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Abstract— Yield-driven optimization is important in micro-
wave design due to the uncertainties introduced in the
manufacturing process. For the first time, we extend in this paper
the use of polynomial chaos (PC) approach from electromag-
netic (EM)-based yield estimation to EM-based yield optimization
of microwave structures. We first formulate a novel objective
function for yield-driven EM optimization. By incorporating
the PC coefficients into the formulation, the objective function
is analytically related to yield optimization variables, which
are the nominal point. We then derive the sensitivity formu-
las of the PC coefficients with respect to the nominal point,
following which we derive the sensitivities of the optimization
objective function with respect to yield optimization variables.
These sensitivities are then used in gradient-based optimization
algorithms to find the optimal yield solution iteratively. The
proposed objective function requires fewer EM simulations to
provide reliable yield representation than that in the conventional
Monte Carlo-based yield optimization approach. As a result,
the number of EM simulations required to find the update
direction and suitable step size for the change of the nominal
point is reduced at each iteration of optimization. This allows
the proposed approach to achieve similar yield increase using
much fewer EM simulations or greater yield increase using
similar number of EM simulations compared to the conventional
yield optimization approach. The advantages of our proposed
approach are demonstrated by yield-driven EM optimization of
three waveguide filter examples.

Index Terms— Electromagnetic (EM) optimization, EM sen-
sitivities, microwave filters, polynomial chaos (PC), statistical
analysis, yield estimation, yield optimization.

I. INTRODUCTION

UNCERTAINTIES, introduced in the manufacturing
process, pose inherent randomness on both geometrical

dimensions and material properties of microwave components.
Under this consideration, performing yield-driven optimization
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becomes an essential step in manufacturability-driven designs
in a time-to-market development environment [1], [2]. The
two decades after 1970 have witnessed the development of
various yield optimization approaches, such as Monte Carlo-
based approaches [1]–[5] and geometrical approaches [6]–[8].
These methods are developed mostly for circuit-based yield-
driven design.

Since 1990s, electromagnetic (EM) simulations have
been increasingly used in microwave design [9]–[14].
However, compared with the circuit-based yield-driven design,
EM-based yield optimization is much more challenging.
Simply replacing circuit simulations by EM simulations in
conventional yield optimization approaches is not suitable
because the requirement of a large number of EM simulations
in yield optimization is computationally prohibitive. To alle-
viate this difficulty, space mapping optimization method has
been introduced to the yield-driven design of microwave struc-
tures. Space mapping employs computationally fast coarse
models to reduce the evaluation cost of the computationally
expensive EM fine models. The number of EM simulations
required in yield optimization is expected to be reduced
as all the EM simulations are attributed to calibrating the
coarse model at each space mapping iteration. In [15], space
mapping neuromodels have been used in an efficient EM-based
yield optimization procedure. In [16], space mapping has
been combined with a modified ellipsoidal technique, and
then, applied to yield optimization of microwave circuits.
A response corrected tuning space mapping surrogate has been
used for yield estimation and optimization in [17]. In [18],
the generalized space mapping surrogate is reconstructed
during yield optimization by parameter extraction. Jacobian
matrixes of the EM responses are evaluated and used in the
parameter extraction optimization process to enhance surrogate
models. However, all the aforementioned space mapping-based
approaches require the availability of an equivalent circuit
coarse model. In many practical cases, equivalent circuit
coarse models are not always available [19]. In this paper,
we address the challenge of performing yield-driven EM
optimization when explicit equivalent circuit coarse models
are not available. More recently, feature-based methods have
been studied and applied to yield estimation and optimization
of microwave structures. In [20] and [21], a yield estimation
technique exploiting feature-based statistical analysis has been
presented. Yield optimization is then performed by optimizing
the feature-based model using a pattern search algorithm.
In [22], a correction method for feature parameters has been
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described to allow yield estimation of microwave filters. Yield
optimization is then formulated as a constrained optimization
problem and solved accordingly.

At each iteration of yield optimization, the prediction of
yield values (also referred to as yield estimation) is typ-
ically involved. Recently, approaches based on polynomial
chaos (PC) [23] have emerged as favorable alternatives for
yield estimation and statistical analysis in the microwave area,
such as those in [24]–[34]. In [24], for example, PC has
been used to expand the time-domain electric and magnetic
fields into orthogonal PC basis functions of uncertain mesh
parameters. In [25], a decoupled PC and its applications to
statistical analysis and yield estimation of high-speed intercon-
nects have been reported. In [26], a nonintrusive formulation of
the PC approach has been applied to quantify the uncertainties
in deterministic models of the indoor radio channel. It has
been demonstrated that the PC approach shows significant
computational advantages over the traditional Monte Carlo
analysis and can be regarded as a powerful tool in yield
estimation and statistical analysis of microwave structures.

Compared to yield estimation, yield optimization has addi-
tional challenges. Unlike yield estimation where one fixed
nominal point (usually regarded as the mean values of statisti-
cal parameters) is considered, in yield optimization, the nom-
inal point is a variable that is updated iteratively, resulting
in many nominal points to be considered. At each iteration
of yield optimization, yield estimation needs to be performed
with respect to one nominal point, and the update direction and
suitable step size for the change of the nominal point need to
be determined. These tasks have to be done repetitively from
iteration to iteration during optimization, requiring a large
number of EM simulations if we directly apply the conven-
tional Monte Carlo-based or geometrical yield optimization
approaches. Considering the computational advantages that PC
offers in yield estimation, it is of great interest to explore the
use of PC for yield optimization. However, how to use PC
to facilitate the EM-based yield optimization of microwave
structures still remains an open subject in the literature.

This paper proposes a novel PC-based approach to yield-
driven EM optimization. For the first time, the use of PC
approach is elevated from the EM-based yield estimation
to EM-based yield optimization. The proposed approach
provides systematic formulation and sensitivity formulas of
EM-based yield optimization and does not require the avail-
ability of a coarse model. In the proposed approach, we first
formulate a novel objective function for yield-driven EM
optimization. By incorporating PC coefficients into the for-
mulation, the objective function is analytically related to yield
optimization variables, which are the nominal point. We then
derive the sensitivity formulas of the PC coefficients with
respect to the nominal point. The sensitivities of the objective
function with respect to the nominal point are derived based on
the sensitivity formulas of the PC coefficients. These sensitiv-
ities are then used in gradient-based optimization algorithms
to find the optimal yield solution iteratively. The proposed
objective function requires fewer EM simulations to provide
reliable yield representation than that in the conventional
Monte Carlo-based yield optimization approach. As a result,

the number of EM simulations required to find the update
direction and proper step size for the change of the nomi-
nal point is reduced at each iteration of optimization. This
allows the proposed approach to achieve similar yield increase
using much fewer EM simulations or greater yield increase
using similar number of EM simulations compared to the
conventional yield optimization approach. Three waveguide
filter examples are used to demonstrate the advantages of our
proposed approach.

This paper is organized as follows. In Section II, we briefly
review the formulations of the PC approach and establish
necessary notations for the descriptions of the proposed
approach. In Section III, the proposed PC-based yield opti-
mization approach is described in detail. Both the formulation
and the sensitivity formulas of the proposed PC-based objec-
tive function for yield-driven EM optimization are presented.
In Section IV, we demonstrate the advantages of the pro-
posed approach using yield-driven EM optimization of three
waveguide filter examples. In Section V, we conclude the
paper.

II. FORMULATIONS OF PC APPROACH

In this section, we give a brief overview of formulations
of the PC approach and establish necessary notations for the
descriptions of the proposed approach.

Let x represent the vector of n design parameters
(e.g., geometrical parameters) of the EM structure, where
x = [x1, x2, . . . , xn]T . Let x0 be the nominal point of x. For
statistical analysis of EM structures, the actual values of design
parameters of the manufactured devices are spread around x0

following certain (uniform, normal, etc.) distributions. A key
component of PC-based statistical analysis is performing a
transformation of parameters from the original random para-
meters x to independent standard random parameters ξ and
then applying the stochastic expansion in the transformed
space (i.e., the “ξ -space”) [35]. Let ξ = [ξ1, . . . , ξn ]T be
the vector of the independent standard random parameters.
For example, ξ1, . . . , ξn are with zero mean and unit variance
if x1, x2, . . . , xn have normal distributions, or with support
[−1, 1] if x1, x2, . . . , xn are uniformly distributed. In the con-
text of EM-based yield optimization, the change of x0 should
be considered when performing the transformation as the
nominal point is a variable. We thus denote this transformation
as ξ = T (x0, x) with the reverse transformation denoted as

x = T −1(x0, ξ ). (1)

The design goals are typically defined by a set of spec-
ifications imposed on the response of the EM structure at
each frequency of interest. Let Sj be the j th design speci-
fication sample, where j = 1, . . . , m. The symbol m denotes
the number of specification samples, including samples for
upper specifications and samples for lower specifications.
Let mu be the number of upper specification samples. For
convenience of description, we assume that S1, . . . , Smu are
upper specification samples and that Smu+1, . . . , Sm are lower
specification samples. Let R j (x) be the EM response at the
frequency of interest that corresponds to Sj . As we focus on



3188 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 66, NO. 7, JULY 2018

yield optimization where the nominal point x0 is a variable,
we intend to write R j (x) in a form where x0 is explicitly
presented. Substituting the reverse transformation (1) into
R j (x) allows us to have R j (x) = R j (T −1(x0, ξ )). An error
vector e(x) can be defined to measure the degree to which the
response satisfies the design specifications as follows:

e(x) = e(T −1(x0, ξ )) = [e1 e2 · · · emu · · · em]T (2)

where the j th element in the error vector, e j (T −1(x0, ξ )),
is given as

e j (T −1(x0, ξ ))=
{

R j (T −1(x0, ξ )) − Sj , if 1 ≤ j ≤ mu

Sj − R j (T −1(x0, ξ )), if mu < j ≤ m.

(3)

In practice, it is possible to impose both an upper specification
and a lower specification on the response at a common
frequency of interest. For example, if Sj1 and Sj2 are the
upper specification and the lower specification at a common
frequency, respectively, then the responses R j1(T −1(x0, ξ ))
and R j2(T −1(x0, ξ )) have the same values.

In PC-based statistical analysis of EM structures, the sto-
chastic quantity of interest is R j (x). The functional form
between R j (x) and ξ is approximated by the sum of weighted
orthogonal basis polynomials in terms of the standard random
parameters ξ as follows [23]:

R j (x) = R j (T −1(x0, ξ )) =
P∑

i=0

ai j (x0)�i (ξ ) (4)

where �i (·) is the generalized PC basis function. The optimal
bases to construct the multivariate basis depend on the contin-
uous probability distribution types of the design parameters.
For example, Hermite polynomials are optimal for normal dis-
tribution while Legendre polynomials correspond to uniform
distribution [35]. ai j (x0) is the weighting coefficient for the
i th basis function �i of the j th EM response R j (T −1(x0, ξ )).
P + 1 is the number of terms in (4), given as [23]:

P + 1 = (n + D)!
n! · D! (5)

where n is the dimentionality of x, and D is the highest
polynomial order in the expansion.

In this paper, we focus on the nonintrusive stochastic
collocation scheme (more specifically, the spectral projection
approach) to compute the PC coefficients ai j (x0). Using
the orthogonality condition of the PC basis functions �i (ξ ),
the PC coefficients ai j (x0) can be found by projection [26]

ai j (x0) =
∫
�n R j (T −1(x0, ξ ))�i (ξ )ρ(ξ )dξ∫

�n �2
i (ξ )ρ(ξ )dξ

(6)

where �n is the n-dimensional space of all possible values
of ξ . ρ(ξ ) is the joint probability density function (PDF) of
the standard random parameters ξ . The definition of ρ(ξ ) is
given as ρ(ξ ) = ∏n

d=1 f (ξd), where f (ξd ) is the PDF of
ξd , d = 1, 2, . . . , n. Equation (6) is the same as that in [26]
except that the change of the nominal point is considered.
As x0 changes during yield optimization, the PC coefficients
ai j need to be reevaluated from iteration to iteration.

The multidimensional integration in (6) can be evaluated
using numerical quadrature (see [26])∫

�n
R j (T −1(x0, ξ ))�i (ξ )ρ(ξ )dξ

≈
M∑

l=1

R j (T −1(x0, ξ (l)))�i (ξ
(l))w(l) (7)

∫
�n

�2
i (ξ )ρ(ξ )dξ ≈

M∑
l=1

�2
i (ξ

(l))w(l) (8)

where ξ (l) and w(l) are the integration quadrature points
(also called “nodes”) and weights in the "ξ -space," respec-
tively. M is the total number of integration quadrature points.
R j (T −1(x0, ξ (l))) is the EM response evaluated at the lth
sampling point in the original random space. As an exam-
ple, assuming that the design parameters are independently
Gaussian distributed with mean values x0

1 , x0
2 , . . . , x0

n and stan-
dard deviations σ1, σ2, . . . , σn , the lth sample in the original
space is given as

T −1(x0, ξ (l)) = x0 + �ξ (l) (9)

where � is a diagonal matrix containing the standard
deviations for all the design parameters, i.e., � = diag
{σ1 σ2 · · · σn}. To reduce the computational costs for mul-
tidimensional numerical integration in (7) and (8), sparse
grid techniques based on the Smolyak algorithm are typically
applied [36]. In many cases, this can accurately approximate
multidimensional integrals with substantially fewer quadrature
points.

As the change of x0 does not affect the numerical quadrature
in (8), for notational convenience, we define bi as follows:

bi =
M∑

l=1

�2
i (ξ

(l))w(l). (10)

bi is problem independent. It only depends on M and the
distribution types of standard random parameters ξ . Therefore,
bi can be determined before one performs yield optimization.
Based on (6)–(8) and (10), the PC coefficients can be com-
puted from

ai j (x0) = 1

bi

M∑
l=1

R j (T −1(x0, ξ (l)))�i (ξ
(l))w(l) (11)

where �i (ξ
(l)) and w(l) are the constants for yield

optimization.
One valuable feature of the PC approach is that once the

coefficients ai j (x0) are computed, the statistical properties of
the stochastic quantity R j (T −1(x0, ξ )), e.g., mean μ j (x0) and
variance σ 2

j (x0) can be obtained analytically through these
coefficients in a simple closed form [26]

μ j (x0) = E(R j ) = a0 j (x0) (12)

σ 2
j (x0) = E[(R j − μ j )

2] =
P∑

i=1

a2
i j (x0)bi . (13)
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III. PROPOSED PC-BASED YIELD

OPTIMIZATION APPROACH

In this section, our proposed PC-based yield optimization
approach is presented in detail. In Section III-A, we incor-
porate the PC coefficients into the objective function for
yield-driven EM optimization. By taking full advantage of
the statistical properties provided by the PC coefficients,
the number of EM simulations required to achieve reliable
yield representation is reduced. In Section III-B, we derive the
sensitivity formulas of the PC coefficients with respect to the
nominal point, followed by the derivation of the sensitivities
for the proposed objective function. These sensitivities are then
used in the gradient-based optimization algorithms to find the
optimal yield solution iteratively. Finally, the proposed yield
optimization process is summarized into a stepwise algorithm.

A. Formulation of the Objective Function for Yield-Driven
EM Optimization Incorporating PC Coefficients

Bandler and Chen [1] presented a one-sided least pth
objective function U(x0) that was well suited to acceler-
ating yield optimization. The objective function U(x0) is
congregated from the simulated responses related to design
specifications for all the circuit outcomes randomly generated
around the nominal point. Increase of the yield can be achieved
by minimizing U(x0) since such minimization leads to a
better center in the feasible region [2]. In this paper, we use
the formulation in [1] as a starting point and propose a
new and different objective function to facilitate yield-driven
EM optimization.

In the statistical approach to microwave design, we consider
that the random outcomes of the design parameters x are
actually spread around the nominal point x0 following their
statistical distributions and tolerances [15]. The kth random
outcome of x can be denoted as

xk = T −1(x0, ξ k), k = 1, . . . , N (14)

where N is the total number random outcomes of x. ξ k is
the vector of standard random parameters, which corresponds
to xk. In this paper, to distinguish the random outcomes of x
in the Monte Carlo analysis from the sparse grid samples of
x in the PC approach, we use k (k = 1, . . . , N) to represent
the index of random outcomes and use l (l = 1, . . . , M) to
represent the index of sparse grid samples.

Suppose that Hp(·) represents the one-sided least pth func-
tion. Following [1], the objective function U(x0) for the Monte
Carlo-based yield optimization is given as [1]

U(x0) = Hp(u(x0)) (15)

where u = [u1, u2, . . . , uN ]T . The kth component in u is
defined as

uk = αk Hq(e(T −1(x0, ξ k))), k = 1, . . . , N (16)

where q is an index indicating the norm used for e while p is
an index indicating the norm used for u. The specific definition
of the least pth norms (p = 1, 2, . . . ,∞) can be found in [1].
If we use p = 1 and q = 1 (as used in [1]) and take the

weighting factor αk = 1, the objective function U(x0) will
take the following form [1]:

U(x0) =
∑
k∈K

∑
j∈J(xk)

e j (T −1(x0, ξ k)) (17)

J(xk) = { j |e j (T −1(x0, ξ k)) > 0} (18)

K = {k|J(xk) �= ∅}. (19)

The objective function defined in (17) typically requires the
number of outcomes N to be reasonably sufficient to make
the minimization of (17) effective. It works efficiently if the
computation of responses is by circuit simulations. However,
it is not computationally efficient to directly apply (17) to
yield-driven EM optimization. The reason is that in each
iteration of yield optimization, the EM simulations need to be
done N times, where N is the number of random outcomes
of x. Furthermore, those simulations have to be redone from
iteration to iteration as the nominal point x0 is changed,
resulting in a large number of EM simulations.

To alleviate this difficulty, we propose a new formulation of
the objective function inspired by the fact that the statistical
properties of the EM response can be obtained analytically
through the PC coefficients. Provided that the computation
of the PC coefficients is accurate and not too expensive,
we can take full advantage of the statistical properties offered
by PC such that the number of EM simulations required to
achieve reliable yield representation is reduced. In terms of
nonintrusive PC approaches, it has been shown that the number
of integration samples M required to obtain accurate PC coeffi-
cients is much fewer than the number of outcomes N required
in the Monte Carlo analysis [26]. Thus, if we can use the PC
coefficients properly to formulate a new objective function,
the computational costs to achieve reliable yield representation
can be reduced and the overall yield optimization process can
be expedited. In the subsequent descriptions, we follow this
idea to propose our PC-based yield optimization approach.

As shown in (4), for each specification sample Sj , we have
one response R j (T −1(x0, ξ )) and one corresponding set of PC
coefficients ai j , i = 0, 1, . . . , P. In order to incorporate the
PC coefficients into EM-based yield optimization, we need
to reorganize the objective function defined in (17) into a
form where the error element e j (T −1(x0, ξ k)) is accumulated
first with respect to each specification sample Sj then with
respect to each set of design parameters of the outcomes xk .
By doing this, the statistical properties of the responses com-
puted from the PC coefficients can be exploited. To achieve
this, we rewrite the original objective function U(x0) in (17)
by swapping the order of the summations, and at the same
time rearrange the elements in J and K as follows:

U(x0) =
∑
j∈J̄

∑
k∈K̄ j

e j (T −1(x0, ξ k)) (20)

K̄ j = {k|e j (T −1(x0, ξ k)) > 0} (21)

J̄ = { j |K̄ j �= ∅} (22)

where K̄ j is a set containing all the indices of the outcomes
whose responses violate the specification sample Sj . J̄ is a set
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containing all the indices of the specification samples that are
violated by at least one outcome.

As shown in (3), the error element e j (T −1(x0, ξ k)) is
calculated differently for upper and lower specifications. For
convenience of description, we divide the reorganized objec-
tive function (20) into two parts according to the design
specification type of Sj as follows:

U(x0) =
∑
j∈J̄u

∑
k∈K̄ j

e j (T −1(x0, ξ k))

+
∑
j∈J̄l

∑
k∈K̄ j

e j (T −1(x0, ξ k)) (23)

where J̄u and J̄l contain the indices of the upper and lower
specification samples that are violated by at least one outcome,
respectively, that is,

J̄u = { j | j ∈ J̄, 1 ≤ j ≤ mu} (24)

J̄l = { j | j ∈ J̄, mu < j ≤ m}. (25)

It can be noted that J̄u ∪ J̄l = J̄.
Let N fail

j be the number of elements in K̄ j . N fail
j rep-

resents the number of outcomes whose responses fail to
satisfy the specification Sj . If the total number of out-
comes N goes to infinity, then the statistical properties of∑

k∈K̄ j
e j (T −1(x0, ξ k)) can be represented more accurately

by an integral form as follows:

lim
N→∞

1

N

∑
k∈K̄ j

e j (T −1(x0, ξ k))

= 1

N
E(e j (T −1(x0, ξ )) · N fail

j

= E[(R j − Sj ) | R j > Sj ] · N fail
j

N

=
∫ ∞

S j
(R j − Sj ) f (R j )dR j∫ ∞

S j
f (R j )dR j

· N fail
j

N

=
∫ ∞

S j
(R j − Sj ) f (R j )dR j

N fail
j /N

· N fail
j

N

=
∫ ∞

S j

(R j − Sj ) f (R j )dR j

= −Sj

∫ ∞

S j

f (R j )dR j +
∫ ∞

S j

R j f (R j )dR j (26)

where j ∈ J̄u , R j = R j (T −1(x0, ξ )), which can be expressed
as truncated series expansion as shown in (4) if we apply the
PC approach. E[(R j − Sj ) | R j > Sj ] represents the mean
value of (R j − Sj ) conditional on R j > Sj . f (R j ) denotes the
PDF of R j .

Similarly, the statistical properties of
∑

k∈K̄ j
e j

(T −1(x0, ξ k)), j ∈ J̄l , can be represented more accurately by
an integral form as follows:

lim
N→∞

1

N

∑
k∈K̄ j

e j (T −1(x0, ξ k))

= Sj

∫ S j

−∞
f (R j )dR j −

∫ S j

−∞
R j f (R j )dR j . (27)

It is noted that (26) and (27) have different intervals for
the integration, i.e., (26) has interval [Sj ,∞) while (27) has
interval (−∞, Sj ].

For notational convenience, we define ū j (x0) as a yield
indicator with respect to the specification sample Sj as
follows:

ū j (x0)=

⎧⎪⎪⎨
⎪⎪⎩

−Sj

∫ ∞

S j

f (R j )dR j +
∫ ∞

S j

R j f (R j )dR j , j ∈ J̄u

S j

∫ S j

−∞
f (R j )dR j −

∫ S j

−∞
R j f (R j )dR j , j ∈ J̄l .

(28)

ū j (x0) can be regarded as an indicator of the yield because a
small value of ū j (x0) basically represents that there are few
outcomes whose responses violate the specification sample Sj ,
indicating a high yield. Therefore, reducing ū j (x0) is expected
to lead to an increase of the yield.

Given μ j , σ 2
j , and higher moments of R j [35], f (R j )

in (28) can be approximated using the existing PDF estimation
techniques, e.g., the moment matching technique [37] and
the maximum entropy technique [38]. Then, the integrals in
ū j (x0) can be evaluated by applying the Gauss quadratures
developed in [39]. In this paper, to analytically relate ū j (x0)
to the nominal point through the PC coefficients, we consider
a special case where the EM response R j follows normal
distribution with μ j and σ j as its mean and standard deviation,
respectively. In the following descriptions, we show how
ū j (x0) is analytically related to the nominal point through
PC coefficients under such consideration.

Based on (12) and (13), the first term of ū j (x0), j ∈ J̄u ,
can be related to the nominal point x0 through PC coefficients
as follows:

−Sj

∫ ∞

S j

f (R j )dR j = Sj

⎛
⎝φ

⎛
⎝ Sj − a0 j (x0)√∑P

i=1 a2
i j (x0)bi

⎞
⎠− 1

⎞
⎠
(29)

where φ(·) is the cumulative distribution function of the stan-
dard normal distribution. a0 j and ai j are the PC coefficients
as functions of yield optimization variables x0.

For notational convenience, let γ j (x0) be defined as

γ j (x0) = Sj − a0 j (x0)√∑P
i=1 a2

i j (x0)bi

, j ∈ J̄u ∪ J̄l . (30)

φ(γ j (x0)) represents the probability that R j satisfies the
specification Sj in case j ∈ J̄u or violates Sj in case
j ∈ J̄l .

To analytically relate the second term of ū j (x0), j ∈ J̄u ,
to the nominal point through PC coefficients, we are interested
in finding the mean value of the EM response R j under
the condition that R j violates the upper specification Sj . Let
E(R j | R j > Sj ) be the mean value of R j conditional on
R j > Sj . Then,

∫ ∞
S j

R j f (R j )dR j can be analytically related



ZHANG et al.: PC-BASED APPROACH TO YIELD-DRIVEN EM OPTIMIZATION 3191

to the nominal point x0 as follows [40]:∫ ∞

S j

R j f (R j )dR j

= E(R j | R j > Sj ) ·
∫ ∞

S j

f (R j )dR j

= μ j (1 − φ(γ j (x0))) + 1√
2π

σ j · e− 1
2 γ 2

j (x0) (31)

where μ j and σ j can be computed from PC coefficients as
given by (12) and (13).

The PC coefficients are incorporated into ū j (x0) for the
upper specifications by substituting (12)–(13) and (29)–(31)
into ū j (x0), j ∈ J̄u , as follows:

ū j (x0) =
√√√√ P∑

i=1

a2
i j (x0)bi ·

[
(φ(γ j (x0)) − 1)γ j (x0)

+ 1√
2π

e− 1
2 γ 2

j (x0)
]

. (32)

Following similar derivations, we can incorporate the PC
coefficients into ū j (x0) for the lower specifications, j ∈ J̄l ,
as follows:

ū j (x0) =
√√√√ P∑

i=1

a2
i j (x0)bi ·

[
φ(γ j (x0))γ j (x0)

+ 1√
2π

e− 1
2 γ 2

j (x0)
]

. (33)

The proposed PC-based objective function Ū(x0) for
yield-driven EM optimization including both upper and lower
specifications is given as

Ū(x0) =
∑
j∈J̄u

ū j (x0) +
∑
j∈J̄l

ū j (x0) (34)

where ū j (x0) is given by (32) and (33) for upper ( j ∈ J̄u )
and lower specifications ( j ∈ J̄l ), respectively. By substituting
(32) and (33) into (34), the proposed optimization objective
function can be written in a more convenient form

Ū(x0) =
∑
j∈J̄

V j (x0) +
∑
j∈J̄u

(a0 j (x0) − Sj ) (35)

where Vj (x0) is computed from the PC coefficients as follows:

Vj (x0) =
√√√√ P∑

i=1

a2
i j (x0)bi ·

[
φ(γ j (x0))γ j (x0)

+ 1√
2π

e− 1
2 γ 2

j (x0)
]

. (36)

Note that ai j (x0) are the PC coefficients, and γ j (x0) is
computed from the PC coefficients ai j (x0) as shown in (30).

It is pointed out that through (20)–(36), we have changed
the original objective function defined in (17) into a new form
where the PC coefficients are incorporated. The PC coeffi-
cients are able to provide the statistical properties and approxi-
mate the PDF of the EM response with fewer EM samples than
that required by the Monte Carlo analysis. Therefore, the new

Fig. 1. Illustration of the movement of sparse grid samples in PC between two
consecutive iterations during yield optimization. The two black dots represent
the nominal points between two successive iterations. The circles represent
the integration samples around the nominal points following the sparse grid
technique. In yield optimization, the nominal point x0 is a variable which
is updated iteratively. As the nominal point moves from x0 to x0

new, all the
sparse grid samples move accordingly.

PC-based formulation requires fewer EM simulations to obtain
accurate yield representation than the original formulation
(which is based on assembling the responses evaluated at
Monte Carlo samples). This advantage allows our proposed
objective function to be able to facilitate the overall EM-based
yield optimization process more efficiently.

B. Derivation of Sensitivity Formulas for the
Proposed Objective Function

To use the proposed objective function formulated earlier in
yield-driven EM optimization, the derivatives of the proposed
objective function Ū(x0) with respect to the varying nominal
point x0 need to be derived so that a gradient-based optimiza-
tion algorithm (e.g., quasi-Newton method) can be employed.
In this section, we first derive the sensitivity formulas of PC
coefficients with respect to x0, then derive the sensitivities for
the objective function based on the sensitivity formulas of the
PC coefficients.

At each iteration of the proposed yield optimization algo-
rithm, a set of EM design parameters X is generated around
the current nominal point x0 following the sparse grid tech-
nique, that is,

X = {T −1(x0, ξ (1)), . . . , T −1(x0, ξ (M))}. (37)

Then, the PC coefficients are numerically evaluated using
the EM responses simulated at these design parameters. The
sparse grid samples are formed based on the Smolyak algo-
rithm [41], which selectively combines the tensor products
of lower order quadrature rules to cover the parameter space
more efficiently [26]. As illustrated in Fig. 1, as the nominal
point moves from x0 to x0

new, the sparse grid samples in the
original parameter space move accordingly, forming a new set
of sparse grid samples Xnew. In other words, the movement
of the nominal point affects the location of every sparse grid
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point in the original parameter space, which in turn affects
each PC coefficient ai j .

In this paper, we consider the design parameters to be
Gaussian (normal) distributed and that the standard deviation
is σd for the dth design parameter, d = 1, 2, . . . , n. Then,
the reverse transformation in (9) takes the following form:

T −1(x0, ξ (l)) =

⎡
⎢⎢⎢⎢⎢⎣

x0
1

x0
2

...

x0
n

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1ξ
(l)
1

σ2ξ
(l)
2

...

σnξ
(l)
n

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)

where l = 1, . . . , M . Note that σd and ξ
(l)
d are the predeter-

mined constants for yield optimization.
Based on (11) and (38), we can obtain the derivatives of

each PC coefficient ai j (x0) with respect to the nominal point
x0 as follows:

∂ai j (x0)

∂x0 = 1

bi

M∑
l=1

�i (ξ
(l))w(l) ∂R j (x)

∂x
|x=x(l) (39)

where x(l) = T −1(x0, ξ (l)). (∂R j (x)/∂x) |x=x(l) represents
the EM sensitivities of R j (x) evaluated at the lth sparse
grid point x(l) in the original parameter space. These EM
sensitivities can be obtained from the existing EM solvers
with sensitivity analysis feature. bi , �i (ξ

(l)), and w(l) are the
predetermined constants for yield optimization.

From (35) and (36), we can deduce the derivatives of the
proposed objective function Ū(x0) with respect to each PC
coefficient ai j as follows:

∂Ū(x0)

∂ai j
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − φ(γ j (x0)), for i = 0, j ∈ J̄u

−φ(γ j (x0)), for i = 0, j ∈ J̄l

2ai j bi
1√
2π

1√∑P
p=1 a2

pj (x0)bp

· e− 1
2 γ 2

j (x0)
,

for i = 1, . . . , P, j ∈ J̄u ∪ J̄l .

(40)

The derivatives of the proposed objective function Ū(x0)
with respect to the varying nominal point x0 can be found by

∂Ū(x0)

∂x0 =
P∑

i=0

∑
j∈J̄

∂Ū(x0)

∂ai j

∂ai j (x0)

∂x0 (41)

where (∂Ū(x0)/∂ai j ) and (∂ai j (x0)/∂x0) are given by
(39) and (40), respectively.

C. PC-Based Yield Optimization Algorithm

In this section, we provide the detailed algorithm for the
proposed PC-based yield-driven EM optimization.

First, a set of M samples {ξ (1), ξ (2), . . . , ξ (M)} is generated
in the “ξ -space” following the rules of the sparse grid tech-
nique. These samples are generated only once and would be
reused in the subsequent iterations. The distribution pattern of

the samples follows the rules of sparse grid techniques [36].
M is related to the accuracy level in sparse grid techniques.
Increasing the accuracy level improves the multidimensional
integration accuracy but results in a larger M , and thus requires
more EM simulations. It is recommended that one fulfills the
PC model construction at the initial nominal point before
performing yield optimization for a specific EM structure
to obtain the required minimal accuracy level. The minimal
accuracy level can be obtained by starting from a small value
and increasing it gradually until no significant integration
difference can be observed between two successive accuracy
levels.

Next, the M samples are transformed into EM geomet-
rical parameter samples {T −1(x0, ξ (1)), T −1(x0, ξ (2)), . . .,
T −1(x0, ξ (M))} using (38). Then, an existing EM simulator
is driven to evaluate the EM responses R j (T −1(x0, ξ (l))) and
the EM sensitivities (∂R j (x)/∂x) |x=x(l) , for l = 1, 2, . . . , M .
Since the responses and the sensitivities for different sam-
ples can be obtained independently, we evaluate the EM
responses and the EM sensitivities at those M samples in
parallel [42], [43]. By using this parallel computation scheme,
we achieve additional speed up for EM-based yield optimiza-
tion. Then, the PC coefficients ai j (x0) are numerically evalu-
ated using (6)–(8) and the derivatives of each PC coefficient
with respect to the nominal point are evaluated according
to (39). Afterward, the proposed PC-based objective function
Ū(x0) is evaluated using (35) and (36), while the derivatives
(∂Ū(x0)/∂x0) are evaluated following (39)–(41).

Finally, Ū(x0) and (∂Ū(x0)/∂x0) are used in a gradient-
based optimization algorithm (such as the quasi-Newton
method) to find the update direction and suitable step size for
the change of the nominal point from the current point x0 to a
new point. Let the new nominal point be denoted as x0

new. The
optimization terminates if the iteration counter Niter exceeds
the maximum iteration count Nmax

iter or the difference of x0

between subsequent iterations is sufficiently small, that is,

Niter > Nmax
iter (42)

or
∥∥x0

new − x0
∥∥ < ε (43)

where Niter = 0, 1, . . .. ε is a user-defined threshold. Fig. 2
shows the flowchart of the proposed PC-based yield optimiza-
tion algorithm. The proposed algorithm can be summarized
into the following steps.

Step 1: Set the initial nominal point x0
ini as the start-

ing point for yield optimization, i.e., x0 = x0
ini.

Typically, x0
ini should be the optimal solution of

nominal EM optimization. Initialize the iteration
counter Niter as 0. Set the maximum iteration
number Nmax

iter and the stopping criteria ε.

Step 2: Generate M samples {ξ (1), ξ (2), . . . , ξ (M)} in the
“ξ -space” following the rules of the sparse grid
technique.

Step 3: Transform {ξ (1), ξ (2), . . . , ξ (M)} into a set of EM
geometrical parameter samples around the nominal
point using (38).

Step 4: Evaluate the EM responses R j (T −1(x0, ξ (l))) and
the EM sensitivities (∂R j (x)/∂x) |x=x(l) , for
l = 1, 2, . . . , M , in parallel.
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Fig. 2. Flowchart of the proposed PC-based yield optimization algorithm.

Step 5: Numerically evaluate the PC coefficients ai j (x0)
using (6)–(8) and the derivatives of each PC coef-
ficient with respect to the nominal point using (39).

Step 6: Evaluate the proposed PC-based objective function
Ū(x0) defined in (35) and (36).

Step 7: Evaluate the derivatives of the proposed objective
function Ū(x0) with respect to the nominal point
x0 following (39)–(41).

Step 8: Find the update direction and suitable step size for
the current nominal point using the gradient-based
optimization algorithm (e.g., the quasi-Newton
method), and find the new nominal point x0

new.
Step 9: If (42) or (43) is satisfied, go to step 10. Otherwise,

update the nominal point x0 = x0
new, update the

iteration count Niter = Niter + 1, and go to Step 3.

Step 10: Obtain the final optimal yield solution x∗ = x0
new.

Stop the optimization process.

D. Discussion

In this paper, we have used normal distributions for the
design parameters. In case other types of statistical distrib-
utions (e.g., uniform and log-normal) are needed, they can
be accommodated by supplying different values of σd and
ξ

(l)
d in (38), and using different base functions �i (·) in (4).

The values of σd are determined as the ratios between the
sparse grid samples versus the corresponding samples in the
physical/geometrical parameter space. Such ratios should be
predetermined constants, which are fixed during yield opti-
mization. The values of ξ

(l)
d represent sparse grid samples.

Different types of statistical distributions will have different
sparse grid samples, and different base functions [35]. By sup-
plying the proper values of σd and ξ

(l)
d into (38), and proper

base functions �i (·) into (4), our proposed approach can be
applied to different types of statistical distributions.

Here, we provide a further discussion on the use of normal
distributions for the design parameters in this paper. In theory,
the value of random samples of normal distributions may
have very large deviations since its domain is infinite. In our
paper, this problem is avoided in developing the PC model by
using sparse grid samples whose extreme values are defined
to be limited within 1.73 times the standard deviation [26].
In generating testing samples for yield estimation, we limited
the samples to be within three times the standard deviation.
In this way, we retain the accuracy of the yield optimization
method while avoiding values of random samples that are too
large to be meaningful for EM simulation. If the required
tolerance range is less than three times the standard deviation
in normal distribution, then the distribution required will be
truncated normal distribution. In this case, we need to treat it
as a different distribution, i.e., we will require different values
of σd and ξ

(l)
d in (38) according to a different set of sparse grid

samples, and supply different base functions �i (·) into (4) for
the new distribution.

IV. EXAMPLES

A. Yield Optimization of a Waveguide
K-Band Bandpass Filter

The first example under consideration is a waveguide
K-band bandpass filter described in ADS EMPro tutorial
document. The structure of the filter is shown in Fig. 3. The
section of the waveguide where the filter is constructed is
10.668 mm × 4.318 mm (WR-42). The heights of three
cylindrical posts are all 4.318 mm. r1 is the radius of the
two posts on the side while r2 is the radius of the post in
the middle. The two resonators placed between the cylin-
drical posts are of equal length d . The design parameters
are x = [r1 r2 d]T (mm). The design specifications are
given by |S11| ≤ −15 dB, in the frequency range from
24.935 to 25.065 GHz, and |S11| ≥ −1 dB, in the frequency
ranges from 24 to 24.75 GHz and from 25.25 to 26 GHz.
The optimal nominal solution obtained by performing nominal
EM optimization using HFSS is x0

ini = [0.9597 1.7921
8.563]T (mm).
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Fig. 3. Structure of the K-band bandpass filter example for EM simula-
tion and yield optimization. The three design parameters of the filter are
x = [r1 r2 d]T .

For yield analysis and optimization, we assume indepen-
dent normal distribution for the design parameters, with the
standard deviation being 5 μm. Both the Monte Carlo-based
yield optimization approach presented in [1] and the proposed
PC-based yield optimization approach are used to optimize
the yield. For the proposed approach, Hermite polynomials are
used and the PC expansion is truncated at total order D = 2.
The 1-D Kronrod–Patterson [36] quadrature rule is used to
form a 3-D total-order grid. An integration accuracy level 3
is required for this example, which results in the total number
of quadrature points M being 19. To find the reasonable
value of N for the Monte Carlo-based yield optimization
approach, we run a Monte Carlo analysis to estimate the yield
at the initial nominal point. By varying the number of random
samples, a convergence on the yield value is observed when
N = 50. For comparison purpose, we use N = 19, N = 30,
and N = 50 for the Monte Carlo-based yield optimization
approach.

Quasi-Newton method is used as the gradient-based opti-
mization algorithm to find the optimal yield solution iteratively
for both approaches. At each iteration of optimization, HFSS
is driven to evaluate the EM responses and the EM sensitivities
at all the parameter samples in parallel. To find the optimal
yield solutions, we set the maximum number of iterations to be
a large number to allow both optimization approaches to con-
verge. When the optimization process terminates, we verify the
yield at the optimal yield solution by running a Monte Carlo
analysis with 100 random samples for the two approaches.

For this example, we also perform yield optimization using
a third approach, i.e., the ADS internal yield optimization tool
with EMPro. A parametrized 3-D structure of the K-band
bandbass filter is created using EMPro. Then, the nominal EM
optimization is performed in ADS to find an optimal nominal
solution. Two nominal solutions that can meet the design spec-
ifications are found, i.e., x0

ini = [1.2069 2.1315 9.1955]T (mm)
(case 1) and x0

ini = [1.1785 2.0811 9.1094]T (mm) (case 2).
Following this, yield estimation is conducted using the yield
estimation tool in ADS for both cases. Finally, we take
these two nominal solutions as starting points and use the
built-in yield optimization tool in ADS to optimize the yield.
We stop the yield optimization process until no significant
yield increase can be observed.

TABLE I

COMPARISON OF YIELD OPTIMIZATION RESULTS
FOR THE K-BAND BANDPASS FILTER

Table I summarizes the yield optimization results of three
yield optimization approaches for this example. As can be seen
from the table, all the three approaches achieve improvements
of the yield. However, the total number of EM simula-
tions required by the Monte Carlo-based yield optimization
approach and the proposed approach are much fewer than
that required by the built-in yield optimizer in ADS. The
reason for this is that the Monte Carlo-based yield optimization
approach and the proposed approach use sensitivity informa-
tion and gradient-based optimization algorithms in the yield
optimization process. From Table I, it can also be observed
that to achieve a similar yield increase, the proposed PC-based
approach requires much fewer EM simulations than the Monte
Carlo-based yield optimization approach. This is because by
incorporating the PC coefficients into the formulation of the
yield optimization objective function, the proposed approach
requires fewer EM simulations to find the effective direction
and suitable step size for the update of the nominal point
at each iteration of optimization than the Monte Carlo-based
yield optimization approach. Fig. 4 shows the yield before
and after optimization using the proposed approach for the
K-band bandpass filter. The optimal yield solution found by
the proposed approach is [0.9643 1.7779 8.554]T (mm).

To further demonstrate the advantages of the proposed
approach, we perform another numerical experiment by delib-
erately stopping the Monte Carlo-based yield optimizations
at certain iteration such that the total number of EM simu-
lations during optimization is similar to that in the proposed
approach. Table II gives the comparison of yield improve-
ments under this consideration. It can be seen from the table
that using similar number of EM simulations, the proposed
approach achieves a greater yield improvement than the Monte
Carlo-based yield optimization approach. The reason for this is
that the proposed PC-based approach provides more effective
direction and step size for the update of the nominal point
than that the Monte Carlo-based yield optimization approach
provides. As a result, with similar number of EM simulations,
the proposed approach is able to provide more promising
yield increase than the Monte Carlo-based yield optimization
approach.
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Fig. 4. Yield optimization results of the K-band bandpass filter.
(a) Before yield optimization. (b) After yield optimization. Gray dashed lines:
100 samples from Monte Carlo analysis. Black solid line: response evaluated
at the nominal point.

TABLE II

COMPARISON OF YIELD IMPROVEMENTS WITH SIMILAR NUMBER OF
EM SIMULATIONS FOR THE K-BAND BANDPASS FILTER

B. Yield Optimization of a Waveguide Bandpass
Filter With Fractal-Shaped Irises

In the second example, we consider a waveguide bandpass
filter with fractal-shaped irises (FSIs), as shown in Fig. 5 [44].
The design parameters are x = [d1 d2 d3]T (mm), where
d1, d2, and d3 represent the distances between the first,
second, and third pair of symmetrical irises, respectively.
An example of the geometrical dimensions of the FSIs is given
in Fig. 6. The section of the waveguide is a = 22.86 mm and

Fig. 5. Structure of the waveguide bandpass filter example with FSIs for EM
simulation and yield optimization. The three design parameters of the filter
are x = [d1 d2 d3]T .

Fig. 6. Details of the geometrical structure of the FSI as circled in Fig. 5.

b = 10.16 mm (WR-90). The design specification for this
filter is given by |S11| ≤ −22 dB, in the frequency range
from 9.2 to 9.8 GHz. The optimal nominal solution x0

ini =
[9.3444 4.9203 3.7423]T (mm) is obtained by performing
nominal EM optimization [45].

We assume independent normal distributions for all design
parameters to allow yield estimation and optimization. The
standard deviation for each design parameter is assumed to
be 20 μm. The proposed approach and the Monte Carlo-
based yield optimization approach are both used to optimize
the yield. For the proposed approach, Hermite polynomials
are used and the integration accuracy level required is three
for the sparse grid technique. This results in the number of
sparse grid samples M = 19. For the Monte Carlo-based
yield optimization approach, it is found that N = 100 is
suitable to represent the statistics of all the possible outcomes.
For comparison purpose, different number of random samples
(N = 19, 50, 100) per iteration are used for the Monte Carlo-
based yield optimization approach. The maximum iteration
count is set to be a large number to allow both optimization
approaches to converge.

Table III gives a comparison between the two approaches in
terms of the final yield and the total number of EM simulations
required during optimization. From the table, we can conclude
that the proposed method achieves the greatest yield increase
among four cases of optimizations compared. It can also be
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TABLE III

COMPARISON OF YIELD OPTIMIZATION RESULTS
FOR THE WAVEGUIDE FSI FILTER

Fig. 7. Yield optimization results of the waveguide bandpass filter with
FSIs. (a) Before yield optimization. (b) After yield optimization. Gray dashed
lines:100 samples from Monte Carlo analysis. Black solid line: response
evaluated at the nominal point.

observed that to achieve a similar yield increase, the total
number of EM simulations required by the proposed approach
is less than half of that required by the Monte Carlo-based
yield optimization approach. This reduction allows us to
achieve a substantial speed up for the overall EM-based yield
optimization process. Fig. 7 shows the yield of the waveguide
FSI filter before and after optimization using the proposed
approach. The optimal yield solution found by the proposed
approach is [9.3682 4.9542 3.7585]T (mm).

TABLE IV

COMPARISON OF YIELD IMPROVEMENTS WITH SIMILAR NUMBER
OF EM SIMULATIONS FOR THE WAVEGUIDE FSI FILTER

Fig. 8. Structure of the four-pole waveguide filter example for EM simulation
and yield optimization, with design parameters x = [h1 h2 h3 hc1 hc2]T .

To further demonstrate the advantages of the proposed
approach, we perform another numerical experiment by delib-
erately stopping the Monte Carlo-based yield optimizations at
a certain iteration so that the total number of EM simulations
used is similar to that in the proposed approach. The yield
improvements achieved by the two approaches under this
condition are given in Table IV. It can be seen from the table
that using similar number of EM simulations, the proposed
approach achieves a greater yield improvement than the Monte
Carlo-based yield optimization approach. The reason is that the
proposed PC-based objective function provides more accurate
yield representation, and thus, more effective direction and
step size for updating the nominal point than the conventional
Monte Carlo-based yield optimization approach.

C. Yield Optimization of a Four-Pole Waveguide Filter

Finally, the proposed approach is applied to yield optimiza-
tion of a four-pole waveguide filter [45]. The structure of the
waveguide filter is shown in Fig. 8, with five design parameters
x = [h1 h2 h3 hc1 hc2]T (mm). h1, h2, and h3 represent the
heights of posts in the coupling windows, while hc1 and hc2
are the heights of posts in the resonant cavities. The thickness
of all the coupling windows is set to be 2 mm. The design
specification is given by |S11| ≤ −16 dB, in the frequency
range from 10.85 to 11.15 GHz. The optimal nominal solution
x0

ini = [3.407 4.083 3.571 3.295 2.978]T (mm) is obtained by
performing nominal EM optimization [45].

The design parameters are assumed to be independently
normal distributed around their nominal values with 10-μm
standard deviation. Before performing yield optimization,
the Monte Carlo analysis is used to estimate the yield at the
optimal nominal solution. By varying the number of random
samples from 51 to 300, we observe a convergence on the
yield value (53%) when N = 300. For this example, Hermite
polynomials are used and the accuracy level required is three
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Fig. 9. Yield optimization results of the four-pole waveguide filter.
(a) Before yield optimization. (b) After yield optimization. Gray dashed lines:
300 samples from Monte Carlo analysis. Black solid line: response evaluated
at the nominal point.

for the sparse grid technique. This results in the number of
sparse grid samples M = 51.

Yield optimization is then performed using the proposed
approach with M = 51. For comparison purpose, we also
use the Monte Carlo-based yield optimization approach with
N = 51, 75, 100, 200 to optimize the yield. The final
yield is verified by performing a Monte Carlo analysis with
300 random samples at the optimal yield solution. Fig. 9
shows the initial yield and the yield after optimization using
the proposed approach for this example. The optimal yield
solution found by the proposed approach is [3.3913 4.1464
3.6241 3.3019 2.9776]T (mm). The yield optimization results
are summarized in Tables V and VI. It can be observed from
Table V that the proposed approach achieves the greatest yield
increase among the five cases of optimizations compared.
To achieve a similar yield increase, the proposed approach
requires much fewer EM simulations than the Monte Carlo-
based yield optimization approach. A substantial speed up
for the overall yield optimization process has been achieved.
As a further comparison given in Table VI, it can be observed

TABLE V

COMPARISON OF YIELD OPTIMIZATION RESULTS
FOR THE FOUR-POLE WAVEGUIDE FILTER

TABLE VI

COMPARISON OF YIELD IMPROVEMENTS WITH SIMILAR NUMBER OF

EM SIMULATIONS FOR THE FOUR-POLE WAVEGUIDE FILTER

that using similar number of EM simulations, the proposed
approach achieves a greater yield improvement than the Monte
Carlo-based yield optimization approach.

V. CONCLUSION

We have proposed a novel PC-based approach to yield-
driven EM optimization. The computational advantages of
the PC approach have been exploited to facilitate EM-based
yield optimization of microwave structures. The PC coeffi-
cients have been incorporated into the formulation of the
optimization objective function such that the number of EM
simulations required to obtain effective update direction and
suitable step size of the nominal point is reduced. Sensitivity
formulas have been derived for both the PC coefficients and the
proposed objective function with respect to the yield optimiza-
tion variables. Compared with the conventional Monte Carlo-
based yield optimization approach, the proposed approach is
able to achieve similar yield increase using much fewer EM
simulations or greater yield increase with similar number of
EM simulations. The proposed approach helps to achieve high-
quality solutions in shorter time for the challenging problem of
yield-driven EM optimization. As a possible future direction,
the proposed method can be applied to increase the yield in
the manufacturing process of a real microwave component.

REFERENCES

[1] J. W. Bandler and S. H. Chen, “Circuit optimization: The state
of the art,” IEEE Trans. Microw. Theory Techn., vol. 36, no. 2,
pp. 424–443, Feb. 1988.

[2] R. Biernacki, S. Chen, G. Estep, J. Rousset, and J. Sifri, “Statistical
analysis and yield optimization in practical RF and microwave designs,”
in IEEE MTT-S Int. Microw. Symp. Dig., Montreal, QC, Canada,
Jun. 2012, pp. 1–3.



3198 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 66, NO. 7, JULY 2018

[3] D. E. Hocevar, M. R. Lightner, and T. N. Trick, “An extrapolated
yield approximation technique for use in yield maximization,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. CAD-3, no. 4,
pp. 279–287, Oct. 1984.

[4] A. H. Zaabab, Q.-J. Zhang, and M. Nakhla, “A neural network modeling
approach to circuit optimization and statistical design,” IEEE Trans.
Microw. Theory Techn., vol. 43, no. 6, pp. 1349–1358, Jun. 1995.

[5] K. Singhal and J. Pinel, “Statistical design centering and tolerancing
using parametric sampling,” IEEE Trans. Circuits Syst., vol. CAS-28,
no. 7, pp. 692–702, Jul. 1981.

[6] H. L. Abdel-Malek, A.-K. S. O. Hassan, and M. H. Heaba, “Statistical
circuit design with the use of a modified ellipsoidal technique,” Int.
J. Microw. Millim.-Wave Comput.-Aided Eng., vol. 7, no. 1,
pp. 117–129, Jan. 1997.

[7] H. L. Abdel-Malek and J. W. Bandler, “Yield estimation for efficient
design centring assuming arbitrary statistical distributions,” Int. J. Circuit
Theory Appl., vol. 6, no. 3, pp. 289–303, 1978.

[8] H. L. Abdel-Malek, A.-K. S. O. Hassan, and M. H. Heaba, “A boundary
gradient search technique and its applications in design centering,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 11,
pp. 1654–1660, Nov. 1999.

[9] J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and
R. H. Hemmers, “Space mapping technique for electromagnetic opti-
mization,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 12,
pp. 2536–2544, Dec. 1994.

[10] J. E. Rayas-Sanchez, “EM-based optimization of microwave circuits
using artificial neural networks: The state-of-the-art,” IEEE Trans.
Microw. Theory Techn., vol. 52, no. 1, pp. 420–435, Jan. 2004.

[11] M. A. Ismail, D. Smith, A. Panariello, Y. Wang, and M. Yu, “EM-
based design of large-scale dielectric-resonator filters and multiplexers
by space mapping,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 1,
pp. 386–392, Jan. 2004.

[12] J. V. M. Ros et al., “Fast automated design of waveguide filters using
aggressive space mapping with a new segmentation strategy and a hybrid
optimization algorithm,” IEEE Trans. Microw. Theory Techn., vol. 53,
no. 4, pp. 1130–1142, Apr. 2005.

[13] N. K. Nikolova, X. Zhu, Y. Song, A. Hasib, and M. H. Bakr,
“S-parameter sensitivities for electromagnetic optimization based on
volume field solutions,” IEEE Trans. Microw. Theory Techn., vol. 57,
no. 6, pp. 1526–1538, Jun. 2009.

[14] F. Feng, C. Zhang, V.-M.-R. Gongal-Reddy, Q.-J. Zhang, and J. Ma,
“Parallel space-mapping approach to EM optimization,” IEEE Trans.
Microw. Theory Techn., vol. 62, no. 5, pp. 1135–1148, May 2014.

[15] J. W. Bandler, J. E. Rayas-Sánchez, and Q.-J. Zhang, “Yield-driven
electromagnetic optimization via space mapping-based neuromodels,”
Int. J. RF Microw. Comput.-Aided Eng., vol. 12, no. 1, pp. 79–89, 2002.

[16] H. L. Abdel-Malek, A. S. O. Hassan, E. A. Soliman, and
S. A. Dakroury, “The ellipsoidal technique for design centering of
microwave circuits exploiting space-mapping interpolating surrogates,”
IEEE Trans. Microw. Theory Techn., vol. 54, no. 10, pp. 3731–3738,
Oct. 2006.

[17] Q. S. Cheng, J. W. Bandler, and S. Koziel, “Response corrected tuning
space mapping for yield estimation and design centering,” in IEEE
MTT-S Int. Microw. Symp. Dig., Anaheim, CA, USA, May 2010, p. 1.

[18] A.-K. S. O. Hassan, A. S. A. Mohamed, and A. Y. El-Sharabasy,
“Statistical microwave circuit optimization via a non-derivative trust
region approach and space mapping surrogates,” in IEEE MTT-S Int.
Microw. Symp. Dig., Baltimore, MD, USA, Jun. 2011, pp. 1–4.

[19] J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and
R. H. Hemmers, “Exploitation of coarse grid for electromagnetic opti-
mization,” in IEEE MTT-S Int. Microw. Symp. Dig., San Diego, CA,
USA, May 1994, pp. 381–384.

[20] S. Koziel and A. Bekasiewicz, “Low-cost surrogate-assisted statistical
analysis of miniaturized microstrip couplers,” J. Electromagn. Waves
Appl., vol. 30, no. 10, pp. 1345–1353, 2016.

[21] S. Koziel and J. W. Bandler, “Rapid yield estimation and optimization of
microwave structures exploiting feature-based statistical analysis,” IEEE
Trans. Microw. Theory Techn., vol. 63, no. 1, pp. 107–114, Jan. 2015.

[22] C. Zhang, W. Na, Q. J. Zhang, and J. W. Bandler, “Fast yield esti-
mation and optimization of microwave filters using a cognition-driven
formulation of space mapping,” in IEEE MTT-S Int. Microw. Symp. Dig.,
San Francisco, CA, USA, May 2016, pp. 1–4.

[23] D. Xiu and G. E. Karniadakis, “The Wiener–askey polynomial chaos for
stochastic differential equations,” SIAM J. Sci. Comput., vol. 24, no. 2,
pp. 619–644, 2002.

[24] A. C. M. Austin and C. D. Sarris, “Efficient analysis of geometrical
uncertainty in the FDTD method using polynomial chaos with applica-
tion to microwave circuits,” IEEE Trans. Microw. Theory Techn., vol. 61,
no. 12, pp. 4293–4301, Dec. 2013.

[25] T.-A. Pham, E. Gad, M. S. Nakhla, and R. Achar, “Decoupled poly-
nomial chaos and its applications to statistical analysis of high-speed
interconnects,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 4,
no. 10, pp. 1634–1647, Oct. 2014.

[26] A. C. M. Austin, N. Sood, J. Siu, and C. D. Sarris, “Application
of polynomial chaos to quantify uncertainty in deterministic channel
models,” IEEE Trans. Antennas Propag., vol. 61, no. 11, pp. 5754–5761,
Nov. 2013.

[27] P. Sumant, H. Wu, A. Cangellaris, and N. Aluru, “Reduced-order models
of finite element approximations of electromagnetic devices exhibiting
statistical variability,” IEEE Trans. Antennas Propag., vol. 60, no. 1,
pp. 301–309, Jan. 2012.

[28] D. V. Ginste, D. De Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, and
F. G. Canavero, “Stochastic modeling-based variability analysis of on-
chip interconnects,” IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. 2, no. 7, pp. 1182–1192, Jul. 2012.

[29] P. Manfredi, D. Vande Ginste, D. De Zutter, and F. G. Canavero,
“Improved polynomial chaos discretization schemes to integrate inter-
connects into design environments,” IEEE Microw. Wireless Compon.
Lett., vol. 23, no. 3, pp. 116–118, Mar. 2013.

[30] A. K. Prasad, M. Ahadi, and S. Roy, “Multidimensional uncertainty
quantification of microwave/RF networks using linear regression and
optimal design of experiments,” IEEE Trans. Microw. Theory Techn.,
vol. 64, no. 8, pp. 2433–2446, Aug. 2016.

[31] M. Ahadi and S. Roy, “Sparse linear regression (SPLINER) approach
for efficient multidimensional uncertainty quantification of high-speed
circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 35, no. 10, pp. 1640–1652, Oct. 2016.

[32] P. Manfredi, D. Vande Ginste, D. De Zutter, and F. G. Canavero,
“Uncertainty assessment of lossy and dispersive lines in SPICE-type
environments,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 3,
no. 7, pp. 1252–1258, Jul. 2013.

[33] M. R. Rufuie, E. Gad, M. Nakhla, and R. Achar, “Generalized Hermite
polynomial chaos for variability analysis of macromodels embedded in
nonlinear circuits,” IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. 4, no. 4, pp. 673–684, Apr. 2014.

[34] A. K. Prasad and S. Roy, “Accurate reduced dimensional polyno-
mial chaos for efficient uncertainty quantification of microwave/RF
networks,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 10,
pp. 3697–3708, Oct. 2017.

[35] M. S. Eldred, “Recent advances in non-intrusive polynomial chaos and
stochastic collocation methods for uncertainty analysis and design,” in
Proc. 50th AIAA/ASME/ASCE/AHS/ASC Struct., Struct. Dyn., Mater.
Conf., Palm Springs, CA, USA, May 2009, pp. 1–37.

[36] F. Heiss and V. Winschel, “Likelihood approximation by numerical
integration on sparse grids,” J. Econ., vol. 144, no. 1, pp. 62–80,
2008.

[37] X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi, “Asymptotic proba-
bility extraction for non-normal distributions of circuit performance,”
in Proc. IEEE/ACM Int. Conf. Comput. Aided Design, Nov. 2004,
pp. 2–9.

[38] Z. Zhang, N. Farnoosh, T. Klemas, and L. Daniel, “Maximum-entropy
density estimation for MRI stochasitc surrogate models,” IEEE Antennas
Wireless Propag. Lett., vol. 13, pp. 1656–1659, Aug. 2014.

[39] N. M. Steen, G. D. Byrne, and E. M. Gelbard, “Gauss quadratures for
the integrals

∫ ∞
0 exp(−x2) f (x)dx and

∫ b
0 exp(−x2) f (x)dx ,” Math.

Comput., vol. 23, no. 107, pp. 661–671, 1969.
[40] A. Papoulis, Probability—Random Variables and Stochastic Processes.

New York, NY, USA: McGraw-Hill, 1991.
[41] D. Xiu, “Efficient collocational approach for parametric uncertainty

analysis,” Commun. Comput. Phys., vol. 2, no. 2, pp. 293–309,
2007.

[42] J. Zhang, K. Ma, F. Feng, and Q. Zhang, “Parallel gradient-based local
search accelerating particle swarm optimization for training microwave
neural network models,” in IEEE MTT-S Int. Microw. Symp. Dig.,
Phoenix, AZ, USA, May 2015, pp. 1–3.

[43] J. Zhang, K. Ma, F. Feng, Z. Zhao, W. Zhang, and Q. Zhang,
“Distributed parallel computing technique for EM modeling,” in
Proc. IEEE MTT-S Int. Conf. Numer. Electromagn. Multiphys.
Modeling Optim. (NEMO), Ottawa, ON, Canada, Aug. 2015,
pp. 1–3.



ZHANG et al.: PC-BASED APPROACH TO YIELD-DRIVEN EM OPTIMIZATION 3199

[44] D. Oloumi, A. Kordzadeh, and A. A. Lotfi Neyestanak, “Size reduction
and bandwidth enhancement of a waveguide bandpass filter using
fractal-shaped irises,” IEEE Antennas Wireless Propag. Lett., vol. 8,
pp. 1214–1217, Oct. 2009.

[45] C. Zhang, F. Feng, V.-M.-R. Gongal-Reddy, Q. J. Zhang, and
J. W. Bandler, “Cognition-driven formulation of space mapping for
equal-ripple optimization of microwave filters,” IEEE Trans. Microw.
Theory Techn., vol. 63, no. 7, pp. 2154–2165, Jul. 2015.

Jianan Zhang (S’15) was born in Tieling, Liaoning,
China, in 1991. He received the B.Eng. degree from
Tianjin University, Tianjin, China, in 2013. He is
currently pursuing the Ph.D. degree at the School of
Microelectronics, Tianjin University, Tianjin, China,
and the Cotutelle Ph.D. degree at the Department
of Electronics, Carleton University, Ottawa, ON,
Canada.

His current research interests include statistical
modeling, electromagnetic (EM)-based yield opti-
mization of microwave structures, uncertainty quan-

tification using polynomial chaos, computational electromagnetics, and space
mapping-based EM optimization.

Chao Zhang (S’14) was born in Xinyang, Henan,
China, in 1990. He received the B.Eng. and M.Eng.
degrees from Tianjin University, Tianjin, China,
in 2012 and 2014, respectively. He is currently
pursuing the Ph.D. degree at the Department of Elec-
tronics, Carleton University, Ottawa, ON, Canada.

In 2010, he was an Exchange Student with the
National Taipei University of Technology, Taipei,
Taiwan. His current research interests include
design, modeling, and optimization of microwave
circuits, and space mapping techniques.

Mr. Zhang was a recipient of the National Scholarship for Graduate Students
in China in 2013 and the Indira Gandhi Fellowship in Carleton University
in 2016.

Feng Feng (S’13–M’17) was born in Huludao,
China, in 1990. He received the B.Eng. degree from
Tianjin University, Tianjin, China, in 2012, and the
Ph.D. degree from the School of Microelectron-
ics, Tianjin University, Tianjin, China, and from
the Department of Electronics, Carleton University,
Ottawa, ON, Canada, in 2017.

He is currently a Post-Doctoral Fellow with the
Department of Electronics, Carleton University. His
current research interests include microwave circuit
design and modeling, optimization theory and algo-

rithms, space mapping and surrogate model optimization, and electromagnetic
field simulation and optimization.

Wei Zhang (S’15) was born in Qingdao, Shandong,
China, in 1989. He received the B.Eng. degree
from Shandong University, Jinan, Shandong, China,
in 2013. He is currently pursuing the Ph.D. degree at
the School of Microelectronics, Tianjin University,
Tianjin, China, and the Cotutelle Ph.D. degree at
the Department of Electronics, Carleton University,
Ottawa, ON, Canada.

His current research interests include microwave
device modeling, space mapping and surrogate mod-
eling, and multiphysics simulation and optimization.

Jianguo Ma (M’96–SM’97–F’16) received the
B.Sc. and M.Sc. degrees from Lanzhou University,
Lanzhou, China, in 1982 and 1988, respectively,
and the Ph.D. degree in engineering from Duisburg
University, Duisburg, Germany, in 1996.

From 1996 to 1997, he was a Post-Doctoral Fel-
low with the Technical University of Nova Scotia,
Halifax, NS, Canada. From 1997 to 2005, he was
a faculty member with Nanyang Technological Uni-
versity, Singapore, where he was also the Founding
Director of the Center for Integrated Circuits and

Systems. From 2005 to 2009, he was with the University of Electronic
Science and Technology of China, Chengdu, China. Since 2008, he has
been the Technical Director of the Tianjin IC Design Center. From 2009 to
2016, he was the Dean of the School of Electronic Information Engineering,
Tianjin University, Tianjin, China. He is currently with the School of
Computer Science and Technology, Guangdong University of Technology,
Guangzhou, China. He has authored or co-authored about 245 technical papers
and 2 books. He holds 6 U.S. patents and 15 filed/granted China patents.
His current research interests include RFICs and RF integrated systems
for wireless, RF device characterization modeling, monolithic microwave
integrated circuit, RF/microwave circuits and systems, and electromagnetic
interference in wireless, RFID, and wireless sensing networks.

Dr. Ma is currently a member of the Editorial Board for the PROCEEDINGS
OF THE IEEE. He was a recipient of the Prestigious Changjiang (Yangtze)
Scholar Award of the Ministry of Education of China in 2007 and the
Distinguished Young Investigator Award of the National Natural Science
Foundation of China in 2006. He served as an Associate Editor for IEEE
MICROWAVE AND COMPONENTS LETTERS from 2004 to 2005.

Qi-Jun Zhang (S’84–M’87–SM’95–F’06) received
the B.Eng. degree from the Nanjing University of
Science and Technology, Nanjing, China, in 1982,
and the Ph.D. degree in electrical engineering
from McMaster University, Hamilton, ON, Canada,
in 1987.

From 1982 to 1983, he was with the System
Engineering Institute, Tianjin University, Tianjin,
China. From 1988 to 1990, he was with Optimiza-
tion Systems Associates Inc., Dundas, ON, Canada,
where he developed advanced microwave optimiza-

tion software. In 1990, he joined the Department of Electronics, Carleton
University, Ottawa, ON, Canada, where he is currently a Full Professor.
He is also an Adjunct Professor with the School of Microelectronics, Tianjin
University. He has authored or co-authored over 260 publications, authored
Neural Networks for RF and Microwave Design (Artech House, 2000),
coedited Modeling and Simulation of High-Speed VLSI Interconnects (Kluwer,
1994), and contributed to the Encyclopedia of RF and Microwave Engineering
(Wiley, 2005), Fundamentals of Nonlinear Behavioral Modeling for RF and
Microwave Design (Artech House, 2005), and Analog Methods for Computer-
Aided Analysis and Diagnosis (Marcel Dekker, 1988). His current research
interests include microwave CAD and neural network and optimization
methods for high-speed/high-frequency circuit design.

Dr. Zhang is a Fellow of the Electromagnetics Academy and the Canadian
Academy of Engineering. He is a member of the Editorial Board of the
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. He is
a Co-Chair of the Technical Committee on CAD (MTT-1) of the IEEE
Microwave Theory and Techniques Society. He was a Guest Co-Editor for
the “Special Issue on High-Speed VLSI Interconnects” for the International
Journal of Analog Integrated Circuits and Signal Processing (Kluwer, 1994),
and twice was a Guest Editor for the “Special Issue on Applications of
ANN to RF and Microwave Design” for the International Journal of RF
and Microwave Computer-Aided Engineering (Wiley, 1999 and 2002). He is
an Associate Editor for the International Journal of RF and Microwave
Computer-Aided Engineering.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


