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Abstract— We present a new formulation of the doubly orthog-
onal matching pursuit (DOMP) algorithm for the sparse recovery
of Volterra series models. The proposal works over the covariance
matrices by taking advantage of the orthogonal properties of
the solution at each iteration and avoids the calculation of the
pseudoinverse matrix to obtain the model coefficients. A detailed
formulation of the algorithm is provided along with a compu-
tational complexity assessment, showing a fixed complexity per
iteration compared with its previous versions in which it depends
on the iteration number. Moreover, we empirically demonstrate
the reduction in computational complexity in terms of runtime
and highlight the pruning capabilities through its application to
the digital predistortion of a class J power amplifier operating
under 5G-NR signals with the bandwidth of 20 and 30 MHz,
concluding that this proposal significantly outperforms existing
techniques in terms of computational complexity.

Index Terms— Behavioral modeling, digital predistortion
(DPD), doubly orthogonal matching pursuit (DOMP), greedy
algorithm, model identification, power amplifier (PA), sparse
regression, Volterra series.

I. INTRODUCTION

THE CHOICE of the operation point of power ampli-
fiers (PAs) poses a challenge in terms of the tradeoff

between efficiency and linearity. On the one hand, PAs are
known to show nonlinear behavior at high power levels,
where efficiency is higher. This fact combined with the lin-
earity requirements of new digital modulations, such as those
included in the fifth generation (5G) of mobile communica-
tions, put the spotlight on signal processing techniques such
as digital predistortion (DPD), which allows operating near
saturation while mitigating nonlinearity [1].

DPD is based on behavioral models, on which there exists a
vast literature about which is the best model structure. Volterra
series are a widely adopted approach in this context since
they allow to represent a nonlinear system with memory, while
the coefficients of the model are still linear with respect to
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the system output. This mathematical signature leads to the
classical theory of regression, in which the least-squares error
minimization provides a general tool that enables the model
coefficient retrieval.

Unfortunately, Volterra series suffer the curse of dimension-
ality since their number of coefficients largely grows with the
memory depth and order, being this basis for the need of
model selection and dimensionality reduction. In this context,
drawing from the most-general full Volterra (FV) model [2],
ad hoc behavioral models, such as the memory polynomial
(MP) [3] or the generalized MP (GMP) [4] models, arise.

In contrast, a posteriori pruning techniques perform a
selection of the most-relevant coefficients or model regressors
by analyzing the signal properties. Within the family of
greedy pursuits, which are characterized for selecting regres-
sors by hard decision iteratively, the orthogonal matching
pursuit (OMP) was applied to PA DPD in [5], followed by
a reduced complexity version named by the authors as a
simplified sparse parameter identification (SSPI) algorithm
[6] that turned the calculation of the pseudoinverse matrix
at each step into an iterative fashion. The modified Gram–
Schmidt (MGS) technique [7], also known as orthogonal
least squares (OLS) [8]–[10], and OMP were fused into the
doubly OMP (DOMP) [11], which was shown to overcome the
difficulties of choosing the correct regressors under a highly
correlated basis such as the Volterra series. The main issue
of the use of MGS against OMP is the significant increase in
computational complexity [12], although the latter has shown
to be outperformed by the DOMP in the pruning of both PA
and DPD models [13].

In this framework, a special interest has risen in low-
complexity DPD implementations [14]–[20] due to the desired
use of limited resources and memory in field-programmable
gate arrays (FPGAs) and the numerical stability benefits
observed from the signal processing standpoint.

The DOMP algorithm in [11] presents a high computa-
tional complexity due to the pseudoinverse operation and the
Kronecker product needed for the orthogonalization. In [21],
an SSPI DOMP was contributed, which showed a lower
computational complexity by transforming the pseudoinverse
calculation in a recursive operation that depends on the
result of the previous iteration. In this work, we provide a
new formulation of the algorithm that takes advantage of
the orthogonal properties to work in the covariance domain,
achieving a reduced complexity (RC-DOMP) that is evidenced

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4351-7830
https://orcid.org/0000-0001-6614-2771
https://orcid.org/0000-0002-6853-4899
https://orcid.org/0000-0003-0879-5891


BECERRA et al.: SPARSE IDENTIFICATION OF VOLTERRA MODELS FOR PAs WITHOUT PSEUDOINVERSE COMPUTATION 4571

by a fixed runtime per iteration. In addition, a transformation
matrix from the Volterra domain to the equivalent orthogonal
domain is defined as a result of the algorithm, enabling
orthogonal and parallel signal processing while not losing the
reference of the original Volterra regressors. Synergy of this
approach exists with [22], where the covariance matrix was
used to obtain a low computational complexity version of a
direct-learning DPD. Note that the logic behind the algorithm
versions remains the same; the evolution consists of different
implementations of equivalent operations.

The remainder of this contribution is organized as follows.
First, Section II introduces the notation and prerequisites of
the work. Section III deals with the theoretical part of the RC-
DOMP algorithm, followed by a computational complexity
assessment in Section IV. Experimental design and results
of the DPD of a class J PA working with 20- and 30-MHz
5G-NR signals are detailed in Section V. Finally, Section VI
summarizes the main results and concludes this article.

II. NOTATION AND PREREQUISITES

In this section, we review the fundamentals of the proposal
and establish notational conventions that will be followed
henceforth.

The baseband system measurement equation relates the
complex envelope input of the signal x to its output y following
the form:

y = XhX + e (1)

where y = [y[q], y[q − 1], . . . , y[q − m + 1]]T is a buffered
output set of m consecutive samples with discrete-time index
q , hX is the vector holding the n coefficients of the model, e
accounts for the measurement and modeling errors, and X is
a centered design matrix defined as

X = �
ξ 1 ξ2 · · · ξ n

� ∈ C
m×n (2)

where ξ i are the Volterra regressors, which are model-
dependent, and in general will take the form of multiplications
where the factors are delayed and/or conjugate versions of the
input signal x. The underlying Volterra model will shape the
regressor structure, being amongst the most-general the FV,
characterized by the input–output relationship

ξ i (x) =
pi +1�
ri =1

x[q − qri ]
2pi +1�

ri =pi +2

x∗[q − qri ] (3)

where 2 pi + 1 refers to the regressor order.
The classical theory of regression allows to perform an

estimation of the Volterra kernel vector ĥX through the well-
known Moore–Penrose pseudoinverse matrix X† [23]

ĥX = �
XH X

�−1
XH y = X†y (4)

that returns a complex value for each one of the components
of ĥX.

The DOMP is an iterative technique that aims at choosing
the regressor indicated by a local decision in each iteration
k. The support set S(k−1) includes the selected coefficients
up to the end of iteration k − 1, and after a new regressor

is chosen in the next iteration k, its index s(k) is included
in S(k−1) to become S(k). Since one regressor is selected per
iteration, the solution is also k-sparse, i.e., the estimation of
the Volterra kernel vector has k nonzero entries at iteration
k. A residual r(k) is kept in the execution to account for the
modeling error, following:

r(k) = y − ŷ(k) (5)

where ŷ(k) is the output estimation provided by the Volterra
kernel vector of k components. The DOMP chooses the regres-
sor that exhibits a maximum correlation with the residual and
performs the Gram–Schmidt orthogonalization of the selected
vector with respect to the rest of the basis.

The reduction in computational complexity of the current
proposal is achieved by working with the covariance matrices
instead of the measurement matrices, operating over matrices
of n × n dimension instead of m × n, what eliminates the
dependence of the regressor length.

III. REDUCED-COMPLEXITY DOMP

The DOMP algorithm selects one Volterra component at
each iteration k. This selection is performed indirectly in a
linearly transformed subspace that in this work is denoted by
Z(k). The operation is conceptually simple; at the beginning
of each iteration, the index s(k) that shows the highest cor-
relation of the s(k)th regressor with the residual is selected
and consequently included in the support set S(k−1) . After
that, the algorithm orthogonalizes the unselected regressors
to the selected component and normalizes the selected basis
function so that the resulting basis is orthonormal. In this way,
at each step k, the elements included in the support set are
orthonormal, i.e., the rank of matrix Z(k) is k and

Z(k)H

S(k) Z(k)
S(k) = I (6)

where the subindex in Z(k)
S(k) represents the set of columns

indicated by S(k). Also, the elements included in the support
set and those that are not in it are mutually orthogonal. The
transformed Volterra measurement matrix Z(k) is composed of
a set of transformed regressors φi

Z(k) = �
φ1 φ2 · · · φn

� ∈ C
m×n (7)

where the iteration-dependent superscript in φ
(k)
i has been

omitted for notation simplicity. The correlation matrix of the
transformed measurement matrix is defined by

RZ(k) = E[Z(k)H
Z(k)] (8)

whose maximum likelihood estimator is its sample autocorre-
lation matrix

RZ(k) =

⎡
⎢⎢⎢⎣

ρ11 ρ12 · · · ρ1n

ρ21 ρ22 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · ρnn

⎤
⎥⎥⎥⎦ ∈ C

n×n (9)

where the component cross correlation is defined as

ρi j = φH
i φ j . (10)
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Fig. 1. DOMP—reduced complexity version pseudocode.

Following the same rationale, the cross correlation between
the transformed measurement matrix and the output:

RZ(k)y = E[Z(k)H
y] (11)

is approximated by its estimator

RZ(k)y = �
γ1 γ2 · · · γn

�T ∈ C
n×1 (12)

where the sample cross correlation between the i th regressor
and the output obeys

γi = φH
i y (13)

in which the iteration-dependent superscript is omitted again
for simplicity.

Considering that the matrices defined earlier are sized by the
number of model components, which is generally much lower
than the number of samples in the regressors, the resulting
algorithm shows a computational complexity that is fixed for
every iteration compared with that of the previous versions of
the algorithm [11], [13], [21] that required increasing compu-
tations with the number of selected coefficients. Sections III-
A–III-F overview the steps of this contribution.

The technique is summarized in Fig. 1. Note that steps
10, 11, and 12, which correspond to obtaining the Volterra
coefficients vector, the residual, and the modeled output, are
not strictly necessary for the execution of the algorithm—
these variables are not used in the algorithm loop—, so these
may only be included when it is necessary to explicitly
calculate the modeled signal at each iteration. The algorithm
steps are detailed next.

Sample MATLAB code of the RC-DOMP algorithm in the
modeling of the 20-MHz signal in Section V can be found
in [24].

Fig. 2. Block diagram of the relation between the regressor and trans-
formation matrices. The gradient shading in the blocks accounts for the
orthogonalization process or whitening over the vector basis.

A. Initialization

Prior to the execution of the algorithm, the transformed
measurement matrix is equal to the Volterra basis

Z(0) = X. (14)

The support set is empty since there are not yet components
selected

S(0) = ∅ (15)

and the residual r(k), which keeps track of the modeling error
in iteration k, is equal to the signal to model

r(0) = y. (16)

Consequently, since the model does not include any regressor,
the estimation of the output prior to the beginning of the
algorithm is

ŷ(0) = 0. (17)

B. Regressor Selection

At the beginning of iteration k, the algorithm selects the
component s(k) that maximizes the normalized cross correla-
tion of the elements not included in the support set

s(k) = arg max
i /∈S(k)

|γi |√
ρii

(18)
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Fig. 3. Autocorrelation matrix RZ(k) displayed as an image for n = 248 in different iterations. It can be observed that the autocorrelation matrix tends to a
diagonal, while the components are being orthogonalized. (a) k = 1. (b) k = 5. (c) k = 20.

and then, this index is added to the support set

S(k) = S(k−1) ∪ s(k). (19)

C. Orthogonalization

In the orthogonalization process, the not-yet-selected model
basis functions are orthogonalized through Gram–Schmidt
with respect to the selected regressor. For that, the transfor-
mation matrix T is defined

T(k) =



t (k)
i j

�
∈ C

n×n (20)

whose elements ti j for the i th row and the j th column follow
the structure:

t (k)
i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ρi j

ρii
, i = s(k), j /∈ S(k) (21)

1√
ρii

, i = j = s(k) (22)

1, i = j �= s(k) (23)

0, elsewhere (24)

where (21) performs the orthogonalization of the unselected
j th regressor and the regressor selected in the current iteration,
(22) accounts for the normalization of the selected component,
and (23) leaves the elements that belong to the support set
unmodified. The transformation matrix allows to perform the
orthogonalization and normalization processes in one matrix
multiplication through

Z(k) = Z(k−1)T(k). (25)

Fig. 2 shows the relation between the transformation and
correlation matrices. The accumulated transformation matrix
T is defined in the Appendix. For the sake of illustration,
the autocorrelation matrix RZ(k) for a GMP model of 248 com-
ponents is plotted as an image in Fig. 3 for the first, fifth, and
twentieth iterations. The model structure can be organized as
follows; there exist three blocks, being the first four regressors
the first order, the second block of 40 regressors the third
order, the next block of 200 coefficients the fifth order, and
the last four coefficients correspond to orders seven to thirteen.
In k = 1, the correlation between the regressors is clearly
observed by the high values exhibited by the nondiagonal

terms of the matrix. In the following iterations, the selected
regressors are normalized and not correlated with the rest,
showing a value of 1 in the diagonal and being 0 in the rest
of its column and row. Finally, at iteration k = 20, the model
structure is almost lost since it has been captured by the
selected regressors, evidenced by the whitening of the matrix
when only 20 regressors have been included in the model.

D. Output Correlation Update

The cross correlation between the nonselected regressors of
matrix Z at iteration k and the output is updated by considering
the orthogonality imposed at the previous step so that

γ (k)
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ
(k−1)
i −

�
ρs(k) i

ρs(k)s(k)

�∗
γ

(k−1)
s(k) , i /∈ S(k)

γ (k−1)
i√
ρii

, i = s(k)

γ
(k−1)
i , elsewhere

(26)

(27)

(28)

is the corresponding transformation in the output correlation.

E. Autocorrelation Update

Since the basis is multiplied by the transformation matrix,
the autocorrelation update can be obtained through the relation
(ZT)H ZT = TH ZH ZT. Hence

RZ(k) = T(k)H
RZ(k−1)H T(k). (29)

F. Regression

All the regressors in the support set are orthogonal among
themselves; therefore, the regression—that is, the estimation
of the transformed Volterra kernel vector—consists of a simple
selection of the projections of y on this space, which is already
calculated

ĥ(k) = γS(k) . (30)

Note that this estimation corresponds to the basis Z(k). Since
the regression is performed on an orthonormal basis, there is
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no need of using the pseudoinverse, hence reducing computa-
tional complexity. The Volterra kernel in the original Volterra
subspace can be directly recovered through

ĥX = T(1)T(2) · · · T(k)ĥ(k). (31)

The residual is updated by subtracting the contribution of the
last selected component

r(k) = r(k−1) − Z(k)
s(k) γs(k) (32)

and the estimation of the model output is attained by adding
the same contribution

ŷ(k) = ŷ(k−1) + Z(k)
s(k) γs(k) . (33)

Observe that the estimation is performed incrementally by
adding a term to the value of the preceding iteration. This fact
is key in the reduction of computational complexity against
other algorithms that perform a full estimation per iteration.

IV. COMPLEXITY ASSESSMENT

In this section, we perform a computational complexity
comparison of the three versions of the DOMP algorithm.
The first advantage of the proposed method is observed in
terms of memory requirements since moving the operations to
the correlation domain removes the dependence on the time
index and the vector sizes are much shorter. Compared with
previous versions of the algorithm, the RC-DOMP works
over the correlation matrix whose dimensions are n × n and
the rest work with the measurement matrix characterized
by dimensions of m × n. Since the equation system that is
being solved is overdetermined, that is, m > n, storage of the
variables is highly improved.

Regarding running complexity, this assessment is performed
by using the Bachmann–Landau notation in terms of the
number of arithmetic multiplications, the latter being the
one that has more impact on the overall complexity [25],
required for each algorithm operation. The different versions
of the DOMP algorithm are characterized by a computational
complexity per iteration of

Oiter,DOMP = k3 + 4mk2 − 4kmn + nm2 + 2mn2 (34)

Oiter,SSPI DOMP = 2mk2 − 4kmn + nm2 + 2mn2 (35)

Oiter,RC-DOMP = 4n3 (36)

where O stands for the quantity of real-number multiplications
at iteration k. It can be observed that the original DOMP [11]
exhibits a complexity dominated by the cubic of the iteration
number that results of the m × k pseudoinverse calculation
at each iteration; in the SSPI DOMP [21], this relationship is
reduced to quadratic dependence, and in the novel RC-DOMP,
there is no dependence with the iteration number. Considering
that m/n is the number of samples per regressor, it is straight-
forward to conclude that the RC-DOMP outperforms the rest
of the algorithms under comparison. The relation between their
total computational complexities follows:

Ototal,DOMP > Ototal,SSPI DOMP > Ototal,RC-DOMP. (37)

In addition, The DOMP and SSPI DOMP methods can only
be partially implemented in parallel since the inverse operation

Fig. 4. Picture of the experimental setup composed of (1) VSG,
(2) preamplifiers, (3) PA, (4) coupler, (5) VSA, and (6) power load.

Fig. 5. Evolution of runtime per iteration with the number of selected
components for a number of samples per component m/n of 5 and 100.
Runtime is normalized with respect to the RC-DOMP execution of m/n = 10.

is difficult to implement in an FPGA or other hardware [22].
However, the proposed method can be implemented in parallel
computing since the inverse operation is removed. Moreover,
power consumption is reduced as a consequence of lowering
computational complexity.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the proposed technique is benchmarked
against its previous versions regarding their runtime, and the
results are discussed considering the computational complex-
ity assessment provided in Section IV. Since this contribu-
tion is intended to provide an equivalent formulation of the
DOMP algorithm but with a lower computational complexity,
the comparison in terms of pruning capabilities with other
techniques would show the same results as those provided in
[13]. In addition, for the sake of completeness of this work,
the RC-DOMP approach is applied to the DPD of a class
J PA working under two different bandwidths in order to
highlight the details that differ in the predistorter pruning for
both cases.

The experimental test bench, whose picture is shown
in Fig. 4, was composed of an SMU200A vector signal
generator (VSG) from Rohde & Schwarz, a PXA-N9030A
vector signal analyzer (VSA) from Keysight Technologies
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Fig. 6. Evolution of (a) linearization NMSE and (b) ACPR with the number of DPD coefficients sorted by their importance up to n = 250 components for
signal bandwidths of 20 and 30 MHz.

Fig. 7. Normalized PSDs of the output and error signals with and without DPD working with (a) 20- and (b) 30-MHz 5G-NR signals.

TABLE I

PARAMETER CONFIGURATION OF THE MODEL

UNDER TEST

and a dc power supply. The instrumentation was controlled
through LAN by using Standard Commands for Programmable
Instruments (SCPI) from a PC with MATLAB. The device
under test (DUT) was the cascade of two Mini-Circuits TVA-
4W-422A+ preamplifiers and a continuous-mode class J PA
[26] based on the Cree CGH35015F transistor working in
the band of 800–900 MHz. The operating point was set to
an average output power of +30.8 dBm (+41 dBm of peak
output power), and it is characterized by a gain compression
of 3.5 dB.

The probing signals were designed according to the 5G-NR
standard with the bandwidths of 20 and 30 MHz. Different
sets of signals were used for identification and pruning of the
DPD model and performance validation. The signals exhibited
a peak-to-average power ratio (PAPR) of 11 dB and contained
over 360 000 samples corresponding to a sampling frequency
of 92.16 MSample/s.

In the VSA, the output RF signal was downconverted to
baseband by setting the appropriate range, span, and sampling
rate in order to recover it. The measurement dynamic range
was optimized by averaging 100 acquisitions of the output
signal. Finally, the measured signal was time-aligned in order
to synchronize the input and output data sets.

The model under test was a composite GMP of 17th order
comprising its three parts, including both even and odd pow-
ers in the envelope. The parameter configuration is shown
in Table I. On top of that, the conjugate of the linear regres-
sors, i.e., regressors of the image signal, were added to the
model in order to mitigate linear I/Q imbalance [27]–[29].
These regressors are based on widely linear [30] and widely
nonlinear signal processing [31]. The regressor pool with this



4576 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 68, NO. 11, NOVEMBER 2020

TABLE II

MEASURED PERFORMANCE IN TERMS OF NMSE, ACPR, EVM, AND
NUMBER OF COEFFICIENTS FOR THE PA WITH AND WITHOUT DPD

configuration reaches a total number of 1248 components. The
reason why the model to prune has this intricate structure is
justified by the PA behavior, which exhibits strong nonlinearity
evidenced by gain expansion followed by compression and a
mild rotation in the output constellation. The model equation
follows:

y[q] =
Ka�
k=0

La�
l=0

akl x[q − l]|x[q − l]|k

+
Kb�
k=1

Lb�
l=0

Mb�
u=1

bklu x[q − l]|x[q − l − u]|k

+
Kc�

k=1

Lc�
l=0

Mc�
u=1

cklu x[q − l]|x[q − l + u]|k

+
La(1)�
l=0

dl x
∗[q − l]. (38)

To emphasize the enhancement in computational complexity
and validate Section IV, the iteration runtime in the first 200
iterations was measured in a desktop PC. The results, which
are shown in Fig. 5, validate those previously reported in [21],
where it was highlighted that the SSPI decreases the runtime of
the OMP and DOMP techniques. Now, the RC-DOMP shows a
constant computational complexity per iteration, which results
in the lowest computational complexity of the benchmark.
Results are shown for a number of samples per component of 5
and 100 that represent two opposite ends in choosing this ratio.

The pruning technique was executed over the DPD model
in an indirect learning scheme to gather the 250 most rel-
evant components of the model sorted by their importance.
A DPD was calculated for each number of components,
allowing to obtain the linearization normalized mean-squared
error (NMSE), adjacent channel power ratio (ACPR), and
error vector magnitude (EVM) as performance indicators.
In addition, the Bayesian information criterion (BIC) was
calculated over the model evolutions to indicate the optimum
number of coefficients for each case [32]. Fig. 6 shows a
decreasing error evolution with the number of components
within the DPD as it is to be expected. Note that the
required number of coefficients for achieving linearization
is much higher than previous experiments in the literature
(see [13]) due to the strong nonlinearities of the DUT. The
difference in linearization results for the 20- and 30-MHz
cases is based on having a greater effective oversampling for

Fig. 8. Dynamic (a) gain and (b) AM/PM characteristics of the PA operating
over a 30-MHz 5G-NR probe signal, with and without DPD. The number of
coefficients of the DPD was given by the BIC rule, which obtained the optimal
number of 112.

the 20-MHz signal and the PA frequency response, which
is considerably more nonlinear in the 30-MHz bandwidth.
The numerical value of the performance indicators without
DPD and with DPD composed of the optimum number of
coefficients is given in Table II. The linearity metrics without
DPD are equivalent for both signal bandwidths, except for
the EVM, where the bandwidth difference affects the in-band
nonlinearity. The optimum number of components given by
the BIC was 79 for the 20-MHz signal and 112 for the
bandwidth of 30 MHz, which results in a reduction of 90% in
a number of coefficients. The linearization with DPD exhibits
a better behavior in the 20-MHz signal despite having an
equivalent model than that with the 30-MHz signal. Fig. 7
shows the normalized power spectral densities (PSDs) of
the output without DPD and with the BIC optimum DPD
for both bandwidths. Finally, the amplitude-modulation-to-
amplitude-modulation (AM/AM) and amplitude-modulation-
to-phase-modulation (AM/PM) characteristics of the PA with
and without DPD for the 30-MHz case are shown in Fig. 8.
Note that the DUT gain corresponds to the cascade of two
preamplifiers and a PA.
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VI. CONCLUSION

In this article, an equivalent formulation of the DOMP
algorithm has been proposed. It exploits the synergy of having
the regressors in an orthogonal vector space to perform all the
operations over the correlation matrices. Since the selected
regressors are orthogonal, the calculation of the pseudoinverse
matrix and its multiplication over the output to estimate
the Volterra coefficients turns into a simple projection that
transforms the regression into just a selection of coefficients
in a vector. Also, a transformation matrix from the Volterra
space to the equivalent orthogonal domain is defined as a result
of the algorithm, enabling orthogonal signal processing while
keeping the reference of the original Volterra regressors.

Experimental results showed the reduction in complexity
while still having the same performance as the original algo-
rithm. The whitening of the correlation matrix and sorting and
classification of the selected regressors by the algorithms along
with the modeling capabilities make DOMP a forward-looking
proposal in the pruning of DPDs.

APPENDIX

Let T be the matrix that considers the transformations made
at each step of the algorithm

T = T(1)T(2) · · · T(n). (39)

Following this definition, the Volterra matrix X and the linearly
transformed orthonormal matrix Z are related by:

Z(n) = XT (40)

which is invertible to

X = Z(n)T −1. (41)

This transformation allows to work simultaneously in the
Volterra space and in an equivalent orthogonal space in which
the elements in S(n) are sorted by their contribution to the
model output.
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