200-MHz cases
are shown in Figs. 15 and 16, respectively. For clarity, only
the best results for each model are shown.

It can be seen that, in both cases, the proposed BMT
model can always achieve better performance than all other
models with similar complexity. Moreover, it also increases the
maximum achievable accuracy by up to 4 dB, compared with
the conventional Volterra models. In contrast, the achievable
performance of all other piecewise models is only slightly
improved by around 1 dB. Thus, it clearly shows that the
proposed BMT method not only uses the hardware resources
more efficiently but also successfully builds the desired cross
terms that are missing in existing methods.

2) Performance Comparison With Increasing Number of
Zones: To more clearly demonstrate the advantage of the
BMT technique over the existing methods, we used the same
submodel for all piecewise models and see how they perform
when we gradually increase the number of zones.

The parameters of the submodels were setto P =2, L =2,
and M = 6 (for 100-MHz signals) or 8 (for 200-MHz signals).
For MLUT and BMT models where different configurations
may have the same number of zones, the best NMSE result is
displayed.

The full results are shown in Figs. 17 and 18 for 100- and
200-MHz test signals, respectively. It shows that the BMT
technique has superior performance than all other methods.
In particular, when using over ten zones, the BMT model
can outperform the best competitor by at least 1 dB in both
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submodel using 100-MHz signals.

cases, and its lead is still enlarging with increasing number of
zones. Actually, the performance of other methods has almost
saturated in this case. It clearly shows that the proposed BMT
method can construct more effective cross terms and achieve
better performance using the same submodel.
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3) Influence of BMT Model Configurations: Afterward,
we further investigate the influence of BMT model configura-
tions. Using the same submodel as the previous comparison,
we swept over the number of trees and the number of tree
layers of the model. The results for 100- and 200-MHz signals
are shown in Figs. 19 and 20, respectively. The general trend
of the two cases is very similar.

According to the results, the performance of BMT model
is boosted significantly by employing multiple trees. A key
observation is that the combination of piecewise and paral-
lel structures can provide decent performance improvement,
which is difficult to achieve with the piecewise modeling
technique alone. For example, in Fig. 19, when we use four
zones in each tree, the NMSE is improved from —35 to
—37 dB by adding the second tree. This performance is even
better than what we can obtain with 16 zones if we keep using
only one tree. Moreover, the performance improvement slows
down when the number of zones in a tree increases to a large
number. Thus, to further improve the accuracy, employing
additional trees provides a new dimension to explore. There-
fore, to achieve good linearization performance, it is important
to take advantage of both piecewise and parallel structures of
the model.
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TABLE I
COMPARISON OF DIFFERENT MODELS USING 100-MHZ SIGNALS

Model FLOPs | NMSE (dB) | ACPR (dBc)
w/o DPD N/A -22.5 -30.3/-30.5
GMP 803 -34.9 -41.3/-43.2
DLUTI 251 -34.9 -41.2/-43.4
VS 218 -35.5 -42.0/-43.6
MLUT 211 -36.0 -41.9/-43.4
BMT 234 -38.4 -45.5/-46.2

C. DPD Performance Comparison

To ultimately verify the performance of the proposed
method, we evaluated the linearization performance of the
models using DPD tests. During all tests, closed-loop esti-
mation was used to extract the model coefficients.

In 100-MHz tests, we set the GMP parameters to P = 6,
M =5, and L = 2. For piecewise models, the polynomial
order of submodels was changed to P = 2. This configuration
has shown to achieve good performance for all methods in
forward modeling. Both DLUTI and VS used eight zones
because using more zones had little improvement on accuracy.
MLUT method used 2-D LUTs with Ko = K; = 4, which
is the best setting in forward modeling. In the BMT model,
we set Ny = 3 and N, = 3. To better balance the complexity,
the submodel used in the BMT method had L = 1. Thus, all
piecewise models had around 200 FLOPs.

It can be shown that the BMT achieves leading lineariza-
tion performance. Spectral results using 100-MHz signals are
shown in Fig. 21. The AM-AM and AM-PM curves for
the BMT model in this case are shown in Fig. 22. The
spectral and time-domain AM-AM results show that the PA
exhibits a significant memory effect, but the proposed method
can still offer good linearization performance. The detailed
performance and complexity results are presented in Table I.
It shows the BMT method clearly outperforms all existing
methods by a large margin with similar level of complexity,
which agrees with the results of forward modeling.

To compare the performance of the models with wider
bandwidth, we further used a 200-MHz setup. In this
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TABLE 11
COMPARISON OF DIFFERENT MODELS USING 200-MHZ SIGNALS

Model FLOPs | NMSE (dB) | ACPR (dBc)
w/o DPD N/A -20.1 -27.1/-27.0
GMP+DDR 1255 -32.7 -37.4/-39.5
DLUTI 415 -325 -37.0/-39.2
VS 358 -32.8 -38.1/-40.0
MLUT 351 -33.9 -38.9/-40.8
BMT 382 -35.6 -41.0/-41.8

case, compared with 100-MHz tests, memory depth M was
increased to 8 and additional DDR terms were used. The rest
settings were the same as the 100-MHz case. The selected
model configurations all perform well in forward modeling
and the complexities are around 400 FLOPs.

The detailed spectral performance for selected model set-
tings in the 200-MHz test is shown in Fig. 23, and we also
depict the AM-AM and AM-PM characteristics of BMT model
in Fig. 24. We draw a detailed comparison of the different
models for the 200-MHz test in Table II. The results of this test
show a similar trend as the previous 100-MHz test and further
confirm the performance of the proposed BMT approach for
wideband behavioral modeling and linearization.
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It is worth mentioning that, while the proposed model is
mainly developed for the wideband frequency-division duplex-
ing (FDD) systems, it can also be applied to other cases,
such as time-division duplexing (TDD) systems, but some
special treatments may be required. For instance, transient
memory effects in TDD must be considered. Nevertheless,
the combination of our work and other existing research on
TDD linearization techniques [46], [47] can also potentially
lead to good linearization performance.

D. Model Extraction Complexity

In this section, we evaluated different model training strate-
gies for BMT. Specifically, we compared the proposed BAM
algorithm with the conventional exhaustive search method [42]
mentioned in Section IV-B. To complete the search within a
reasonable time, we tested eight thresholds for each splitting
feature.

The training time and accuracy are reported in Table III, and
the training was performed on a PC. It shows that the proposed
BAM method can extract the full model with similar accuracy
and significantly shorter time than the exhaustive search strat-
egy. The results show that the computational complexity of full
model update is still manageable in the dynamic environment.

It is also worth noting that, as discussed in Section IV-D,
it is possible to update only the submodel coefficients of the



3986

TABLE III
COMPARISON OF DIFFERENT MODEL TRAINING METHODS

Method Execution Time (s) | NMSE (dB)
Exhaustive Search 225.2 -38.0
BAM 20.3 -37.8

BMT model during the dynamic adaptation. In our test, when
PA behavior does not vary much, such a strategy can further
reduce the model extraction time to 4.5 s while maintaining
the same level of linearization performance.

Furthermore, as we target at wideband DPD solutions,
the bandwidth limit for data converters is also a practical issue
in real-world applications [4]. Some recent works have focused
on this problem and proposed some promising solutions [48],
[49]. We believe that the combination of this work with these
techniques can be a good topic for future research.

VI. CONCLUSION

In this article, we present a novel BMT model to achieve
improved linearization performance under wideband model-
ing scenarios with low hardware complexity. The proposed
approach extends the existing DPD model architectures by
introducing a combination of piecewise and parallel mod-
eling techniques. With the help of both decision tree-based
piecewise structure and boosting-based parallel architecture,
the proposed BMT model is shown to enhance the modeling
capability of conventional pruned Volterra models with low
complexity. We also develop dedicated model training algo-
rithms to efficiently identify the BMT model structure and
coefficients. Therefore, we believe that the BMT modeling
approach offers a new and promising solution to address the
performance and complexity challenges in the design of future
DPD models.

APPENDIX
IMPLEMENTATION OF BINARY-SPLIT ALTERNATE
MINIMIZATION ALGORITHM

In this appendix, we present the detailed implementation
of the proposed BAM algorithm. The splitting criterion to be
optimized is w, < 7, where v is the index of the feature
to be split and 7 is the splitting threshold. Input samples
below the threshold are collected in xy,, and the corresponding
output samples, entries in regression matrix and submodel
coefficients, are yr, @ and cr, respectively. Similarly, all
entities for representing samples above the threshold will have
the subscript R. Note that, starting from the second tree,
the target signal becomes the residue of the previous tree,
so r is used as target signal instead of y in this case.

The BAM method alternately optimizes the tree structure
and submodel coefficients with two iterative steps.

1) Step I: In step 1, the submodel coefficients are fixed, and
we aim to find an optimum splitting threshold. As discussed in
Section IV-B, after fixing submodel coefficients, an arbitrary
input sample ¥ (n) must be processed by either ¢y, or c¢g. Thus,
the modeling error for this sample can only have two possible
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values, |9(n) — ®(n)c|* or |§(n) — @ (n)er|?, where §(n) is
the target and @ (n) is nth row of ®. Therefore, if the splitting
threshold is moved by just a little such that ¥ (n) is processed
by cg before moving and by ¢, after moving, the variation of
total error can be expressed by

Ae(n) = |5(n) — d(n)er|* — |[§(n) — @(n)erl*. (A1)

Based on this observation, we can evaluate all possible
splitting thresholds efficiently by sweeping over all training
data using (A.1). To be specific, when sweeping over the pth
splitting feature, we first sort the data samples based on the
value of y, and then gradually move the splitting threshold
from min y, to max y,. Every single move will only change
the modeling error of one training sample. We define e(p, n)
as the total modeling error when the splitting threshold is
Y(n, p). If we set the initial error to zero, i.e., e(p,0) = 0,
the relative modeling error of all possible splitting thresholds
can be obtained by

e(p,n)=e(p,n — 1)+ Ae(n). (A.2)

Finally, the split with the lowest error will be chosen for the
current node.

In practice, it is also important to avoid too imbalanced
split, i.e., the number of samples for one branch is below a
predetermined threshold Ny,. When the number of samples is
too small, the estimation of submodel coefficients may not
be accurate, resulting in overfitting. Besides, it is also not
efficient to assign a submodel that works only for very few
samples. Thus, too imbalanced split should be avoided and
excluded before searching for the best split. The final results
are generally not sensitive to the value of Ny. In this work,
we set Ny = 50, where Q is the number of coefficients in a
submodel.

2) Step II: In step 2, the splitting threshold is fixed. Thus,
the dataset can be divided into two parts based on the splitting
threshold obtained from the previous step. The model becomes
linear in parameters, and the submodel coefficients can be
easily extracted using LS

&, = (O D) oLy, (A3)

and

tr = (Or" 0p) " O yr. (A4)

3) Complete BAM Algorithm: The two steps will be iterated
until convergence. Based on our experience, typically, around
five iterations are sufficient to achieve satisfactory results.
As the main complexity, LS extraction, is performed only once
in every iteration, the computational complexity and memory
requirement can be kept low.

To initialize the algorithm, we need to have initial coef-
ficients for the two submodels. We achieve this by dividing
the data into two clusters and extracting one submodel in
each cluster. In our implementation, the clustering is done
by performing the k-means algorithm on the target signal y
(or r) with k = 2. In this way, we obtain two submodels
that are different from each other but can both reflect the
PA characteristics. One thing to note is that the proposed
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Algorithm 1 BAM Algorithm

Input: ©, ¥,y

Output: v, 7

1: Initialization with k-means algorithm and sub-model LS
extraction

2: repeat

3:  Calculate Ae using (A.1)

4. for p=1to P do

5 Initialization: e(p,0) =0

6: Sort Ae based on the pth column of ¥

7

8

9

forn=1to N do
Apply (A.2) to obtain e(p, n)

end for
10: end for
1: (v, 1) =argmin, , e(p,n) s.t. Ny, <n < N — Ny,
122 =WY(,p)
13:  Divide samples into two parts based on the criterion

Yy <1
14:  Extract sub-models using (A.3) and (A.4)
15: until the error converges or maximum number of iterations
is reached

initialization algorithm generates two sets of coefficients, but
it is unclear which one should be assigned to ¢j, (or cg).
Thus, for better robustness, it is desirable to compare
both assignments and keep the one resulting in better
performance.

To implement the BMT model in practical applications,
the splitting threshold r may need to be quantized to save hard-
ware resources. Thus, at the end of optimization algorithm,
we can optionally quantize 7 to a relatively low precision.
Based on our experience, there is only negligible accuracy
loss with up to 5-bit quantization.

A complete description of the BAM algorithm is presented
in Algorithm 1.
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