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Abstract— This paper presents a novel technique for the design
of broadband Doherty power amplifiers (DPAs), supported by
a simplified approach for the initial bandwidth estimation that
requires linear simulations only. The equivalent impedance of
the Doherty inverter is determined by the value of the output
capacitance of the power device, and the Doherty combiner is
designed following this initial choice and using a microstrip
network. A GaN-based single-input DPA designed adopting
this method exhibits, on a state-of-the-art bandwidth of 87%
(1.5–3.8 GHz), a measured output power of around 20 W
with 6 dB back-off efficiency between 33% and 55%, with
a gain higher than 10 dB. System-level measurements prove
the linearizability of the designed Doherty amplifier when a
modulated signal is applied.

Index Terms— Broadband matching networks, GaN-based
FETs, wideband microwave amplifiers.

I. INTRODUCTION

THE Doherty power amplifier (DPA) is widely adopted
in mobile base-stations for its ability in amplify-

ing modulated signals with high peak-to-average power
ratio (PAPR) while maintaining high efficiency [1], [2].
Several licensed bands are assigned to 4G systems, especially
in the 1.6–3.5 GHz range, making the design of DPAs able to
operate on different bands of great interest for the provision of
a single hardware easily configurable to the specific frequency
adopted in the small cell.

Unfortunately, DPAs are affected by several bandwidth
limiting factors that extend beyond the typical broadband
matching problem in combined PAs and, as a consequence,
the scientific and industrial communities have spent a
considerable effort in investigating techniques for bandwidth
improvement in DPAs. Most of the relevant papers on this
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topic focus their attention on the output combiner. The work
in [3] analyzed the impact of the output capacitance in an
LDMOS DPA, while the work in [4] focused on the impedance
inverter in a GaN DPA, proposing an alternative output com-
biner for improved bandwidth. A comprehensive analysis of
the bandwidth limitations given by the output section of DPAs
was discussed in [5], where two prototypes were designed
according to a broadband matching achieved following
a simplified real frequency technique. Moreno et al. [6]
proposed a GaN-based 3–3.6 GHz Doherty that exploited
output compensation networks. In [7], the bandwidth of
the classical DPA was expanded using a quasi-lumped
quarter-wave transmission line and the Klopfenstein taper.
A modified output combiner, based on a nonterminated
branch line coupler, was proposed in [8], and then has been
improved in [9] to achieve a record bandwidth of 83%. In [10],
a broadband GaN DPA, operating on the 1.6–2.4-GHz band,
has been designed focusing the attention on the auxiliary
amplifier output in order to maximize the power utilization
of the adopted devices. A “postmatching” architecture was
adopted in [11], obtaining a 42% bandwidth in a 40-W
GaN-based DPA. The work in [12] showed a sequential PA
using a Doherty-type modulation, achieving a 30% bandwidth
adopting GaN devices. A very recent contribution [13] has
demonstrated a 50% bandwidth DPA adopting a systematic
continuous mode approach [14]. State-of-the-art bandwidth
has been achieved through the use of the so-called “Digital
Doherty,” where the main and auxiliary inputs are driven
with independent modulated signals [15], [16], and proper
digital signal conditioning accounts for the output section
bandwidth limitations. On the other hand, the utilization of
separated baseband processing and up-conversion chains asks
for a redefinition of the transmitter: in this case, the pros
and cons with respect to standard solutions must be carefully
evaluated. This paper presents the design, simulation,
and characterization of a GaN-based 20-W single-input
DPA, showing a state-of-the-art bandwidth of 2.3 GHz
(87% fractional bandwidth), ranging from 1.5 to 3.8 GHz.
This paper is organized as follows. Section II describes
the proposed new design technique, supported by a novel
method for simplified bandwidth estimation in the preliminary
assessment of the design. Section III describes the application
of the design technique to the specific design, while Section IV
describes the translation from ideal components to microstrip
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Fig. 1. Basic circuit representation of the DPA output.

and the simulation results. Section V shows the measurements,
and finally Section VI draws some conclusions.

II. DESIGN

A. Bandwidth Estimation

The bandwidth of the DPA could be defined as the frequency
range FP on which the saturated output power POUT,sat is
larger than a target POUT,target. However, in this paper, it is also
introduced FL , defined as the frequency range on which the
gain compression or expansion in the Doherty region is lower
than a target. The DPA bandwidth becomes the intersection
FP ∩ FL . The gain compression/expansion can be estimated as
the difference between input power back-off (IBO) and output
power back-off (OBO), where the back-off is the power range
between the Doherty breakpoint and maximum power. This
compression figure provides an initial control on the nonlinear
distortion focusing on the span of the Doherty region. It has
to be recognized that DPA distortion is also affected by other
factors, as phase distortion, and in general, it is not limited to
the Doherty region only, but it is present at low power due
to weak nonlinear effects mainly related to the nature of the
active devices [17]–[19]. Despite these limitations in accuracy,
defining the range FL is useful and convenient, because a first
assessment of the difference between IBO and OBO can be
achieved through the approach proposed in this paper.

In fact, following these guidelines, a simplified bandwidth
estimation can be carried out using the scheme in Fig. 1, where
the current sources IM and IA represent the main and auxiliary
devices, respectively, and the two-port Z matrix represents
the output combiner, including the load. This method allows
to monitor FP and FL through the evaluation of Z that can
be easily obtained by linear simulations running in real time
during the tuning or optimization of the circuit elements. This
initial bandwidth estimation does not need to rely on nonlinear
simulation that can be used instead in a second phase to refine
the design.

Potentially, considering fundamental and harmonics would
lead to a more accurate approximation of the performance than
considering fundamental only. On the other hand, the detec-
tion of clipping when considering harmonics is possible but
not without a significant added complexity [20]. Moreover,
the input harmonic terminations have a strong impact on
the effect of output harmonic loads, and in a broadband
design, it is very difficult to ensure that input harmonics
are shorted or controlled. For these reasons, harmonics are
neglected in this simplified analysis. The ac voltage at the
device drain terminals can be evaluated as(

VM

VA

)
= Z

(
IM

IA

)
=

(
ZMM ZMA
ZAM ZAA

)(
IM

IA

)
. (1)

Assuming devices with maximum current IMAX and ρ IMAX
for the main and auxiliary devices, respectively, then

IM = i1M IMAX

IA = i1Aρ IMAXe jφ. (2)

The current ratio factor ρ is used when a different auxiliary
device size is chosen; otherwise, it can be set as one. The
parameter φ is a frequency-dependent phase delay deter-
mined by input splitting and matching, while i1M , i1A are the
dimensionless fundamental Fourier components of the current
waveform at maximum drive for the main and auxiliary,
respectively. For example, in a class B–class B Doherty, both
i1M , i1A are equal to 0.5 at each drive level, while in a more
typical AB-C configurations, i1M , i1A are drive dependent and
in general not identical. The saturated power can be estimated
by imposing the device currents at their maximum value.
Ideally, with devices without voltage limitations, this would
lead to

VM,max = IMAX(i1M ZMM + i1AρZMAe jφ)

VA,max = IMAX(i1M ZAM + i1AρZAAe jφ). (3)

However, in a more realistic device approximation, in order to
avoid top current clipping, it is necessary to maintain the volt-
age magnitude below VMAX = VDD − VK , where VDD and VK

are the drain bias and knee voltage, respectively [21]. Since
the values of the Z-matrix are fixed, the only way to reduce
voltage is by reducing the current that is controlled by the
input drive. The effect of drive reduction can be accounted by
introducing a current reduction factor σx , where x represents
the main or auxiliary stage

⎧⎨
⎩

σx = VMAX

|Vx,max| , |Vx,max| > VMAX

σx = 1, |Vx,max| ≤ VMAX.
(4)

Since we consider the main and auxiliary drive as not indepen-
dent, the effective current reduction factor at each frequency
must be chosen as σ = min{σM , σA}. The effective current at
saturation is

IM,sat = i1Mσ IMAX

IA,sat = i1Aρσ IMAXe jφ (5)

while the effective voltage at saturation is

VM,sat = IM,sat ZMM + IA,sat ZMA

VA,sat = IM,sat ZAM + IA,sat ZAA. (6)

Fig. 2 shows an example to clarify the role of σ .
At the Doherty breaking point, the auxiliary is turned OFF

(IA = 0) and the main fundamental current is reduced by a
factor γ that is related to the power back-off with a square
law, according to the simplification in [22]. For example, for
a 6-dB Doherty design, γ = 2. The voltage at the main device
is determined as

VM,back = IM,sat

γ
ZMM. (7)



MORENO RUBIO et al.: DESIGN OF 87% FRACTIONAL BANDWIDTH DPA SUPPORTED BY SIMPLIFIED BANDWIDTH ESTIMATION METHOD 1321

Fig. 2. Graphical interpretation of the current reduction factor σ .

If VM,back > VMAX, another current reduction term β must be
adopted to avoid current clipping, being

⎧⎪⎪⎨
⎪⎪⎩

β = VMAX

|VM,back( f )| , |VM,back| > VMAX

β = 1, |VM,back| ≤ VMAX.

(8)

The effective back-off current and voltage result as

IM,OBO = i1M
βσ

γ
IMAX

VM,OBO = i1M
βσ

γ
IMAX ZMM( f ). (9)

The output power at saturation and back-off can be calculated,
assuming lossless matching networks, as⎧⎪⎨

⎪⎩
POUT,sat = 1

2
�{VM,sat I ∗

M,sat + VA,sat I ∗
A,sat}

POUT,OBO = 1

2
�{VM,OBO I ∗

M,OBO}.
(10)

The OBO in decibels is defined as 10 log10(POUT,sat/
POUT,OBO), while the IBO can be evaluated as 20 log10
(Vin,max/Vin,obo), where Vin,max and Vin,obo are the drive
voltage needed to generate the maximum and the back-off
current, respectively. In a B-B Doherty simplification, IBO =
20 log10(γ /β). From these results, the frequency ranges FP

and FL can be derived according to the matching strategy,
i.e., to the calculated Z matrix.

Moreover, a very rough estimation of the saturated and
back-off efficiency can also be carried out, by evaluating the

Fig. 3. Block diagram of the designed DPA output.

dc power consumption as{
PDC,sat = (i0M,max + i0A,max)VDD IMAX

PDC,OBO = i0M,oboVDD IMAX.
(11)

The Fourier dc current components i0M,max, i0A,max, and
i0M,obo can be calculated according to the conduction angle
of the current waveform at effective maximum and back-off
conditions. For a B-B simplification, their value is

i0M,max = i0A,max = σ
1

π

i0M,obo = σβ

γπ
. (12)

A first estimation of the bandwidth can be applied to guide
the design of the Doherty PA by following these steps.

1) Choose a Doherty combiner topology.
2) Setup a linear simulation for the Z-parameters of the

combiner, including the output equivalent circuit of the
devices.

3) Use the equations of this section to evaluate the fig-
ures of merit (output power, IBO, and OBO) that deter-
mine FP and FL .

4) Evaluate FP and FL and use them as goals for optimiza-
tion while tuning the combiner’s parameters.

After this procedure, the topology can be applied in a full
nonlinear simulation for the refining of the Doherty design.

B. Design Strategy

In this section, we present the specific strategy adopted for
the design of the Doherty presented in this paper, with the
relative bandwidth estimation. The estimation is carried out
considering as DPA approximation a class B–class B case,
which permits a further simplification with a degradation of
accuracy that we consider negligible for our purposes. The Z
can simulated or mathematically transformed from an ABCD
matrix, obtained as the cascade of the ABCD matrixes of
the building blocks composing the proposed Doherty output
combiner (see Fig. 3). Identical devices for main and auxiliary
are considered, with optimum intrinsic load Ropt, while the
load impedance at the DPA common node is RL . The cascade
of device parasitics and matching network forms an equivalent
impedance inverter, with impedance Z0 = (2RL Ropt)

1/2,
on both main (ABCDM ) and auxiliary (ABCDA) branches.
On the auxiliary side, an additional 90° delay is needed
(ABCDADD), with impedance 2RL , to null the impedance
inverting effect due to auxiliary device parasitics and matching
network. The choice of using a 180° cascade network for the
auxiliary output is driven by the difficulty, in the presence of
series parasitics, of realizing a 0° output that would probably
further benefit the bandwidth.
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Fig. 4. Design strategy. (a) Simplified device output. (b) Lumped elements’
impedance inverter. (c) Semilumped impedance inverter.

As shown in [6], the device output equivalent network can
be approximately considered as a current generator shunted
with an output capacitance COUT, and in series with an
output inductance LOUT [see Fig. 4(a)]. In our approach,
the impedance Z0 is selected as

Z0 = 1

Y0
= 1

2π f0 COUT
(13)

where f0 is a reference frequency that corresponds to the
center frequency in a narrowband design, while it can be
optimized for bandwidth maximization in a broadband design.
The values of COUT and f0 determine univocally Z0 and,
as a consequence, RL = Z2

0/(2Ropt). Being RL a real load,
it can be matched to the external 50 � impedance on a very
broad bandwidth by means of multisection matching. The
Z0 impedance inverter can be implemented as a 	 low-pass
filter [see Fig. 4(b)], completing it with a series inductance LS
with impedance value

|ZS| = 2π f0 LS = Z0 − 2π f0 LOUT (14)

and another shunt capacitor with value COUT.
In our case, a distributed solution has been preferred for

implementation in a microstrip circuit [see Fig. 4(c)] using a
short piece of line with arbitrary impedance Z1 and electrical
length θ1 = sin−1(|ZS|/Z1) to implement the series induc-
tance, and an open stub with arbitrary impedance Z2 and
electrical length θ2 = tan−1(Y0 Z2) to implement the shunt
capacitance. ABCDM can be built by cascading the elementary
ABCD matrixes of COUT, LOUT, the series line, and the shunt
stub, while the reverse order must be followed to evaluate
ABCDA.

The additional 90° delay line on the auxiliary side is
implemented by means of a transmission line with impedance
2RL and quarter-wave length at f0. This delay line works
as an auxiliary offset line, showing an high impedance when
the auxiliary is turned OFF, but not affecting the impedance
matching at saturation [23]. At the input, after a splitter with no
delay difference between the output ports, a 50-� transmission
line on the main side imposes a φ = (π/2)( f/ f0) to provide
a perfect phase balance of output currents at f0.

In the proposed combiner topology, the available free
parameters that can be tuned or optimized to maximize the
bandwidth are f0, Z1, and Z2, while the other parameters are
derived using the equations of this section.

III. SPECIFIC CASE DESIGN

The proposed power amplifier is based on the CGH40010F
GaN HEMT from Wolfspeed. The bias voltage is VDD = 28 V,

Fig. 5. Circuit schematic of the designed DPA output.

Fig. 6. Z parameters versus frequency in the specific design case. (a) Real
part. (b) Imaginary part.

and the estimated knee voltage is VK = 3 V. For this design,
an optimum intrinsic load Ropt = 30 � is selected as target for
the design, since it gives a good compromise between output
power and efficiency. However, the device is able to deliver a
maximum current IMAX = 2 A, which is the parameter used
in the bandwidth estimation and design formula. The values
of equivalent output reactive components, already successfully
adopted in previous designs [6], are COUT = 1.275 pF and
LOUT = 0.653 nH.

The values of f0, Z1, and Z2 have been tuned to maximize
the bandwidth with the goal to cover most of the LTE bands,
i.e., from 1.6 to 3.5 GHz. The value of f0 eventually results
in 3 GHz, that leads to Z0 = 41.6 � and RL = 28.9 �. The
impedance of the series transmission line Z1 tends to high
values for maximum bandwidth, but it is limited in practice
by the device drain pin width, and is set at Z1 = 54 �. The
impedance of the open stub Z2 results in 31 �. The remaining
parameters, which are obtained following the formulas in
Section II-B, are reported in Fig. 5, where a full diagram of
the designed DPA combiner is sketched.

After the total Z matrix is derived from the global ABCD
matrix (see Fig. 6), the values of σ and Vsat,M = Vsat,A can
be calculated according to (4) and (6), respectively, and are
reported versus frequency in Fig. 7.
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Fig. 7. σ (black solid curve), Vsat,M (gray solid curve), and Vsat,A
(black dotted curve) versus frequency.

Fig. 8. β (black curve) and VOBO (gray curve) versus frequency.

Fig. 9. POUT,sat versus frequency. The range FP is shaded.

As a successive step, β and VOBO,M are calculated according
to (8) and (9), and are reported in Fig. 8.

The maximum output power defines FP , and is reported
in Fig. 9. Considering an output power target of 1 dB
lower than the nominal power delivered by two devices,
i.e., POUT,target = 42 dBm, then FP = [1.35 GHz, 3.18 GHz]
that corresponds to a relative bandwidth of 81%. The range
FL is derived looking at Fig. 10, where the difference
between OBO and IBO is reported. Assuming to be able
to accept a maximum difference of 2 dB, then FL =
[1.45 GHz, 3.6 GHz]. The alternative bandwidth estimation
is FP ∩ FL = [1.45 GHz, 3.18 GHz] that corresponds to
a 75% relative bandwidth.

The efficiency can be only roughly estimated, especially
in terms of absolute values, at each frequency point, as the
ratio between RF output and dc absorbed power. A reduction
of around 0.5 dB can be considered for output network
losses, while at the back-off condition, another 0.5 dB can
be added to account for the early turning ON of the auxiliary

Fig. 10. OBO–IBO versus frequency. The range FL is shaded.

Fig. 11. Estimated efficiency versus frequency at saturation (gray solid line)
and back-off (black dashed line).

device, necessary to ensure reasonably flat gain response. The
estimated efficiency, at saturation and back-off, is reported
in Fig. 11. It is important to note that this estimation is
based on very strong assumptions, so nonlinear simulations
are necessary to effectively predict the efficiency performance.

IV. MICROSTRIP DESIGN AND SIMULATIONS

The distributed elements composing the DPA output com-
biner have been substituted by microstrip elements, with a
760-μm Taconic substrate (εr = 3.5). The overall schematic
of the DPA is shown in Fig. 12. The output matching from the
common impedance of 28.9–50 � is based on a two-section
quarter-wave matching, modified to include the drain bias feed
network.

The nonlinear model of the device, provided by the foundry,
has been used in the design of the input matching and
splitter, and in the tuning of the DPA before fabrication.
In particular, the fine tuning permits to maintain the bandwidth
performance in the passage from the much simplified model
of the theory to the nonlinear model. Fig. 13 compares the
load at the main device intrinsic plane, when the auxiliary
is turned OFF, for different implementations of the output
combiner. In particular, it can be noted that the translation
from ideal lines to microstrip has negligible impact on the load.
Moreover, the load trajectory of the theory-based circuit is only
slightly modified by the fine tuning of the output combiner
based on large signal simulations, meaning that it represented
a good starting point for the design.

The input matching networks of the main and auxiliary
stages are based on the same topology [24], but small dif-
ferences in the components’ values were adopted for an



1324 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 66, NO. 3, MARCH 2018

Fig. 12. Electrical scheme of the designed DPA. Lengths and widths are in millimeters.

Fig. 13. Simulated load at the main device intrinsic plane, when the auxiliary
device is turned OFF, in the 1–4.5-GHz band. Doherty output combiner
with ideal lines (black solid curve), microstrip (light gray solid curve), and
microstrip after fine tuning with nonlinear model (dark gray dashed curve).

optimized operation. The choice of the input splitter is critical
for its influence on bandwidth, efficiency, and linearity. Since
the main goal of this design is bandwidth optimization, an even
Wilkinson divider is preferred for its ability to maintain equal
and controlled splitting on a broad band. To alleviate the gain
compression issue that arises in AB/C Doherty PAs with the
same devices and even splitting [25], the auxiliary gate bias is
adjusted in nonlinear simulations and brought closer to class B
than what expected from theory, thus trading off back-off
efficiency for linearity and bandwidth. A 50-� delay line is
inserted at the main device input to equalize the phase delay
at the common node.

The DPA simulated performance versus CW frequency is
resumed in Fig. 14, at a constant input power of 35 dBm.
The maximum output power is higher than 42 dBm
from 1.5 to 4 GHz, while the back-off efficiency is higher
than 30% from 1.7 to 3.9 GHz.

V. CHARACTERIZATION RESULTS

The scattering parameters of the fabricated DPA (Fig. 15)
have been measured on the range 1–4.5 GHz for an ini-
tial assessment of the device performance. The applied bias
is VDD = 28 V, with a main device quiescent current
of IDD = 100 mA, and auxiliary device gate at −5 V.

Fig. 14. CW simulated results versus frequency.

Fig. 15. Photograph of the fabricated DPA.

Fig. 16 shows the measured and simulated S21, S11 of the DPA;
the measured gain is higher than 10 dB from 1.45 to 3.8 GHz.
The agreement between simulations and measurements is
rather good, with a slight frequency shift to lower frequency
of the measured S21.

The DPA has been characterized with CW single-tone input
in the 1.5–3.9 GHz range, with a 100 MHz step. Fig. 17
summarizes the measured CW performance at saturation and
back-off versus CW frequency. On the 1.5–3.8-GHz band,
the saturated output power exceeds 42.3 dBm, with the associ-
ated efficiency in the range 42%–63%. The saturated power is
considered in the range of 2–4-dB gain compression, in order
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TABLE I

COMPARISON WITH OTHER SINGLE-INPUT BROADBAND DPAS

Fig. 16. Scattering versus frequency of the fabricated DPA.
Symbols: measured. Solid lines: simulated. Black squares: S21. Gray
circles: S11.

Fig. 17. CW measured results versus frequency.

to account for the 2-dB maximum compression defined for FL ,
plus the compression due to the intrinsic nonlinear behavior
of the active devices. At 6-dB back-off, the efficiency remains
between 33% and 55%, while the small-signal gain is higher
than 10 dB, with a ripple of 1.9 dB. The measured results
are in good agreement with the simulation in Fig. 14, and
the achieved bandwidth is well predicted by the proposed
estimation method. Fig. 18 shows the CW power sweeps
at 1.6, 2.1, 2.6, and 3.5 GHz.

The measured CW results are resumed in Table I and com-
pared with other broadband DPAs presented in the literature.
The proposed DPA has larger bandwidth, both in absolute
and fractional terms, and similar output power and back-off
efficiency compared with the other DPAs.

The DPA has been characterized with a modulated sig-
nal to assess its linearity and linearizability. The measure-
ment setup is shown in Fig. 19. The RF modulated signal
is generated by an arbitrary waveform generator (Keysight

Fig. 18. CW measurements versus output power. Black squares: efficiency.
Gray circles: gain.

Fig. 19. Block diagram of the system-level characterization setup.

Fig. 20. Measured DPA output spectrum with 7-MHz channel WiMAX
signal and 9 dB PAPR. Center frequency: 2.6 GHz. Average output power:
34 dBm. Average efficiency: 33%. Black curve: before digital predistortion.
Gray curve: after digital predistortion.

ESG4433B), amplified by a driver amplifier, fed to the DPA,
and then detected by a vector signal analyzer (Keysight MXA
N9020A). A digital predistorter, based on a memory polyno-
mial model [26], is implemented in MATLAB and is applied
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to improve linearity and average efficiency. The predistorter
has an odd polynomial order P and finite impulse response
filter order M .

The measured spectra, before and after applying the pre-
distorter, are shown in Fig. 20. At 2.6 GHz center frequency,
a 7-MHz channel WiMAX signal with a PAPR of 9 dB has
been applied, resulting in an ACPR of 42 and 48 dB, before
and after predistortion (P = 5 and M = 2), respectively,
at an average output power of 34 dBm and average efficiency
of 33%.

VI. CONCLUSION

A state-of-the-art broadband DPA has been designed using
a new approach, supported by a simplified analysis for the
initial bandwidth estimation. The power amplifier has been
fabricated using packaged GaN HEMT devices. On the band
1.5–3.9 GHz, corresponding to a fractional bandwidth of 87 %,
the amplifier showed a maximum output power higher than
42.3 dBm, with a saturated efficiency between 42% and 63%,
and 6 dB back-off efficiency between 33% and 55%, hence
representing, to the best of our knowledge, the state of the art
in broadband DPAs.
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