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Abstract— With the integrated radar technology being
increasingly common in the automotive segment, it becomes
even more cost-effective in other applications as well. Taking
into account its price and robustness, radar sensors can be
considered as a potential replacement for laser interferometry
which is being widely used for accurate contactless sensing.
In this paper we describe a phase evaluation algorithm for
highly accurate distance measurements using linear frequency
modulated continuous wave (FMCW) radar systems, considering
hardware dependent effects i. e. frequency responses of the signal
paths. In several investigations we show that this novel algorithm
is significantly more robust against disturbing radar targets or
micro vibrations than typical techniques. Distance measurements
were carried out using an 80 GHz wideband FMCW radar sensor
on a maximum measurement range of 5.2 m with a movable
radar target. For free space measurements the unambiguous
measurement accuracy was improved to ±4.5 µm, using phase
evaluation techniques in a non-ideal environment over the entire
measurement range, which was previously around ±120 µm
with frequency evaluation techniques. Due to its robustness
and accuracy, the proposed algorithm is well suited for harsh
industrial environments such as real time positioning of machine
tools.

Index Terms— Distance measurement, estimation error,
millimeter wave radar, radar measurements, radar theory, signal
processing algorithms, ultra wideband radar.

I. INTRODUCTION

THESE days there are huge varieties of methods for con-
tactless micro- and macroscopic distance measurements.

In particular, industrial positioning used in machine tools typ-
ically requires accuracies to the extent of a few micrometers.
Thus accurate, robust and cost-effective methods for distance
measurements suitable for machine controlling are required.
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Fig. 1. Photograph of the setup used for experimental evaluation. Consisting
of a laser interferometer referenced 80 GHz FMCW radar sensor and a corner
reflector used as a radar target placed on a linear track with 5.2 m working
range.

For accurate distance measurements, laser interferometry is
the most commonly used technology. However, especially in
harsh environments dust, steam and flying chips can result in
a loss of measurability when using optical sensors. Frequency
modulated continuous wave (FMCW) radar on the other hand
can be used as a robust and cost-effective alternative as
shown in this work. Their working principle allows measuring
multiple unambiguous distances simultaneously and also, they
can automatically recover from short term interferences unlike
laser interferometers. As can be seen, there is a demand for
advanced FMCW radar signal processing, that enables this
high measurement accuracy.

In our previous work [1] we outlined a novel algorithm
that uses a combination of the downconverted intermediate
frequency (IF) signal phase with its frequency, taking into
account the information of the parasitic hardware. In this work
we give a more theoretical and in-depth view considering
disturbing radar targets and micro-Doppler dependent effects.
Furthermore, simulations and measurements with an optimized
experimental setup as well as radar hardware were performed.
As a result, we have achieved significantly better measurement
performance than in [1]. Fig. 1 shows a photograph of the
experimental setup used for experimental evaluation. As a
testing platform, a wideband FMCW radar with a center
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TABLE I

OVERVIEW OF THE PUBLISHED HIGH
ACCURACY RADAR MEASUREMENTS

operating frequency of 80 GHz (see [2], [3]) was utilized. The
chosen radar hardware still sets standards in terms of relative
bandwidth and phase noise level.

In various applications [4]–[10] it has previously been
shown how to perform unambiguous IF phase evaluation
with FMCW radar systems. However, compared with the
phase evaluating algorithm proposed here, unwanted hardware
specific effects were not considered. Furthermore, the phase
evaluating methods [8], [9] are more computationally intensive
due to their iterative behavior. Table I shows an overview of
the published free space radar high accuracy measurements
with at least 10 mm measurement range. In [8], [9], [11]–[22]
it was shown that highly accurate measurements using radar
technology are basically possible. However, the investigated
measurement range in these publications were significantly
below one meter. This was extended up to 5.2 m in this
work, to better suit the needs of industrial applications. Unlike
the FMCW radar technology, the six-port interferometry used
in [17], [18] does not allow simultaneous measurements of
multiple radar targets. In addition, it is not able to measure
unambiguous distances in general. The distance measurement
precision with FMCW radar systems, which is not primarily
considered here, was previously analyzed in [23], where they
presented an analytical way to describe noise in phase-locked
loop stabilized FMCW radar systems in a theoretic manner.

At first, in Section II-A we show some partially new
methods for accurate distance measurements using interme-
diate frequency evaluation (FE) and discuss their performance
by simulation. FE is an integral part of the phase evalu-
ation (PE) algorithm, originally published in [1], which is
discussed in detail in Section III. Therefore, FE should be

Fig. 2. Simplified block diagram of a monostatic FMCW radar system.

Fig. 3. Sawtooth shaped frequency modulation of an FMCW radar system
with either up- or downchirps. TRR is the ramp repetition time. The frequency
chirp runs between ωmin and ωmax.

considered properly. The PE algorithm is divided into so called
basic PE and enhanced PE which is based on basic PE. Then,
in Section IV we compare FE with PE theoretically from
different perspectives. Finally, in Section V we confirm the
theory by simulations and measurements.

II. DISTANCE ESTIMATION USING FMCW RADAR

Fig. 2 shows the simplified block diagram of the investigated
monostatic FMCW radar. A carrier signal with the center
angular frequency ω0 is frequency modulated by a linear
frequency chirp as shown in Fig. 3:

stx(t) = Atx · cos
(

ω0t +
∫

±ω̇t dt

)
, −TR

2
≤ t ≤ TR

2

= Atx · cos
(

ω0t ± 1
2
ω̇t2 + φm

)
, (1)

where Atx is the amplitude of the transmitted signal stx(t), ω̇
is the quotient of the ramp bandwidth B, TR is the ramp dura-
tion and φm is the zero-phase term of the phase modulation.
A plus/minus sign ± or ∓ in all equations apply to rising and
falling frequency ramps, respectively. The signal stx(t) is then
radiated via an antenna into free space and reflected by a radar
target. After a round-trip propagation delay τ the signal

srx(t) = Arx · cos
[
ω0(t − τ) ± 1

2
ω̇(t − τ)2 + φm + φr

]
, (2)

is received by the same antenna, where Arx is the ampli-
tude of the received signal and φr is the target reflection
phase component which mainly depends on the properties of
the target. After reception, srx(t) is downconverted to the
IF signal. The resulting idealized IF signal of the linear
frequency modulated FMCW radar is

sif(t) = Aif · cos
(

ω̇τt ± ω0τ − 1
2
ω̇τ2 ∓ φr

)
, (3)
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Fig. 4. Example for a magnitude and the corresponding phase spectrum of the
discrete Fourier transformed IF signal. The continuous lines were produced
by zero-padding.

Fig. 5. Flow diagram for distance estimation by frequency evaluation using
interpolation.

where Aif is the amplitude of the IF signal. The distance from
the radar system to the radar target is then calculated from the
frequency or phase information of the IF signal using τ .

A. Extension of the Classical Frequency Based Approach

Typically, the distance is determined by estimating the
intermediate frequency ωif . Distance R is then calculated from
the relationship τ = 2R/cm as

R =
ωif

ω̇
· cm

2
, (4)

where cm is the propagation speed of electromagnetic waves in
the specific medium. Estimation of the intermediate frequency
is mostly performed by simple spectral analysis as shown
in Fig. 4. The magnitude spectrum of the discrete Fourier
transformed (DFT) intermediate frequency Sif(m) serves as
the maximum likelihood function for the estimator. Conse-
quently, the maximum-likelihood estimated frequency bin is

m̂ = arg max
m

|Sif(m)| =
ω̇τN

ωs
, (5)

where N is the number of data samples and ωs is the sampling
angular frequency used. As a result the estimated distance for

the FE is

R̂f =
2πm̂

B
· cm

2
. (6)

Due to the discretely estimated frequency bin, the range
resolution of this comparatively coarse FE is

ΔR̂f =
2π

B
· cm

2
. (7)

Interpolation or zero-padding is required to obtain a higher
frequency and thus range accuracy. In the following, different
methods of interpolation in the IF magnitude spectrum are
examined. Sampling a harmonic in a finite time interval results
in a spectral convolution with a sinc pulse if the sampling
time is not an integer multiple of the harmonics period dura-
tion. This phenomenon is commonly called spectral leakage.
Spectral leakage can be reduced by multiplication of sif(t)
with a window function unlike a rectangular window prior
to the DFT. Thus, the window function shapes the spectral
pulse and should be considered by the spectral interpolation
to reduce an unwanted frequency dependent bias. The most
common way of magnitude spectrum interpolation is a three-
point parabolic interpolation

m̂i,pi=m̂− |Sif(m̂)|−|Sif(m̂ + 1)|
2|Sif(m̂)|−|Sif(m̂ + 1)|−|Sif(m̂ − 1)| +

1
2
,

(8)

whereby the two frequency bins adjacent to the maximum
estimated in (5) are used to fit a parabola inside the magnitude
spectrum. A different type of three-point interpolation is
initially proposed in [25] as exponential parabolic interpolation

m̂i,epi

= m̂ − |Sif(m̂)|p − |Sif(m̂ + 1)|p
2|Sif(m̂)|p − |Sif(m̂ + 1)|p − |Sif(m̂ − 1)|p +

1
2
.

(9)

Using the exponential parabolic interpolation, a non-integer
exponent p is introduced. The influence on FE bias related to
spectral leakage can be significantly reduced with an optimized
value for p, which depends only on the window function used.1

A further kind of interpolation is the center formula

m̂i,cf =

∑m̂+mn
m=m̂−mn

m · |Sif(m)|2∑m̂+mn
m=m̂−mn

|Sif(m)|2
, (10)

which is frequently used in spectral analysis referred as
the spectral centroid with frequency band limitation. This
approach is based on the formula for the center of mass from
discretely distributed masses using the power spectral density.
mn belongs to the one-sided number of bins beneath the dis-
crete maximum used for center calculation. Simulations have
shown that a minimum value of five is needed independent
of the used window function. A further increase of mn does
not lead to a significant reduction of the bias. Furthermore,
mn must be multiplied with the zero-padding factor to fit the
targets main lobe.

1Window optimized parameter for exponential parabolic interpolation p:
Rectangular 0.777, Hanning 0.231, Nuttall 0.086.
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Fig. 6. Illustration of the influence of RF- and IF transfer function as well
as the non-time-centered DFT dependent group delay on the IF signal.

According to Fig. 5 the FE algorithm can be described as
follows:

1) Preprocessing of the sampled IF data sif(n) by window-
ing, optional zero-padding and a DFT.

2) Coarse IF frequency evaluation by peak detection in
Sif(m) magnitude spectrum. Followed by a fine fre-
quency estimation using interpolation and then distance
calculation.

B. Phase Based Approach and Implementation Challenges

According to (3) it is possible that an estimation of phase

ϕ̂ = arg{Sif(m̂)} (11)

can be used to estimate the distance

R̂ϕ =

[
±ω0

ω̇
∓
√(ω0

ω̇

)2

− 2
ϕ̂ ± φr

ẇ

]
· cm

2
, 0 ≤ ±ϕ̂ < ∞.

(12)

As the condition of the equation shows, the equation assumes
an unambiguous estimated phase within 0 ≤ ±ϕ̂ < ∞. Hence,
a simple evaluation of the phase information is only unam-
biguous within −π ≤ ϕ̂ ≤ π and therefore insufficient for an
unambiguous distance estimation in the entire measurement
range. Since the native unambiguous range interval of PE is

Rϕ,un ≈ 2π

ω0
· cm

2
. (13)

Furthermore, with narrowband frequency ramps the expres-
sion −ω̇2/2 in (3) is negligibly small and (12) can be
simplified to

R̂ϕ ≈ ±ϕ̂ + φr

ω0
· cm

2
. (14)

An accurate PE requires that all phase responses in the
radar systems radio frequency (RF) and IF paths are consid-
ered (Hrf(jω), H if(jω) in Fig. 6). In this work, the major
impact on the RF path phase response of the radar system
is the propagation delay dispersion in the antenna feeding
waveguide. The effect is more dramatic if the cutoff frequency
of the waveguide ωwg is close to the minimum radar chirp
frequency ωmin. In the following, we take a closer look on
the impact of rectangular waveguides in the radar systems
RF path. The additional propagation delay due to the phase
velocity vp(t) (see [26]) in a single-mode used rectangular
waveguide of length lwg can be analytically described by

τd(t) =
2lwg

vp(t)
, −TR

2
≤ t ≤ TR

2

= 2lwg

√
1 −

(
ωwg

ω0 ± ω̇t

)2

· 1
cm

, (15)

where ωwg is the waveguide cutoff frequency. By combining
equations (3) and (15), the analytic IF signal disturbed by
waveguide dispersion is given as

s′+if (t) = ej
[
ω̇(τ+τd(t))t±ω0(τ+τd(t))− 1

2 ω̇(τ+τd(t))2∓φr

]
≈ ej

[
ω̇τt±ω0τ− 1

2 ω̇τ2∓φr

]
︸ ︷︷ ︸

=s+
if (t)

· ej[ω̇τd(t)t±ω0τd(t)]︸ ︷︷ ︸
=wrf (t)

, (16)

where wrf(t) is a kind of continuous complex window function
caused by waveguide dispersion. Hence, the spectrum is

S′
if(jω) = Sif(jω) ∗ W rf(jω). (17)

As demonstrated, the phase response in the RF path leads to a
convolution of the ideal IF spectrum Sif(jω) with W rf(jω) =
F{wrf(t)}. In consequence, wrf(t) causes pulse forming, a
disturbing constant phase term and a frequency shift of the
IF signal. Moreover, the spectral pulse of potentially disturbing
radar targets is widened and thus leads to stronger spectral
interferences with the main targets pulse.

In addition, the phase response in the IF path H if(jω) should
be considered:

S′′
if(jω) = S′

if(jω) · H if(jω). (18)

The cause for an IF path transfer function is the IF filter
structure. Particularly intermediate frequencies close to the
cutoff frequency of high-order low or high pass filters cause
large phase shifts. In contrast to the RF path phase response,
H if(jω) leads to an intermediate frequency dependent phase
shift

ϕ′′(ω) = ϕ(ω) + ϕif(ω),
0 ≤ ±ϕ(ω) < ∞
0 ≤ ϕif(ω) < ∞.

(19)

Interesting and later useful is the fact that the sign of the ideal
phase term compared to the IF path dependent phase shift
ϕif(ω) is reversed depending on the frequency chirp direction.
Neglecting H if(jω) would result in a distance dependent bias
of

R̂ϕ,e,if(R) = ±arg
{
H if

(
Rω̇ 2

cm

)}
ω0

. (20)

A second kind of IF path evoking phase shift is caused by
the default non-time-centered DFT implementation

DFT{sif(n)} =
N−1∑
n=0

sif(n) · e−j·2π nm
N . (21)

Due to the frequency modulation dependent time base
−TR/2 ≤ t ≤ TR/2 in (3) a kind of time-centered DFT

Sif(m) =
N−1∑
n=0

sif(n) · e−j·2π
(n− N

2 )m
N

= DFT{sif(n)} · ejπm (22)

must be used. This equation is valid if no zero-padding is
applied. Using the non time-centered DFT would result in a
frequency dependent phase shift

ϕe,dft(ω) = arg
{

e−j
TR
2 ω
}

= −TR

2
ω (23)
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Fig. 7. Flow diagram of the basic phase evaluation algorithm.

in the continuous time domain and therefore in a distance
dependent bias

R̂ϕ,e,dft(R) ≈ ∓TRω̇

2ω0
R. (24)

III. PROPOSED PHASE EVALUATION ALGORITHM

A major problem of using the IF phase information for
distance estimation is its limited unambiguity as shown in (13).
Therefore, the idea of the proposed PE algorithm is the
combination of the unambiguous FE with the ambiguous
PE. Hardware and principle-based effects as described in
Section II-B are considered.

A. Basic Phase Evaluation

According to Fig. 7 the basic PE algorithm is as follows:

1) Inverse filtering of the RF path transfer function
by time domain division with the discrete complex
window wrf(n), caused by the RF path transfer func-
tion. To avoid divisions by zero an analytical IF signal
sif(n) and therefore a Hilbert transform of sif(n) is
required. For an analytical description of wrf(n) due to

a propagation delay dispersion of a rectangular
waveguide see (16). Alternatively, wrf(n) can be deter-
mined by measuring sif(n) and dividing by an ideal-
ized IF signal. This is useful when wrf(n) cannot be
described analytically.

2) Windowing of the IF signal. As shown later in Section V,
zero-padding is not essential. Computation of the time-
centered DFT Sif(m) by multiplication of the default
DFT with exp(jπm) as shown in (22). The IF Signal
data vector can be left rotated by N/2 in time domain
as an alternative to the complex multiplications.

3) Inverse filtering of the IF path related phase response by
division with a precalculated simulation of H if(m).

4) Spectral peak-detection and interpolation of m̂i accord-
ing to the FE methods described in Section II-A. The
phase is estimated in the IF phase spectrum on previ-
ously estimated bin. As seen in Fig. 4, the curve of
the phase spectrum near the target bin is widely flat.
Thus, the phase at the interpolated frequency bin can be
estimated by linear interpolation. However, this requires
an introduction of a local phase unwrapping as described
below to avoid false interpolation by phase jumps. First,
interpolation is performed between the phase at the right
bin

ϕ̂ce = ϕ̂(�m̂i�) (25)

and the possibly shifted phase at the left bin

ϕ̂fl =

⎧⎪⎨
⎪⎩

ϕ̂(	m̂i
) + 2π, for ϕ̂(�m̂i�) − ϕ̂(	m̂i
) > π

ϕ̂(	m̂i
) − 2π, for ϕ̂(	m̂i
) − ϕ̂(�m̂i�) > π

ϕ̂(	m̂i
), otherwise.

(26)

Thus, the interpolated phase is

ϕ̂′
i(m̂i) = ϕ̂fl + [ϕ̂ce − ϕ̂fl](m̂i − 	m̂i
). (27)

Finally, the interpolated phase in target interval [−π, π]
is

ϕ̂i(m̂) = [ϕ̂′
i(m̂i) + π] mod 2π − π. (28)

5) Conversion of the intermediate frequency to a
distance R̂f using the FE method. With (3), a virtual
but absolute phase position of FE ϕ̂f is then calculated
from R̂f , where ϕ̂f is unambiguous over the entire
measurement range.

6) The unambiguity phase interval

nui = arg min
nui

|ϕ̂(nui, ϕ̂i) − ϕ̂f | =
⌈∣∣∣∣ ϕ̂f − ϕ̂i

2π

∣∣∣∣
⌋

(29)

is then calculated by minimizing the difference between
ϕ̂ and ϕ̂f , where �x
 denotes the rounding to the nearest
integer of x. The unambiguous phase over the entire
measurement range is then determined by

ϕ̂ = ϕ̂i ± 2πnui, (30)

where ϕ̂i is the previously estimated ambiguous phase.
7) Based on ϕ̂, an unambiguous and accurate estimation of

the distance R̂ϕ is performed with (12).
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Fig. 8. Systematic overview of the working principle of the enhanced
phase evaluation (EPE). A combination of two frequency ramps processed
individually by basic phase evaluation (BPE).

Fig. 9. Flow diagram of the enhanced phase evaluation algorithm, where
ϕ̂u and ϕ̂d are determined according to the basic phase evaluation.

The virtual phase position of the FE ϕ̂f may have a
maximum error of π. Thus, the maximum allowed distance
error of the FE for a fully functional PE is

R̂f,e
!
<

π

ω0
· cm

2
, (31)

when applied a non-distorted idealized PE.

B. Enhanced Phase Evaluation

The previously shown basic PE algorithm can be enhanced
by combining up- and downchirps as shown in Fig. 8. In the
following this is called enhanced PE. Absolute phases ϕ̂u and
ϕ̂d are measured by the basic PE separately. According to (19)
using means of ϕ̂u and ϕ̂d allows a full compensation of the
phase response of the IF path. Therefore, any IF path depend-
ing bias on the estimated distance is eliminated. A coarse
information about the IF path phase response is still required
to determine the proper phase interval for the basic PE. The
enhanced PE is especially suited when no accurate measure-
ment of the IF frequency response is available, or it is affected
by manufacturing tolerances. It is also suitable in cases where
the IF path is influenced by thermal expansion or if there is a
clock skew on the analog-to-digital converter that would cause
a group delay, respectively. Considering Fig. 9, the enhanced
PE works as follows:

1) Execution of a triangular-shaped frequency double ramp.
2) Separately applying of the basic PE.
3) Calculation of the means of the phase difference and

subsequent estimation of the distance.

IV. THEORETICAL COMPARISON OF THE PERFORMANCE

A. Precision Limits Given by the Cramér-Rao Bound

As a benchmark for the proposed algorithms the Cramér-
Rao bound is used. The Cramér-Rao bound is the lower
bound for the efficiency of an unbiased estimator. Therefore,
it indicates the best estimation of the precision and thus the
accuracy that can be achieved with the available biased data.
The IF signal

sif,g(n) = Aif · cos
(

2π
ωif

ωs
n

)
+ g(n), 0 ≤ n < N (32)

is assumed to be disturbed by additive white Gaussian
noise g(n). Therefore, the Cramér-Rao bound of the FE
according to [8] is given as

Var(R̂f) ≥ 3c2
m

ηs/nNB2
, (33)

where ηs/n is the linear signal-to-noise ratio (SNR). Like the
Cramér-Rao bound of FE there is a lower bound for the PE.
According to [27] the Cramér-Rao bound for the estimated
phase due to known frequency is

Var(ϕ̂) ≥ 1
ηs/nN

. (34)

As a result, the Cramér-Rao bound for the PE is

Var(R̂ϕ) ≥ c2
m

4ηs/nNω2
0

. (35)

This equation requires an exactly estimated intermediate fre-
quency beforehand.

B. Bias Caused by Disturbing Radar Targets

In the following, the distance bias induced by a single
disturbing radar target using the FE R̂f,e,d and the PE R̂ϕ,e,d is
analyzed. The main impact on the error when using FE is the
relative amplitude between the main and the disturbing target.
As well as the main lobe shape caused by the window function
and the type of interpolation in IF magnitude spectrum. There-
fore, the bias cannot be described analytically. Considering
the range resolution (7) and constant main lobe width in bins
following proportionality is derived:

R̂f,e,d ∝ 1
B

. (36)

However, the relationship is different for PE than for FE.
The resulting phase shift of a superposition of two harmonics
with the same frequency but different amplitudes Aa, Ab and
phases Δϕ is

ϕa+b = arctan

(
sin(Δϕ)

Aa
Ab

+ cos(Δϕ)

)
. (37)

Under consideration of (37) the maximum bias by a disturbing
radar target using the PE is

R̂ϕ,emax,d =
arctan

(
10

Aa,dB−Ab,dB
20

)
ω0

· cm

2
∝ 1

ω0
, (38)
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Fig. 10. Systematic representation of vibrating targets (top) during radar
frequency chirps (bottom).

where Aa,dB is the amplitude of the main target and Ab,dB the
amplitude of the disturbing target in dB. Considering a weak
disturbing target, (38) can be simplified to

R̂ϕ,emax,d ≈
Aa,dB�Ab,dB

10
Aa,dB−Ab,dB

20

ω0
· cm

2
. (39)

Hence, the mentioned bias of the PE does not depend on
the radar bandwidth B but on the center frequency ω0 when
compared with the FE.

C. Reduction of Precision by the Micro-Doppler Effect

In a lot of real field applications, the distance to be measured
is not static but disturbed by micro vibrations. Therefore, the
estimated distance is not constant (see Fig. 10). It oscillates
with an angular frequency ωv and an amplitude Av in a
distance R0:

R(t) = R0 + Av sin[ωv(t + kTr) + ϕv], k ∈ Z, (40)

where ϕv is the zero-phase angle of the disturbing oscillation
and k is the index of the related radar frequency chirp. For
simplicity, it is assumed that the ramp repetition time TRR is
equal to the ramp duration TR. Using (3) and a Taylor series
approach the estimated frequency is

ω̂v =ω̇
2
cm

R0 + ω̇
2
cm

Av sin(ωvkTR + ϕv)

± ω0
2
cm

Avωv cos(ωvkTR + ϕv).
(41)

The equation consists of three terms. These terms belong to the
mean distance R0, the distance modulation and the distance
modulation depending on the Doppler effect. Considering the
estimated frequency from ramp k to k + 1 then ω̂v is a
superposition by two 90-degree phase shifted harmonics with
frequency TR. Consequently, the impact on random errors
using the FE is

Var(R̂f,v) =
A2

v

2ω̇2

(
ω̇2 + w2

0ω
2
v

)
+ Var(R̂f). (42)

With the same approach used in (41) the estimated IF phase
of a vibrating radar target is

ϕ̂v = ω0
2
cm

R0 + ω0
2
cm

Av sin(ωvkTR + ϕv). (43)

Fig. 11. Top-down schematic of the experimental setup. The upper illustra-
tion of a laser interferometer belongs to a previous reference measurement
for compensating of the linear track warping caused by the moving car-
riage. The optional disturbing target is part of the measurements performed
in Section IV-B.

TABLE II

RADAR SENSOR SPECIFICATIONS

In comparison to the FE, only two terms can be observed.
A harmonic by the Doppler shift is not present. Analogously
the variance using the PE is

Var(R̂ϕ,v) =
A2

v

2
+ Var(R̂ϕ). (44)

To compare the FE with the PE according to their effect on
random errors due to vibrating radar targets it is useful to
examine the relationship

Var(R̂f,v)
Var(R̂ϕ,v)

≈
ηs/n�1

ω̇2 + ω2
0ω

2
v

ω̇2
≥ 1 (45)

between (42) and (44). The quotient is always greater or equal
to one. For this reason, the measurement stability of vibrating
targets with PE is always better than with FE. Typically, a
type of triangular-shaped frequency modulation that is not
considered here is used to eliminate the Doppler effect in FE.
But with vibration frequencies ωv that are in region of the
ramp duration TR this does not work. An interesting side effect
of this relation is that it can be used for target identification
in multi target environments.

V. SIMULATION AND MEASUREMENT RESULTS

A. Experimental Setup

We performed several measurements with an 80 GHz wide-
band radar platform introduced in [2], [3]. Table II shows the
radar sensor specifications and configurations. To carry out
isolated investigations of specific effects, simulations with the
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Fig. 12. Simulated root-mean-square error (RMSE) by frequency evaluation
(FE) for parabolic interpolation (PI), exponential parabolic interpolation (EPI)
and center formula (CF) by random repositioning the target for each data
point to illustrate the effect of spectral leakage. Different window functions
(rectangular, Hanning, Nuttall) and optional two times zero-padding were
used. The simulated target was randomly moved over the entire measurement
range. The Cramér-Rao bound serves as a lower bound of the RMSE. Some
lines with and without zero-padding are overlapped.

same configuration used for measurements were performed.
As radar targets we utilized corner reflectors with 5, 7 and
14 cm edge length. The respective target was situated on
a tilted bar on the linear track with a maximum working
range of 5.2 m and a positioning repeatability of 10 μm
(see Fig. 11). The entire measurement setup was built on top
of a solid granite slab to reduce the influence of the envi-
ronment. Furthermore, the radar system used to evaluate the
proposed algorithm and a laser interferometer were installed
on two opposite sides measuring the distance to the moving
target. The environmentally compensated laser interferometer
HPI-3D from Lasertex served as a reference distance mea-
surement instrument providing an accuracy of 0.4 μm per
measured distance meter according to its specification. In order
to compensate the influence of bending granite slabs caused
by the moving mass of the carriage, a reference measure-
ment between radar and laser interferometer was performed
beforehand. To reduce possible sources of inaccuracy, the
FMCW radar systems reference clock was augmented by
an ovenized quartz oscillator, thus providing a much more
temperature stable reference for target distance measurements.
In contrast to [1] we modified the radar backend using
a system on chip with programmable logic. It provides a
system trigger structure that is synchronous to the phase-
locked loop clock, resulting in a more precise distance
estimation.

B. Verification and Comparison of the Methods

Fig. 12 shows several FE simulation results with different
evaluation configurations. For each data point the simulated
point target was randomly positioned along the range axis

in an idealized environment. In addition, the IF signals were
disturbed by additive white Gaussian noise to achieve a cer-
tain SNR. Then, for each configuration, the root-mean-square
error (RMSE) of the simulated distance error was calculated to
show which configuration is suitable for micrometer distance
measurements caused by the picket-fence effect (see [29])
due to spectral leakage. Three different kinds of window
functions with a highly varying main lobe width and side-
lobe suppression were used (see [29], [30]).2 Nuttall window
refers to the four term Nuttall window with continuous first
derivative. As can be seen, at a high SNR the RMSE is
dominated by a bias due to spectral leakage regardless of
the configuration used. Only a few combinations are suitable
for micrometer accurate distance measurement. Especially
the exponential parabolic interpolation or the center formula
with Hanning or Nuttall windows are applicable (as marked).
In addition, Fig. 12 shows that zero-padding is not essential
and can therefore be omitted due to the increase in compu-
tational load by the DFT with the increasing number of data
samples.3

To compare FE with PE according the limits given by the
Cramér-Rao bounds, we performed precision measurements
with a 5 cm corner reflector. In Fig. 13 the measured and
simulated standard deviation of the FE is compared with the
PE using 1000 measurements at each point. The distance
deviation of the PE is superior to that of the FE over the entire
range. As a result, the measured stability of PE at 0.4 m is
less than 50 nm and therefore it is close to the limits caused
by mechanical environmental oscillations. In 5.6 m the sta-
bility is still less than 600 nm compared to FE with more
than 10 μm.

Fig. 14 shows several simulations and measurements of
the bias caused by disturbing radar targets. The parame-
ters of comparison are the relative power and distance.
FE is compared with PE as well as the exponential parabolic
interpolation with the center formula. For the measurements,
a static interfering target was positioned beside the linear
track (see Fig. 11). As can be seen, each measurement and
simulation is overlaid by an oscillation. This is due to the fact
that the radar target interferes alternately constructively and
destructively with the disturbing radar target in the IF signal,
depending on its distance-periodic phase. The main insight of
this figure is the significantly larger bias at distance differences
above 15 mm by using the center formula compared to the
exponential parabolic interpolation. The reason for this is that
ten rather than three bins are used for calculation. Therefore,
the exponential parabolic interpolation compared with center
formula is the better choice for the FE according real and thus
disturbed radar environments. Since real targets are extended
and non-point-shaped, they also lead to interferences in the
IF signal due to path differences of the backscattered multiple
reflections. The wave approaching the extended target cannot
be considered plane, especially at short distances. As can
be seen particularly in Fig. 14(b), these interferences lead

2-3 dB main-lobe bandwidth / Highest side-lobe level (Bins / dB):
Rectangular: 0.89 / -13, Hanning: 1.44 / -18, Nuttall: 1.91 / -93.

3Computational load of the Cooley-Tukey fast Fourier transform (FFT)
algorithm: O(N log2 N).
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Fig. 13. Measured and simulated distance uncertainty of frequency evaluation (FE) and phase evaluation (PE). The measured PE result is close to the limit
by unwanted mechanical vibrations. The significant improvement of the measured PE precision compared to the previous work [1] is caused by the improved
system trigger structure.

Fig. 14. Simulated and measured distance bias caused by disturbing targets depending on relative target distance- and power. Comparison of the frequency
evaluation and the phase evaluation with different interpolation methods. A Hanning window was used.

Fig. 15. Simulated maximum distance bias due to disturbing targets. Com-
parison of different frequency interpolation methods (exponential parabolic
interpolation and center formula, labeled as EPI and CF), window functions
(Hanning, Nuttall) with frequency evaluation (FE), phase evaluation (PE) and
the proposed formula (38). Representation of the failure of PE by a strong
disturbing target due to violation of (31).

Fig. 16. Simulated standard deviation of micro-Doppler disturbed dis-
tance measurements for frequency evaluation (FE) and phase evalua-
tion (PE) with mentioned vibration frequencies (60, 100 Hz) and amplitudes
(5, 10 μm). Comparison with the proposed formulas (42), (44) and the
Cramér-Rao bounds as the lower bounds for standard deviation of static radar
targets.
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Fig. 17. Measured distance bias by using corner reflectors of different
sizes (5, 7, 14 cm). Comparison of the frequency evaluation with the enhanced
phase evaluation using a constant target reflection phase φr as well as a
distance dependent φr for a 5 cm corner reflector.

to a superposition of additional oscillations on the measured
distances compared to the simulations. Fig. 15 shows essen-
tially the same simulations as in Fig. 14 but from a different
view. FE is compared with PE as well as the various evaluation
configurations by showing the maximum bias to be expected
with the relative power of the radar targets. Equation (38) was
confirmed as well as the superiority of PE over FE. The bias
on PE especially by disturbers with high radar cross section
is about ten times smaller than FE. Thus, the exponential
parabolic interpolation with Hanning window should be used
to estimate proper PE results over a wide range.

Fig. 16 shows standard deviations of several micro-Doppler
shifted simulations to confirm the proposed formulas (42)
and (44). Different kinds of oscillations were modulated
on R0. FE, PE, as well as the Cramér-Rao bounds are plotted.
As the figure shows, (42) and (44) were proven. When using
the FE, the standard deviation is dominated by the oscillation
and the micro-Doppler effect at high SNR. But with PE, the
simulation is only affected by the oscillation itself. In addition,
(45) was confirmed by a 100 Hz disturbed measurement
caused by an enabled position control of the linear track. The
measured value for Var(R̂f,v)/Var(R̂ϕ,v) of a radar target
at 1.5 m was 19.2 and therefore close to the theoretical
expected value of 19.4.

C. Achieved Measurement Accuracy

We performed multiple measurements to estimate the accu-
racy of the proposed PE algorithm with the used radar system.

Fig. 18. Bias of five independent distance measurements with enhanced
phase evaluation to demonstrate the measurement repeatability. Using the
same calibration measurement for the target reflection phase φr. A corner
reflector with 5 cm edge length was utilized.

Additionally, we compared the results with the FE methods.
A Hanning window with exponential parabolic interpolation
was used. Fig. 17 shows the measurement results of FE
and PE by using corner reflectors of different sizes. It can
be recognized a large bias on the FE that is caused by
disturbing targets. Thus, the measured distance bias of FE is
about ±120 μm. The PE, on the other hand, is affected to a
much lesser extent as shown in Section IV-B theoretically.
The distance bias of the PE is less than ±4.5 μm in the
range of 3.5 to 5.6 m by using a small 5 cm corner reflector.
Furthermore, the increasing bias of the PE at short distances is
systematic and reproducible for the respective types and sizes
of radar targets. This behavior can be described by a distance
dependent target reflection phase φr (see (3)) due to backscat-
tered multiple reflections of an extended and non-point-
shaped target as described in Section V-B. Therefore, φr is
the variation of the phase center of the radar target with
respect to the distance. To consider the distance dependent
target reflection phase, we performed a dedicated calibration
measurement series with the reference system. Using the
measured distance error of PE, we estimated φr as a function
of R with an 8th order polynomial fit. As can be seen in
Fig. 17(c), PE is accurate over the entire measurement range
of 5.2 m within ±4.5 μm. To demonstrate the repeatability of
the accuracy measurements, we reproduced it five independent
times using the same calibration for φr, as shown in Fig. 18.

VI. CONCLUSION

We have shown that the used 80 GHz FMCW radar system
highly benefits from the proposed phase evaluation algorithm
compared to the classic frequency evaluation approach. Accu-
racies of ±4.5 μm were achieved over the entire measurement
range of at least 5.2 m using a laser interferometer as a refer-
ence. To the best of the authors’ knowledge the achieved dis-
tance accuracy over the large range variation is a record value
and is also close to measurement limits caused by thermal
expansion of the experimental setup, mechanical alignment
issues or limits of the reference laser interferometer system.
In addition, the measured repeatability by the proposed phase
evaluation is within standard deviation of about 80 nm · m−1.
It was experimentally confirmed that the standard deviation of
the proposed algorithm is 17 times smaller than that of the
frequency evaluation. Furthermore, we have investigated the
bias induced by disturbing radar targets through a derivation
of the theoretical boundaries and several simulations as well as
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measurements. The maximum distance error of the phase eval-
uation compared with the frequency evaluation was minimized
by at least ten times. Additionally, the increase of distance
uncertainty by the micro-Doppler effect due to vibrations was
analyzed. We have derived the theoretical limits and proved
them by simulations. For example, the standard deviation
of a distance estimation by a radar target that oscillates
with 200 Hz was reduced approximately by a factor of
8.5 independent of the oscillation amplitude.

To achieve the above specifications, a novel phase evalua-
tion algorithm was designed. This algorithm works without
a history or a sophisticated filter structure and it enables
the highest accuracy with low vulnerability to interferences.
In addition, costly arithmetic operations are avoided. Thus, it
allows for implementation on low-cost, low-performance and
energy-efficient computing systems.

Considering their high robustness and cost-effectiveness,
phase evaluating FMCW radar systems can be used as alter-
natives to expensive optical systems by utilizing the proposed
algorithm as presented here.
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