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Abstract— A second-order analytic extension of eigenvalue
(AEE) method is presented and investigated for efficiently com-
puting the Z-parameters of passive RF circuits over a wide
frequency band with full-wave accuracy. The Z-parameters of
an RF circuit are first extracted based on a full-wave sim-
ulation on sampling frequencies and then decomposed into
eigenmodes, whose eigenvalues are analytically extended to
all other frequencies within the frequency band of interest
based on functional equations constructed from second-order
series and parallel RLC circuits. An eigenvector-eigenvalue
identity is adopted to compute the frequency-dependent eigen-
vectors from the eigenvalues of the submatrices, which are
used in the expansion of the Z-parameters. A comparison with
full-wave solutions is given for the second-order AEE where
four frequencies are employed to accurately approximate the
Z-parameters and predict the frequency response over the entire
band of interest that goes to much higher frequencies than the
first-order AEE. With this, the previously developed first-order
AEE for a quasi-static analysis is successfully extended to much
higher frequencies. Numerical examples are provided to validate
the accuracy and demonstrate the capability of the second-order
AEE. It is found that the second-order AEE is very accurate for
modeling RF circuits with electrical sizes up to one wavelength
that possibly contains resonances, as compared to the first-order
AEE, which is applicable only to RF circuits with electrical sizes
smaller than one-tenth to one-fifth of a wavelength that contains
no resonance.

Index Terms— Eigenmode analysis, fast frequency sweep,
RF device modeling.

I. INTRODUCTION

FAST frequency sweep analysis of RF circuits is critical for
the design and optimization of novel circuits and devices

in electronic gadgets and wireless communications. Over the
past three decades, a variety of fast frequency sweeping
techniques have been developed to predict the characteristics
of RF circuits over a broad frequency band of interest based on
simulations at a few sampling frequencies. These techniques
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are either based on physical models such as lumped equiv-
alent circuits [1]–[6] or mathematical models such as those
employed in the model-based parameter extraction (MBPE)
[7], [8], the asymptotic waveform evaluation (AWE) [9]–[11],
the Padé via Lanczos (PVL) [12]–[15], and the solution space
projection (SSP) [16]–[18]. Mathematically based techniques
are found to be more general and powerful as they do not
require a physical model that has to accurately mimic the true
characteristics of the original circuits and they are applicable
to any circuit configuration and any frequency range.

Recently, we developed a new method based on an analytic
extension of eigenvalues (AEEs) for the quasi-static analysis
of miniature RF circuits [19]. In this method, a standard
eigenvalue problem based on the extracted impedance para-
meters is solved at one or two sampling frequencies, and
the computed eigenvalues are analytically extended to all
other frequencies in the frequency band of interest based
on a functional equation formulated from RLC circuits. The
Z-parameters over the entire frequency band can then be
computed very quickly from their eigenexpansion in terms of
the eigenvectors. In [19], we tested this method on miniature
RF circuits, where a simple series RLC circuit is used to
extend the eigenvalues and the eigenvectors are assumed
constant within the entire frequency band. We found this
quasi-static AEE to be very accurate and efficient for a
circuit or component whose electrical size is smaller than
one-tenth to one-fifth of a wavelength. However, significant
discrepancies are observed at higher frequencies since the
simple series RLC circuit is unable to capture the variations
of the eigenvalues, and the assumption that the eigenvectors
are frequency-independent is no longer valid. Although for
some RF circuits one can divide them into subcomponents that
satisfy the quasi-static criteria, this approach is not applicable
to general RF circuits when such a decomposition is not
feasible. In this article, the quasi-static restriction is allevi-
ated by extending the previously developed AEE to a much
higher frequency range so that it can be used for a broader
range of applications. For this, the resonant and antiresonant
behaviors that occur in the eigenmodes are discussed first, and
second-order models are constructed by including more RLC
blocks. The frequency-dependent eigenvectors are modeled
by a so-called “eigenvector-eigenvalue identity” [20]. Finally,
the Z-parameters of the RF circuits are approximated from the
full-wave solutions at four frequencies for the case of the
second-order AEE, and the frequency response can then be
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Fig. 1. N-port circuit network and Z-matrix description.

predicted quickly with full-wave accuracy. This approach is
found to be very accurate and efficient for modeling RF
microstrip-type circuits with electrical sizes up to one wave-
length that can even possibly contain resonances.

This article is organized as follows. Section II provides a
detailed formulation of the AEE on extracted Z-parameters;
Section III presents several numerical examples to validate the
proposed approach and demonstrate the ability to solve prac-
tical problems. Finally, this article is concluded in Section IV.

II. FORMULATION

In this section, we first review the basic AEE formula-
tion and discuss the second-order representation of eigen-
values to capture frequency dependence over a broader fre-
quency range. We then present the method to calculate the
frequency-dependent eigenvectors which were assumed to be
frequency-invariant in the quasi-static analysis.

A. Eigenanalysis on Z-Parameters

The proposed AEE is applied directly to the extracted
Z-parameters which can be obtained from any full-wave
analysis method. Given an N-port circuit as shown in Fig. 1,
the Z-parameters are defined as

[Z ]{I } = {V } (1)

where [Z ] = [R] + j[X] is the N-port impedance matrix,
{I } is the current vector flowing into the ports, and {V } is
the voltage vector on the ports. Now consider a standard
eigenvalue problem

[Z ]{vn} = λn{vn} (2)

where λn are the eigenvalues and {vn} are the corresponding
eigenvectors which are referred to as characteristic currents
or eigencurrents. Since [Z ] is not Hermitian, λn and {vn} are
complex. However, for reciprocal circuits whose impedance
matrix is complex symmetric, the eigenvectors are orthogonal
in a transpose sense

{vm}T{vn} = μnδmn (3)

where δmn denotes the Kronecker delta function, the super-
script {·}T represents the transpose, and μn = {vn}T{vn}. The
orthogonal eigenvectors {vn} can be chosen as a set of modes
to expand any current vector {I } flowing into the ports

{I } =
�

n

αn{vn}. (4)

The expansion coefficients αn are to be determined depend-
ing on whether the network is excited by a current or voltage

Fig. 2. C-type and L-type eigenvalues. (a) Frequency behavior of C-type
eigenvalues. (b) Frequency behavior of L-type eigenvalues.

source. For a voltage excitation {Vsrc}, substituting (4) into (1)
and testing it with {vm} yields�

n

αn{vm}T[Z ]{vn} = {vm}T{Vsrc}. (5)

Because of the orthogonality relationship (3), (5) reduces to

αn = {vn}T{Vsrc}
λnμn

. (6)

For a current excitation {Isrc}, the derivation of the coeffi-
cients αn is very straightforward, and one only needs to take
the inner product of (4) with {vm}, which gives

αn = {vn}T{Isrc}/μn . (7)

B. Analytical Extension of Eigenvalues

Next, we examine the physical meaning of the eigenvalues
and find an appropriate representation for them. Since the stan-
dard eigenvalue decomposition diagonalizes the impedance
parameters into

[Z ] = [v]

⎡
⎢⎢⎢⎣

λ1

λ2

. . .

λN

⎤
⎥⎥⎥⎦[v]−1 (8)

the eigenvalue λn corresponds to the impedance for the nth
eigenmode.

Through numerical studies, it is found that all the eigen-
values have frequency behaviors that can be categorized into
two types: the C- and L-type. For C-type eigenvalues (λC

n ) as
shown in Fig. 2(a), the modal impedance is capacitively dom-
inant at low frequencies and the corresponding eigenvalue has
a negative imaginary part. As frequency increases, resonance
occurs and the imaginary part of the eigenvalue crosses zero.
The behavior of the C-type eigenvalues at low frequencies
can be well represented by a series LC circuit model. As for
L-type eigenvalues (λL

n ) as shown in Fig. 2(b), the modal
impedance is inductively dominant in a low band below the
resonance frequency, and its imaginary part is positive. Around
the resonant frequency, the imaginary part reaches a peak
value and rapidly changes sign to a negative value. At low
frequencies, these eigenvalues exhibit behavior that can be
modeled by a parallel LC circuit.

To model various losses evident in device characteristics,
a lumped resistance is included in the models based on the
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Fig. 3. RLC representations of eigenvalues. (a) Series RLC model for
C-type eigenvalues. (b) Parallel RLC model for L-type eigenvalues.

physical loss mechanism. For conductor loss caused by a finite
conductivity, a resistor can be added by connecting it in series
with the inductor, whereas for dielectric loss, a resistor can
be inserted in parallel with the capacitor. The resulting series
and parallel circuit models that describe the C- and L-type
eigenvalues are shown in Fig. 3(a) and (b). The eigenvalue
for each mode can therefore be approximated by either the
impedance of the series circuit model (Z s

n) as

λC
n = Z s

n = Rn + jωLn + 1

Gn + jωCn
(9)

or the admittance of the parallel circuit model (Y p
n ) as

	
λL

n


−1 = Y p
n = Gn + jωCn + 1

Rn + jωLn
. (10)

In the quasi-static analysis where the overall electrical size
of a circuit or component is a small fraction of the wavelength,
the eigenvalues are either capacitively or inductively dominant,
and there are no zero-crossings and therefore no resonances.
A single series circuit model can be used to fit the C-type
eigenvalues and a single parallel circuit model can model the
L-type eigenvalues, which can be automatically determined by
the sign of the imaginary part of the eigenvalues. A full-wave
simulation can be performed at two frequencies to extract the
characteristic inductance Ln and capacitance Cn , whose values
are assumed constant over the frequency range of interest. The
modal resistance Rn and conductance Gn , however, are not
necessarily to be constant and their behaviors as a function
of frequency are supposed to be a priori knowledge. Specif-
ically, the frequency-dependent resistance is assumed to vary
exponentially as Rn ∼ f β . For the conductor loss where the
skin effect is considered, we have

Rcond
n = Rcond

n0 f 0.5. (11)

The loss introduced by the absorbing boundary condi-
tion (ABC) can be assumed constant, and the conductance
corresponding to the dielectric loss varies with frequency as

Gdiel
n = Gdiel

n0 f. (12)

As frequency goes higher, the eigenvalues will cross zero
and resonance occurs. One RLC circuit is no longer able to
capture the variations since the contribution of higher modes
with resonances is no longer negligible. By including more
RLC blocks, and specifically, connecting series RLC circuits
in parallel or parallel RLC circuits in series, higher order

Fig. 4. Second-order RLC representations for eigenvalues. (a) Second-order
parallel RLC model. (b) Second-order series RLC model.

models are obtained as illustrated in Fig. 4. For the Nth-order
series RLC model, the eigenvalues are expressed as

1

λC,N
n

= Y s
tot =

N�
i=1

Y s
ni (13)

with

Y s
ni =

�
Rni + jωLni + 1

Gni + jωCni

�−1

(14)

whereas the eigenvalues for the Nth-order parallel RLC model
can be written as

λL ,N
n = Z p

tot =
N�

i=1

Z p
ni (15)

with

Z p
ni =

�
Gni + jωCni + 1

Rni + jωLni

�−1

. (16)

In this article, the second-order models consisting of two
RLC blocks are used, where the Z-parameters at four fre-
quency points computed by a full-wave analysis are employed
to determine Rn , Gn , Ln , and Cn through point-matching.
The second order is chosen because 1) a very significant gain
in both accuracy and efficiency can be achieved by going from
the first to the second order and 2) second-order RLC blocks
are still basic enough to model any small distributive circuits.
Although in principle, one can increase the order further higher
by adding more RLC blocks to improve the accuracy and
extend the range of validity to even higher frequencies, it is
not practical for engineering applications because 1) the sub-
sequent gains by going beyond the second-order become less
significant and 2) the associated computational cost, mostly
due to the full-wave simulation at an increased number of
sampling frequencies, will increase accordingly. To maintain
high efficiency, high orders should be applied to larger circuits
or higher frequencies. However, for larger circuits or higher
frequencies, standard RLC blocks may not be most suited
to model their complicated responses, thus compromising
the generality of the method. Based on these considerations,
the second-order model is found both sufficient and robust for
practical RF circuit design purposes.
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To extract Rn , Gn , Ln , and Cn through point-matching,
a direct solution of the nonlinear equations in (13) and (15) is
tedious, and thus approximations have to be made to simplify
the extraction of the parameters. By assuming that the losses
are relatively small such that Rni � ωLni and Gni � ωCni ,
which hold for most practical applications, the expression
in (14) can be approximated as

Im


Y s

ni

� ≈ ωCni

1 − ω2 Lni Cni
(17a)

Re


Y s

ni

� ≈ Gni + ω2C2
ni Rni	

1 − ω2 Lni Cni

2 (17b)

and (16) can be approximated as

Im



Z p
ni

� ≈ ωLni

1 − ω2 Lni Cni
(18a)

Re



Z p
ni

� ≈ Rni + ω2 L2
ni Gni	

1 − ω2 Lni Cni

2 . (18b)

Note that the imaginary parts (17a) and (18a) are exactly
the same as the expressions for the corresponding lossless
models. These equations are first utilized to extract Lni and
Cni from the eigenvalues at four frequencies, which is readily
solvable by a nonlinear numerical solver in MATLAB. The
values are then substituted into the real parts (17b) and (18b),
and the constant parameters in Rni and Gni can be obtained by
solving the corresponding linear equations. This process can
be iterated a few times until results converge, and convergence
is found to occur very quickly.

C. Reconstruction of Eigenvectors and Impedance
Parameters

Although the eigenvectors may be assumed to be constant
at low frequencies similar to the modal fields of quasi-TEM
modes, they vary dramatically with frequency at higher fre-
quencies, especially when discontinuities exist in the struc-
ture so that higher order modes are excited. To capture the
frequency-dependent behavior of the eigenvectors, a so-called
“eigenvector-eigenvalue identity” [20] is utilized. Given a
n×n Hermitian matrix [A] with eigenvalues λ1(A), . . . , λn(A),
the magnitude of the j th component of the normalized eigen-
vector vi for the j th mode is given by

|vi, j |2 =

n−1�
k=1

�
λi(A) − λk

	
M j


�
n�

k=1,k �=i
[λi (A) − λk(A)]

(19)

where λ(M j ) is the eigenvalue of the submatrix [M j ] obtained
by removing the j th row and column of matrix [A]. Note that
the submatrix [M j ] is actually the impedance matrix with the
j th port open; hence the AEE can be applied to [M j ] to obtain
the eigenvalues.

The identity (19) yields only information about the magni-
tude of the components of a given eigenvector but it does
not provide the phase of these components. In addition,
the Z-parameters are usually not Hermitian for a circuit with
loss. Consequently, this identity cannot be applied directly

to our problem. Since the losses in most well-designed RF
circuits are very small, the real parts of the eigenvectors
dominate over the imaginary parts and contribute more to the
characteristic current distribution. Therefore, the eigenvectors
can be approximated as real when used in the eigenexpansion
of the Z-parameters. Under this assumption, we found that (19)
is still applicable when the real part of the right-hand side is
taken. Furthermore, if the electrical size of the circuit does
not exceed one wavelength, the eigenvectors do not change
their polarities, and the sign of each component vi, j can
be determined from any sampling frequency. For a circuit
whose electrical size is larger than one wavelength, we can
decompose it into several smaller subcomponents, perform
AEE to each subcomponent, and re-combine them to obtain
the characteristics of the entire circuit.

Once the eigenvalues and eigenvectors are approximated
from a few sampling frequencies, the impedance parameters
can be reconstructed and thus the characteristics of a circuit
can be predicted. By definition, Zi j can be founded by driving
port j with the current I j = 1, leaving all other ports open-
circuited, and measuring the voltage at port i , so that

Zi j = Vi

I j

����
Ik =0 for k �= j

= Vi |I j =1, Ik =0 for k �= j . (20)

Therefore, we can excite port j and leave all other ports
open-circuited, which gives {I ( j)

src } = [0 . . . 0, 1, 0, . . . , 0]T

with only the j th element to be one and all others to be zero.
By substituting the current source vector {I ( j)

src } into the modal
expansion in (4), the voltages on the ports can be computed as


V ( j)

� = [Z ]



I ( j)
src

� =
�

n

α( j)
n [Z ]{vn} =

�
n

α( j)
n λn{vn} (21)

where the coefficients α
( j)
n are obtained from (7) as α

( j)
n =

{vn}T
j /μn . The Z-parameters can finally be written in a compact

form as

[Z ] =
�

n

λn{vn}{vn}T/μn . (22)

III. NUMERICAL RESULTS

In this section, we present several numerical examples to
demonstrate the capability of the proposed AEE approach
by comparing the results with the full-wave solution. The
finite-element method (FEM) is employed to produce all
full-wave results including those at sampled frequencies.

A. Microstrip Line

A microstrip line example is first used to examine the
capability of various models to represent the eigenvalues. The
test example consists of a conducting strip, which is 0.04 mm
wide and 1.0 mm long, and is printed on a substrate with
a thickness of 0.15 mm and a dielectric constant of 56,
as shown in Fig. 5. The conductor is made of copper with
a thickness of 0.01 mm and a conductivity of 5.8 × 107 S/m.
The substrate is chosen to be lossy with a dielectric loss
tangent of 0.02. The simulation domain that encloses the
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Fig. 5. Numerical example 1: a microstrip line.

Fig. 6. Eigenvalues of the two modes in example 1 from 1 to 50 GHz using
the second-order AEE (with four frequencies at 1, 15, 30, and 45 GHz).
Top: imaginary parts. Bottom: real parts.

entire structure is truncated with an ABC that has dimensions
of 1.40 mm × 1.10 mm × 1.00 mm.

We first applied the first-order AEE with two frequency
points at 0.1 and 15.0 GHz using the parallel RLC circuit
to fit the inductively dominant mode and a series RLC
circuit to fit the capacitively dominant mode. The conductor
loss with a frequency behavior of R = R0 f 0.5 and the
dielectric loss that varies as G = G0 f are included to
model losses in the parameter extraction, which achieved a
very good accuracy for the real parts of the eigenvalues.
Compared with the solution of full-wave analysis performed
directly at each frequency point, an excellent agreement was
achieved with the first-order AEE up to 17 GHz. However,
at higher frequencies, the first-order models become less and
less accurate. In such cases, second-order models can be
used to provide more accurate predictions. Here, applying
the second-order AEE, we consider a frequency range up to
50 GHz and we choose four sampling frequencies at 1, 15, 30,
and 45 GHz. The eigenvalues and the calculated S-parameters
are presented in Figs. 6 and 7. A comparison between the
series and parallel models is also plotted. Unlike the first-order
models, the difference between the two second-order models
in the capability of fitting the eigenvalues is much smaller.
However, it is still recommended to choose proper models
for each mode based on the polarity of its eigenvalue such
that the series RLC circuit is used for C-type modes and

Fig. 7. S-parameters for the microstrip line of example 1 from 1 to 50 GHz
using the second-order AEE (with four frequencies at 1, 15, 30, and 45 GHz).
Top: magnitude. Bottom: phase.

Fig. 8. Numerical example 2: three-port microstrip lines.

the parallel RLC circuit for L-type modes. In this example,
mainly the quasi-TEM mode exists, resulting in relatively
constant eigenvectors whose values for the two modes are
v1 = [1,−1]T/

√
2 and v2 = [1, 1]T/

√
2 , respectively. As can

be seen, the second-order AEE provides excellent results all
the way up to 50 GHz.

B. Multiport Circuit Analysis

Next, we examine the proposed AEE for the analysis of
multiport networks. For this, a three-port circuit is designed,
which consists of two connected microstrip lines that are
perpendicular to each other, as depicted in Fig. 8. The hor-
izontal line has a width of 0.04 mm and the vertical line
is 0.06 mm wide. The entire structure is 0.6 mm long and
0.4 mm wide. Port 1 is excited by a 1.0-A current source, and
ports 2 and 3 are both loaded with a 50-� resistor. The perfect
electrically conducting (PEC) boundary condition is applied to
all boundaries except for those where the ports are defined.

Fig. 9 gives the eigenvalues as well as the eigenvectors
for all three modes. For a better view, the imaginary parts of
the eigenvalues for capacitively dominant modes are inverted.
It is clear from the figures that resonances occur, and the
eigenvalues change their signs across the resonant frequen-
cies. The AEE utilizes four frequency points equally placed
between 0.5 and 90 GHz, and the results are compared with
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Fig. 9. Eigenvalues and eigenvectors of the three modes in example 2 using
the second-order AEE. (a) Mode 1. (b) Mode 2. (c) Mode 3. Left: imaginary
parts of the eigenvalues. Right: three components of the eigenvector for each
mode.

the full-wave solution. Unlike example 1, the eigenvectors
are no longer constant—due to the higher frequencies and
higher-order modes excited at the discontinuities. To cap-
ture the variation of the eigenvectors with respect to fre-
quency, the “eigenvector-eigenvalue identity” is employed.
When the electrical size of the device is smaller than one
wavelength, the sign of the eigenvectors may be assumed
unchanged and can then be obtained from any sampling
frequency. In identity (19), the eigenvalues of all submatrices
are required. As mentioned earlier, M j can be considered to
be the Z-parameters with the j th port open, and therefore can
also be modeled by the second-order RLC .

The voltages from the AEE and full-wave results at the three
ports are compared in Fig. 10(a)–(c). Excellent agreement is
observed up to 50 GHz where the relative error is smaller
than 0.5%. At higher frequencies, the error increases and the
maximum error is around 4% except for some points where
the absolute values are small or cross zero. As a comparison,
the AEE results without taking into account the frequency
variations of the eigenvectors are also presented in Fig. 11
where the eigenvectors are assumed constant by taking the
values at the first frequency point. The maximum relative
error in this case is 5% below 20 GHz. The accuracy of

Fig. 10. Second-order AEE results versus full-wave analysis for example 2.
(a) Voltage at port 1. (b) Voltage at port 2. (c) Voltage at port 3.

the results indicates that the second-order RLC can correctly
represent the eigenvalues, and the “eigenvector-eigenvalue
identity” in (19) is able to capture the frequency variation
of the eigenvectors. Therefore, the AEE can successfully
predict the characteristics of multiport RF circuits that possibly
contain resonances. It is also found that the second-order AEE
with four frequency points can achieve very high accuracy
up to a frequency where the electrical size is about one
wavelength.

C. Numerical Modeling of a Low-Pass Filter

To illustrate the practical application of the proposed AEE,
a stepped-impedance low-pass filter [21] is analyzed whose
dimensions are given in Fig. 12. The filter consists of eight
series stubs and is fabricated with microstrip lines with three
different characteristic impedances, 50, 20, and 120 �. It has
a maximally flat response and a cutoff frequency at 2.5 GHz,
and the insertion loss at 4 GHz is below −20 dB.

Since the electrical size of the whole device is larger
than one wavelength within the frequency range of interest,
a direct application of the second-order AEE may not yield
an accurate solution over the band. To overcome this problem,
we divide the whole structure into four smaller segments with
a length of roughly 11 mm, apply AEE to each part, and
then cascade the parameters to obtain the characteristics of
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Fig. 11. Second-order AEE results by assuming constant eigenvectors versus
full-wave analysis for example 2. (a) Voltage at port 1. (b) Voltage at port 2.
(c) Voltage at port 3.

Fig. 12. Geometry and dimensions of a low-pass filter.

the entire device. To eliminate the effect of the excitation
at the ports, the short-open calibration based deembedding
technique [22], [23] is adopted. Otherwise, the cascading will
give an incorrect result due to the distorted field distribution
at the excitation ports. To illustrate the procedure of the deem-
bedding technique, consider the diagram shown in Fig. 13
where the original geometry, also known as the device under
test (DUT), is extended at both ports, and the extensions are
termed as error boxes. A full-wave simulation is performed
first to obtain the S-parameters of the extended structure.

Fig. 13. Illustration of deembedding procedure. (a) Cascade of the DUT and
error boxes. (b) Mirrored models of the open- and short-circuited error box.

Fig. 14. Eigenvalues for segment 1 of the filter. Top: imaginary parts. Bottom:
losses for each mode.

By open- and short-circuiting the error boxes at the DUT
reference planes, the ABCD matrices of the error boxes are
computed from full-wave simulation. Through mathematical
manipulation, the characteristics of the DUT can be calculated
by eliminating the contributions of the error boxes from the
global S-parameters. A detailed formulation can be found
in [23]. Once the ABCD matrices are obtained for all the
segments, the ABCD matrix for the entire device can be
obtained by multiplying the ABCD matrices of the segments
consecutively. Alternatively, the S-parameters of the whole
device can be obtained directly from the S-parameters of the
segments through cascading as illustrated in [24], which is
more general but less straightforward.

The eigenvalues and eigenvectors for segment 1 are shown
in Figs. 14 and 15. The four frequencies used for the AEE
are selected equally between 0.5 and 5.5 GHz for the desired
frequency range up to 5.5 GHz; however, the results are plotted
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Fig. 15. Eigenvectors for segment 1 of the filter.

Fig. 16. S-parameters of segment 1 of the filter. Top: magnitude. Bottom:
phase.

TABLE I

COMPUTATIONAL COSTS FOR THE SIMULATION OF THE LOW-PASS FILTER

up to 7 GHz to show the behavior of the AEE beyond its
intended range. For a two-port circuit, the submatrices in the
“eigenvector-eigenvalue identity” are the input impedance at
one port while leaving the other port open. It is interesting to
observe that for all segments the eigenvalues of the submatri-
ces start with a negative imaginary part and are capacitively
dominant at low frequencies (C-type eigenvalues). As has been
studied by the antenna community [25], the series resonance
is a natural resonance that occurs in the input impedance of
an antenna. The magnitude and phase of the S-parameters
for segment 1 are given in Fig. 16, and to demonstrate the
better performance of the second-order AEE, the results of
the first-order AEE based on 0.5 and 2.2 GHz are also shown
for comparison. As can be seen, the first-order AEE achieves
a very good accuracy up to 2.5 GHz whereas the agreement of
the second-order AEE reaches up to 6 GHz. The characteristics
of other segments are obtained similarly and then cascaded
together to obtain the characteristics of the entire device.

Fig. 17. S-parameters of the low-pass filter. Top: magnitude. Bottom:
phase. Blue line: full-wave direct. Black line: full-wave cascading. Red line:
second-order AEE cascading. Green plus sign: first-order AEE cascading.

Fig. 17 compares the AEE results and the full-wave solu-
tions for the entire device. Note that the deembedding tech-
nique is applied not only to the four segments but also to the
entire structure to remove the effects of all excitations and
make the results comparable. The original geometries shown
in Fig. 12 are considered to be the DUT and all excitation ports
are fed by 9-mm extensions. Excellent agreement is achieved
except for S11 at low frequencies. The curves of the AEE with
cascading match very well with those of the full-wave solution.
The discrepancy between the direct and cascaded analyses
comes from the fact that only the quasi-TEM mode is consid-
ered and all higher-order modes are ignored in deembedding
and cascading. The computational costs are listed in Table I to
show the efficiency of the proposed approach. The full-wave
analysis sweeps from 0.5 to 7 GHz with 106 points whereas
the second-order AEE requires full-wave results at only four
frequency points. The cascaded full-wave results have a larger
cost than the direct analysis due to port extensions of each
segment and the additional full-wave simulation of these
extensions. Nevertheless, a speedup of 15.5 is still achieved for
a fast evaluation of the filter with the use of the second-order
AEE.

IV. CONCLUSION

A second-order AEE approach has been proposed and
investigated to achieve a fast frequency sweep for efficient
numerical modeling of passive RF circuits. In this approach,
the Z-parameters are first extracted from a full-wave analy-
sis, and the eigenvalue decomposition is then performed to
obtain the eigenmodes. Second-order series or parallel RLC
circuits are employed to model the eigenvalue for each mode.
To capture the frequency dependence of the eigenvectors,
an “eigenvector-eigenvalue identity” is adopted where the
magnitude of each component in the eigenvectors can be
constructed from the eigenvalues of the matrix as well as its
submatrices. Only four frequency points are required to extract
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all the characteristic parameters, and as a result, the frequency
response of the device can be predicted over a broad frequency
range. It has been found that the second-order AEE is very
accurate for frequencies up to the point where the electrical
size of the circuit reaches one wavelength. More RLC blocks
can be added to increase the order of the approach and
extend the validity to even higher frequencies, but the cost
will also increase. If the circuit size is large, one can divide
the entire structure into smaller segments and then cascade
their characteristics together. The second-order AEE has been
found to be very efficient and fast because one has to compute
the characteristic modes at only four frequencies—instead of
at many frequencies as in the direct full-wave analysis—to
capture the variations in the frequency response.
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