IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 68, NO. 12, DECEMBER 2020

5123

Micromachined Silicon-Core Substrate-Integrated
Waveguides at 220-330 GHz

Aleksandr Krivovitca™, Umer Shah

and Joachim Oberhammer

Abstract— In this article, we present a new technology platform
for creating compact and loss-efficient wafer-scale integrated
micromachined substrate-integrated waveguides with silicon-core
(Si-SIWs) for the 230-330-GHz frequency range. The silicon
dielectric core enables highly integrated sub-millimeter-wave
systems, since it allows for downscaling the waveguide’s cross
section by a factor of 11.6, and the volume of compo-
nents by a factor of 39.3, as compared to an air-filled
waveguide. Moreover, geometrical control during fabrication of
this type of waveguides is significantly better as compared to
micromachined hollow waveguides. The measured waveguide’s
insertion loss (IL) is 0.43 dB/mm at 330 GHz (0.14 dB/A,,
normalized to the guided wavelength). A low-loss ultrawideband
coplanar-waveguide (CPW) transition is implemented to enable
direct measurements of devices and circuits in this waveguide
platform, and this is also the very first CPW-to-SIW transition
in this frequency range. The measured IL of the transition is
better than 0.5 dB (average 0.43 dB above 250 GHz), which is
lower than for previously reported CPW-to-SIW transitions even
at 3 times lower frequencies; the return loss is better than 14 dB
for 75% of the band. As devices examples implemented in this
platform, a filter and H-plane waveguide bends are shown. The
waveguides and the devices are manufactured by deep-silicon
etching using a cost-efficient two-mask micromachining process.

Index Terms— Coplanar waveguide (CPW), CPW probes,
CPW transition, microfabrication, micromachining, substrate
integrated waveguide (SIW), waveguide filter.

I. INTRODUCTION

OMMERCIAL interest in highly integrated, cost-

efficient, simple, and reliable ultra-high frequency
platforms has grown dramatically in the last couple of
decades [1]. Computer numerical control (CNC) milling of
metal in split-block designs is the most established method
to fabricate waveguide components, since this technology
provides relatively high precision and relatively low sur-
face roughness resulting in acceptable low insertion loss
(IL) [2]. However, the manufacturing process requires a
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large support metal block, resulting in bulky devices, and
the whole process is not scalable to volume production.
A promising alternative fabrication technology is silicon-
micromachining using deep reactive-ion-etching (DRIE),
which allows for batch fabrication, has superior (microme-
ter) precision, enables high-complexity geometries, as well
as nanometer surface roughness and thus better insertion
loss. Impressive device performance has been achieved by
micromachining in various sub-THz frequency bands, for
instance, for waveguides [3]-[5], couplers [6], low-loss fil-
ters [7], [8], OMTs [9], antennas [10], [11], and MEMS-
reconfigurable devices such as waveguide switches [12] and
phase shifters [13].

A promising concept to compromise between IL and bulk-
iness [14] is the substrate-integrated waveguide (SIW) tech-
nology. One of the main advantages of SIWs is substantial
downscaling, i.e., by the square root of dielectric’s rela-
tive permittivity in all dimensions, as compared to air-filled
waveguides; this property provides higher integration density
for SIW. The SIW approach allows for manufacturing not
only RF passive elements but also integrating microelectronic
active components to build up hybrid circuits [15]. SIW have
so far only been shown up to 180 GHz [16]. The basic
transmission medium of SIW technology is a dielectric-filled
waveguide in which the wave is guided by a metal con-
finement. Due to the inserted dielectric, the losses in SIW
are higher than in air-filled waveguides, but still substantially
lower compared to planar transmission lines [17]. To create
the transmission medium in conventional SIWs, conducting
through-substrate vias are embedded in a dielectric substrate
that electrically connect the top and bottom metal plates.
The disadvantage of conventional SIW’s is related to their
fabrication which requires vias limiting the waveguide’s height
to substantially smaller than standard, resulting in reduced
power handling capabilities of SIW. Furthermore, geometrical
limitations of vias in conventional SIW result in nonideal
sidewalls, leading to higher IL and practically restricting the
operation frequency range to about up to W-band. Further-
more, probing interfaces require high geometrical accuracy,
which limits SIW to frequencies below 100 GHz when using
printed-circuit-board (PCB) fabrication techniques. Therefore,
micromachining of silicon-filled waveguides has been recently
investigated [18], [19] and has achieved excellent performance
which rivals conventional SIW and even air-filled waveguides
in the W-band [5].
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Basic structure of Si-SIW waveguide, micromachined into a silicon
wafer, with support structures.

Fig. 1.

In this article, which extends our conference publica-
tion [20], we present a new fabrication technology platform
for implementing integrated rectangular waveguides in the
220-325-GHz frequency range using micromachining with
DRIE. The new platform, combining micromachining with
photolithography, allows fabricating sub-THz and THz devices
with CPW-to-Si-SIW transition enabling direct on-chip mea-
surements of various components, such as first time reported
here bends and filters. In the future, the platform can be
used for integrating active components and building complex
sub-THz and THz circuits.

II. SILICON-CORE SUBSTRATE INTEGRATED WAVEGUIDE
A. Silicon-Core Substrate-Integrated-Waveguide

Fig. 1 shows the cross section of the proposed Si-SIW
designed in the bulk layer of a silicon wafer. The Si-SIW
consists of a straight piece of silicon with a rectangular
cross-section surrounded by etched through trenches. All the
surfaces of the presented structure are metallized. Microfab-
rication techniques allow patterning the front-side metal layer
of the chip with micrometer precision to create planar fea-
tures for integrating other components or creating interfaces.
To mechanically suspend the Si-SIW to the rest of the wafer,
support structures are implemented. To minimize disconti-
nuities the width of the support structures is chosen to be
20 um, which is substantially less than the guided wavelength
(g = 516 pm at the center frequency of 275 GHz). The
support elements still create periodic discontinuities [21] and
thus introduce a series of resonances in its frequency response,
at frequencies corresponding to the condition 4, = 2 - D/n,
where n are integer numbers, which is demonstrated in Fig. 2.
With increasing distance D between the support elements, the
resonant frequency increases and eventually even the second
harmonic influences the performance of the waveguide for
large values of D.

For comparing different waveguide technologies, the losses
should be related to the guided wavelength and not per
unit length, as distributed-component size and functionality
is related to the guided wavelength size. Fig. 3 shows the
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Fig. 2. Simulated S-parameters of a 5-mm waveguide piece with variation
of the support structure periodicity. (a) D = 70 ym. (b) D = 270 um.
(¢) D =420 pum.

Si-SIW
——Hollow Waveguide
—Coplanar Waveguid

|
[ 5]

Insertion loss (dB/mm)
& IS

230 240 250 260 270 280 290 300 310 320 330
Frequency (GHz)

Fig. 3.  Simulated IL per millimeter for the novel Si-SIW (red), compared
to a hollow micromachined rectangular waveguide (blue) and a CPW (green),
assuming a bulk gold conductivity (¢ = 1.8e + 007 S/m).

simulated IL for three waveguide types in the frequency range
230-330 GHz: a Si-SIW with height Hi; = 150 um and width
Ws = 200 um (these dimensions are used for the design of
Si-SIW in this article), a hollow waveguide with the standard
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Fig. 4. Comparison of sizes of a silicon-filled to an air-filled waveguide for
220-325 GHz.

100%

(U= 2
Losses in Dielectric! é
'é* ——Losses in Metal %
g -0.2- —Total Losses A
& E
S04 8
H K
= | - 50%
£ 3
v ]
2-0.8 i
g
1 . I . . . L . L . .8
230 240 250 260 270 280 290 300 310 320 330=
Frequency (GHz) 0%
Fig. 5. Simulation results of the contribution of the metallization and the

dielectric material to the overall IL of the proposed Si-SIW: the metallization
losses contribute by 94%. For dielectric loss only, the metal is set to PEC;
for metallization loss only, the tand of the dielectric is set to zero.

WM-864 sizes H, = 864 ym and W, = 432 yum, and a CPW
line with a substrate height of Hgyp = 150 um, a signal line
width of Wepw = 50 um and a gap of G = 32 um. Since the
same DRIE processing as in [3] was used to fabricate Si-SIW,
similar losses model with ¢ = 1.8 x 107 S/m is used for the
simulations in this article. The thickness of the metal layers
was set to 1 um for all simulation models presented in this
article. The CPW line has an IL over 4 dB/mm (1.7 dB/4,),
the hollow waveguide 0.03 dB/mm (0.03 dB/i,) and the
proposed Si-SIW 0.33 dB/mm (0.11 dB/4,). The Si-SIW thus
is expected to have higher losses than a micromachined hollow
waveguide, but is more than 3 times smaller in size in all
dimension and thus circuits take up to 40 times less volume
than in hollow waveguide technology, as illustrated in Fig. 4.

To investigate the contribution of losses in the Si-SIW
attributed to the dielectric and the metal circumference, a com-
parative simulation, shown in Fig. 5, has been performed with
lossless or lossy metal (gold, ¢ = 1.8 x 107 S/m), and with
a silicon resistivity of psi = 5000 Q-cm or lossless dielectric.
To obtain more precise data, the fully 3-D EM simulations
with high-density mesh and frequency-dependent parameters
were performed. It was found that the metal losses contribute
to around 94% of the total insertion loss. The skin depth at
275 GHz is 6 = 144 nm, so the total thickness of the metal
layer around the silicon core should be at least three times
higher, #,i, > 450 nm, so that the metallization thickness starts
getting negligible.
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Model of the probe ™.

Fig. 6. CST Microwave Studio simulation model of the coplanar probe on
the transition to the silicon core micromachined SIW.

Fig. 7. Layout of the CPW to micromachined-SIW transition, with
dimensions in gm.
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Fig. 8. Probe position sensitivity analysis.

B. CPW-to-Si-SIW Transition

Fig. 6 shows the configuration of the CST Microwave
Studio simulation model of the CPW-to-Si-SIW transition,
including a model of the CPW measurement probe. Fig. 7
shows the layout with optimized dimensions, whose design
concept origins from a W-band folded slot antenna coupling
transition [18]. The transition pattern contains three interdigital
coupled lines arranged between side ground planes of a
coplanar waveguide (CPW) with various gaps. The ground
connection points are moved to the edges of the waveguide
which allows fitting a 50-Q GSG probe with 75-um pitch
size to the transition pattern. The basic principle of operation
of the transition was previously described in [22]. Fig. 8 shows
the results of the probe’s position sensitivity analysis, where
the variation of the transition’s reflection coefficient is plotted
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Fig. 9. Fabrication steps. (a) Patterning of the LOR resist. (b) Deposition
of the top metal layer to provide the transition pattern. (c) Lift-off process.
(d) Soft-mask patterning of the back side for (e) subsequent DRIEtching.
(f) Back side metal deposition.

with respect to a probe displacement of 10 um in x- and
y-directions (see Fig 7). Thus, the positioning of the probe is
not more critical than for conventional CPW probe pads.

III. FABRICATION

Fig. 9 illustrates the process flow, which can be divided
into two parts: wafer level processing and chip level
processing. To minimize the dielectric losses, high resistivity
(p > 5000 Q-cm) 150+£5 um thick 100-mm-diameter silicon
wafers were used.

The fabrication begins with patterning of the front-side met-
allization for the CPW-Si-SIW transition structure, by using
a lift-off processes with a positive LOR 5A photoresist
[see Fig. 9(a)—(c)]. The metallization scheme consists of a
500-nm-thick gold layer on top of a 50-nm chromium adhesion
layer. The chromium layer additionally acts as an etch stop
for the subsequent deep reactive ion etching (DRIE) step
without exposing the gold to the plasma. Then, the back side
is patterned [Fig. 9(d)]. Since only 150 xm have to be etched,
a soft mask (5 um) of photoresist is sufficient. Subsequently,
to define the trenches of the waveguide walls and separate the
wafer into chips, the etching by a DRIE BOSCH process is
performed [Fig. 9(e)]. The final step is performed on the chip
level and comprises the sputtering of a 2.5-um-thick layer
of gold on the back side, for providing sufficient waveguide
sidewall coverage deep into the trenches [Fig. 9(f)].

Fig. 10 shows various SEM pictures of details of the
manufactured Si-SIW. The waveguide widths measured on the
top and the bottom are 203 and 201 xm, respectively. This
difference is attributed to underetching [23], typical for DRIE.

In comparison with previously reported micromachining
process flows [18], [19] for substantially lower frequencies,
the present solution provides a minimum number of masks
and process steps. Moreover, it does not require any bonding,
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Fig. 10.  SEM pictures of fabricated devices. (a) Cross section of the
waveguide. (b) Bottom view of waveguides. (c) Waveguide bends. (d) Filters
and reference waveguide.

gluing, or substrate transfer steps and is therefore significantly
faster, of lower complexity, and more cost efficient.

IV. MEASUREMENTS

Measurements were performed using a Rohde&Schwarz
ZVA24 vector network analyzer with two ZC330 millimeter-
wave extenders for 220 to 330 GHz and Picoprobe Model
325B CPW probes.

A. Waveguide

For characterization of the waveguides, an on-chip thru—
reflect-line (TRL) calibration kit was designed and imple-
mented. Fig. 11 shows measurement and simulation results
of a 5-mm-long (15.5-4¢) Si-SIW section with distances
between the support structures of D = 270 and 420 um. The
measured IL for the Si-SIW with D = 270 ym at 325 GHz
is 0.14 dB/4, (0.43 dB/mm), which is only on 30% more
than predicted by simulations (0.11 dB/4,; 0.33 dB/mm); the
corresponding return loss of about 25-30 dB is observed at
frequencies not affected by the parasitic resonances. Similar
results are observed for D = 420 um. Since it is expected
from the simulation results (Section II) that a major part
of the losses is attributed to metallic losses, the difference
between the simulated and the measured results is assumed to
be attributed to the metallization. In particular, the thickness
of the side-wall metallization layer is decreasing from top
to bottom [12] influenced by the trench width [24], and the
surface roughness is increasing close to the bottom part of the
side-walls [12]. The quality of metallization can be improved
by sputtering a thicker gold layer. Table I compares the
measured performance of the proposed Si-SIW platform with
other waveguide technology reported in literature. As expected
from simulations, for the new Si-SIW platform, the losses per
guided wavelength are higher than for any hollow waveguide
technology, even though a much higher integration density can
be achieved.
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Fig. 11. Measured and simulated S-parameters of 5-mm-long sections of the
Si-SIW, after de-embedding the transitions. (a) Support structure periodicity
D =270 pm and (b) D = 420 pm.

TABLE I

COMPARISON OF MEASURED INSERTION LOSS OF DIFFERENT
WAVEGUIDE TECHNOLOGIES

Size Guided

Freq., Loss, Loss,

Ref. MYHV:I:;H Wa"féfr‘l‘gm GHz  dBimm B/,
(this work) __ 200%150 0325 325 0.3 0.14
[18] 560%280 1.23 105 0.121 0.15
[3] 864x275 1 325 0.02 0.02
[28] 864x432 1 325 0.03 0.03
[29] 864x432 1 325 0.03 0.03

When comparing the measurement results with the simu-
lations, a clear shift of the resonant frequencies caused by
the periodical support structures is visible; this is attributed
to the underetching of the width of the waveguide, which is
confirmed by the measurements of the manufactured struc-
tures. The measured frequency shift can be used for calculation
of the actual underetching. Assuming that the distance D
between the support structures is uniform, the underetching
value can be derived from [21] as follows:

A Co 1 1 (1)
= X _— — —

2. ﬁ G] Gz

Con

==
T (2f kD-e
where A is the underetching value (see Fig. 12), fi is
the simulated resonance frequency, f, is the measured res-
onance frequency. The underetching derived for the measured

waveguide with D = 420 ym is A = 6 um. Furthermore,
the fabricated Si-SIWs are subsequently resimulated taking

Gy

2
), k=1,2 2)
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Fig. 12.  Cross section of the Si-SIW. (a) Without and (b) with fabrication-
induced sidewall underetching.
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Fig. 13. Microscope pictures. (a) Transition before probing. (b) After probing
with a 75-um pitch GSG probe from GGB industries.
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Fig. 14.  Measurement results matched to and simulation data of the CPW
to waveguide transition alone, measured in a back-to-back configuration and
after deembedding the 500-xm-long central waveguide piece.

into account the calculated underetching of 6 um, resulting in
a match of the resonances. The presented analytical approach
allows estimating the average underetching value with good
accuracy and without damaging the devices.

B. CPW-to-Si-SIW Transition

Fig. 13 shows a photograph of the transition before and after
probing. To measure the transitions accurately, the two tier
one port calibration method of offset shorts was adopted [25].
The set of offset short standards were manufactured in the
same fabrication process and are placed on all chips; hence a
high-quality measurement standard was guaranteed.

Fig. 14 shows the measured, compared to the simulated,
S-parameters of the CPW-to-Si-SIW transition. The mea-
sured IL is better than 0.5 dB for the entire band above
250 GHz (with 250 GHz being 15% above the cut-off fre-
quency, since the waveguide width is narrower than a nom-
inal WM-864 silicon-core waveguide) and averaging to only
0.34 dB over that band. The presented transition has a pole
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TABLE II
COMPARISON OF CPW-TO-SIW TRANSITION CHARACTERISTICS

Ref. Return loss, dB Frequency range, GHz
(this work) 14 220-330

[18] 15 80-129

[26] 15 40-60

[27] 20 26-40

Fig. 15.
parison between the measured dimensions as manufactured to the designed
dimensions, revealing a feature accuracy of the fabrication process of 0.9 ym.

SEM picture of the fabricated CPW-to-Si-SIW transition; com-

and a transmission zero at frequencies where the distance from
the probe to the back short reaches 1,/4 and 4,/2 respectively
(around 242 GHz and above 330 GHz in the simulated
responses in Fig. 14). Due to underetching, the guided wave-
lengths decreased, so the corresponding frequencies increased
by 10-15 GHz. Thus, the measured IL begins to drop towards
the transmission zero at about 325 GHz, while the simulated IL
drops at lower frequencys; this creates the observed difference
between the measured and the simulated insertion losses at
frequencies over 300 GHz. The measured return loss is below
14 dB for the 240-315-GHz frequency band. Fig. 15 displays
an SEM image of the fabricated transition compared to the
designed transition. The open areas of the fabricated pattern
are approximately 1 xm smaller than expected due to the
nonoptimized lift-off process which is assumed to create the
small discrepancy between the measured and simulated results
in Fig. 13. Table II shows the comparison of the presented
CPW-t0-Si-SIW transition with previously reported transitions,
in any frequency range. It can be seen in the table that the
return losses of the transitions are similar. Since the presented
transition, based on [15] which was designed for three times
lower frequencies, shows a similar return loss and even less
insertion loss, it can be concluded that the reported design can
be scaled and used at even higher frequencies.

V. INTEGRATED PASSIVE COMPONENTS
A. H-Plane Bends

Fig. 16(a) shows three variations of waveguide bend designs
with different outer R; and inner R, radii in a waveguide
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piece including two 90° bends of the best-performing bend design with
Ry =280 ym and Ry, =40 um.

with total length of 3 mm. The distance between the support
structures was chosen to be D = 120 um. Fig. 16(b) shows
the simulated IL and Fig. 16(c) the return loss for all three
configurations. The most promising design, with outer and
inner radii Ry = 280 um and R, = 40 um, respectively,
was fabricated.

Fig. 17 compares the measured and simulated S-parameters
of this design. The measured return loss is 19 dB along
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Fig. 19. Simulated and measured S-parameters of the fifth-order Si-SIW’s
filter.

the entire band and the IL at 325 GHz is 0.22 dB/A,
(0.6 dB/mm).

B. Filter

Fig. 18 shows the configuration of an all-pole fifth-order
test filter designed for implementation in the proposed fabri-
cation platform. The filter structure is symmetric with respect
to the middle point and consists of five waveguide res-
onators directly coupled through six inductive irises. The
filter was designed and optimized through an aggressive space
mapping (ASM) procedure [30] using a surrogate model
built in MATLAB [31] and a high-fidelity model created in
CST Microwave Studio [32] with respect to the following
specifications:

1) center frequency: fy = 270 GHz.

2) bandwidth: BW = 5 GHz.

3) maximum return loss in passband: 20 dB.

The experimental results of the filter are compared to the
simulation results in Fig. 19. The measured response is shifted
in frequency by about 9 GHz with respect to the simulation;
the return loss in the passband is slightly decreased from
20.3 to 18.5 dB in the frequency range of 277-280.1 GHz,
making the measured bandwidth by 1.9 GHz narrower than
simulated; the best IL in the passband is about 9.2 dB. It was
estimated from the measured S-parameters that the obtained
unloaded quality factor of a single resonator in this filter is
about 200. The transmission zeros at 261, 272, and 287 GHz
in the experimental response are assumed to appear due to
interaction with the probes during the measurement procedure.

The reason for the shifting and shrinking of the passband
was found to happen because of nonverticality of the filter’s
sidewalls due to underetching. This affects the effective width
of the waveguide, lengths of the resonators, as well as width
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Fig. 20. Experimental response resimulated taking into account the nonver-
ticality of the Si-SIW’s sidewalls due to fabrication-induced underetching.

TABLE III

COMPARISON OF Si-SIW FILTER CHARACTERISTICS TO PREVIOUS
WORKS ON SIW FILTERS AT SUB-THz FREQUENCIES

) FBW®, 1L, :
Ref. Technology ({IU{Z o dB 2
[33] LTCC 140 14.3 2.44 70
[34] TSV 331 15.4 1.5 150
This work Si-SIW 270 1.85 9.2 200

*FBW — fractional bandwidth, Oy, — unloaded quality factor

of windows in all the irises, thus making them smaller than
designed. In order to confirm the reason for the failure, the fil-
ter model was updated to account for the nonverticality of the
sidewalls, and the results agree very well with the experimental
response for the measured underetching value of 6.2 um in
the vicinity of the measured passband (see Fig. 20).

Table III compares the presented filter with other sub-THz
SIW filters available in the literature up to date. The present
work presents for the first time much more narrow-band filter
demonstrators (by a factor of 7.7), even at significantly better
unloaded Q-factors than these other SIW technologies.

VI. CONCLUSION

This article has reported on a new technology platform
for creating highly integrated sub-THz systems—the micro-
machined silicon-core SIW. The performance of the platform
at 220-330 GHz has been demonstrated by experimental veri-
fication of waveguide sections, a CPW-to-Si-SIW transition,
and several passive components, including H-plane bends
and filters. The obtained measurement results, in particular
the IL of the waveguide of 0.14 dB/A, (0.43 dB/mm) at
325 GHz and the insertion and return losses of the transitions
of 0.34 and 14 dB, are in a reasonable agreement with the
simulation results. The influence of the support structures on
the performance of the devices was studied and proven by the
experimental measurements. Moreover, the presented process
flow shows the potential of the platform to high-volume, low-
cost, and fast batch fabrication of highly integrated sub-THz
frequency systems.
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