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Direct Error-Searching SPSA-Based Model
Extraction for Digital Predistortion

of RF Power Amplifiers
Noel Kelly , Student Member, IEEE and Anding Zhu , Senior Member, IEEE

Abstract— This paper presents a low-complexity architecture
to extract model coefficients for digital predistortion of radio
frequency power amplifiers. The proposed approach directly
updates the model coefficients online using a stochastic optimiza-
tion algorithm that utilizes random perturbation of the model
coefficients to determine the coefficient updating direction and
converge toward the optimum solution. This technique avoids
resource-intensive matrix operations and the requirement for
an offline error model in the conventional model extraction
techniques and thus drastically reduces the implementation
complexity. The complete model extraction solution has been
implemented on a field-programmable gate array, and it is
shown that the hardware resource usage is remarkably low.
Experimental measurements were conducted on a gallium nitride
Doherty amplifier excited by Long Term Evolution signals and
the results showed that the proposed technique can achieve
linearization performance comparable to that obtained by using
the conventional and significantly more complex solutions.

Index Terms— Digital predistortion (DPD), linearization,
model extraction, power amplifier (PA), stochastic optimization.

I. INTRODUCTION

D IGITAL predistortion (DPD) is an advanced linearization
technique that is now widely used to compensate for

nonlinear behavior of radio frequency (RF) power amplifiers
(PAs) in modern wireless communication systems [1], [2].
DPD uses an inverse model of the nonlinear PA to predistort
the input signal at digital baseband. To maximize linear-
ity improvement, an accurate behavioral model is required.
In recent years, a range of advanced behavioral models for
RF PAs have been developed, including modified versions of
the Volterra series [3]–[5] and, more recently, the decomposed
vector rotation (DVR)-based model which uses the absolute
value operator as the basis function [6].

To extract the coefficient values for these models, least
squares (LS)-based algorithms are typically used [7]–[9]. The
LS algorithm offers high accuracy and fast convergence but
comes with a high implementation cost in terms of hardware
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resources as it requires complex matrix multiplication and
inversion operations [10]. High implementation complexity is
particularly undesirable for applying DPD in small-cell base
stations that are expected to form a large part of future 5G
networks. These stations operate at much lower power levels
than those in conventional larger cells. The power efficiency
and implementation cost of all components in the transmitter
chain, including DPD, must be carefully managed [11], [12].
To reduce the computational complexity, iterative coeffi-
cient extraction techniques can be considered. In particular,
the recursive least-squares (RLS) algorithm has been employed
in DPD model extraction [13], [14]. RLS avoids large matrix
inversion, but maintaining an accurate approximation of the
Hessian matrix still requires significant complexity, particu-
larly for higher order models. In [15] and [16], the authors
proposed a model adaption technique based on the least
mean squares (LMS) algorithm where large matrix calculations
are avoided and thus implementation complexity is greatly
reduced. However, because it uses the first-order approxima-
tion, LMS is very sensitive to the adaption step size and it
typically struggles to achieve the desired model accuracy [17].

In [18], a stochastic optimization-based DPD coefficient
calculation technique was proposed as a low-complexity alter-
native to the LS solution. It is derived from the simultaneous
perturbation stochastic approximation (SPSA) algorithm that
uses measurements of the loss function with a random pertur-
bation on the model coefficients to determine the coefficient
updating direction and converge toward the optimum solution
without involving resource-intensive matrix operations [19],
[20]. It is shown in [18] that, after a sufficient number of
iterations, the technique can achieve accuracy comparable to
the existing LS solutions with over 98% reduction in computa-
tional complexity. However, to enable quadratic interpolation,
new error model outputs must be calculated at each SPSA iter-
ation. If a large number of training samples are used, the cal-
culation of error model outputs still requires a large number
of operations, leading to significant resource usage and cost.

This paper presents an alternative training architecture that
removes the requirement for an additional error model in
the coefficient extraction procedure. The proposed technique
applies the SPSA algorithm directly on the DPD model to
find the optimum coefficients. Experimental results show that
the proposed approach can achieve comparable linearization
performance to existing solutions but offers a further drastic
reduction in hardware resource usage compared with the
existing technique in [18].
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Fig. 1. DPD with direct learning model extraction.

This paper is organized as follows. In Section II, the existing
direct learning methods using both LS and the SPSA algorithm
are discussed. The direct learning model extraction solution
proposed in this paper is detailed in Section III. Section IV
outlines the implementation complexity of the proposed tech-
nique and quantifies the improvement by comparing it against
the existing SPSA-based DPD. Finally, Section V reports
experimental results with a conclusion in Section VI.

II. EXISTING DIRECT LEARNING MODEL EXTRACTION

The principle of DPD is that a digital block is inserted into
the transmitter chain to preprocess the input signal before it
enters the RF PA. Two primary architectures are commonly
used for model extraction: indirect learning (IDL) and direct
learning [2], [9], [21]. The IDL architecture estimates the
postinverse of the PA first and then copies the coefficients to
the preinverse DPD block. The direct learning architecture is
usually used in a closed-loop system and it directly compares
the PA output with the original input.

A. LS-Based Direct Learning

Fig. 1 shows the block diagram of a DPD system with direct
learning. Many behavioral models can be used for constructing
the DPD function. In this paper, we use the DVR-based
model [6]. The predistorted signal ũ(n) is given by

ũ(n) =
M∑

i=0

ãi x̃(n − i)

+
S∑

s=1

M∑

i=0

c̃s,i,1
∣∣|x̃(n − i)| − βs

∣∣e jθ(n−i)

+
S∑

s=1

M∑

i=0

c̃s,i,21
∣∣|x̃(n − i)| − βs

∣∣e jθ(n−i)|x̃(n)|

+ . . . (1)

where x̃(n) is the baseband input signal. The constants M
and S are the memory length and the number of thresholds,
respectively. The operator | · | denotes the absolute value
operation and θ(n) is the phase of the signal x̃(n). It is
common to consider DPD processing to take place in blocks
of N samples. In this paper, we represent vectors containing

Fig. 2. SPSA-based direct learning DPD [18]. (Note the symbol “⊗”
represents the Kronecker product.)

samples of the signals x̃(n), ũ(n), and ỹ(n) in Fig. 1 using the
notation x, u, and y, respectively. For convenience, we also
group the model coefficients in (1) into a single coefficient
vector

C = [ã1, ã2, · · · , c̃s,1,1, · · · ]. (2)

The direct learning model extraction architecture iteratively
adjusts the coefficients in C to minimize the error between
y and x. As shown in Fig. 1, this means the DPD model
is located inside the training loop. The update equation is
given by

Ch+1 = Ch − λ · �Ch (3)

where λ is a scalar adaption factor and h is the iteration
index. �Ch is the coefficient updating vector modeling the
error component in the DPD coefficient vector. Provided the
error is sufficiently small, the error in the DPD output signal,
uerror,h , can be approximated by the error in the PA output

uerror,h = G−1(yh − x) ≈ yh − x (4)

where G−1(·) is the inverse transfer function of the PA. The
coefficient update vector �Ch can then be estimated using LS

�Ch = (XH X)−1XH (uerror,h) (5)

where X is the DPD model regression matrix generated using
the DPD input signal x [22].

B. SPSA-Based Direct Learning

The LS operation in (5) involves large matrix opera-
tions, which are hardware demanding and time consuming.
To reduce complexity, in [18], we proposed to replace LS
with the SPSA algorithm. SPSA is a stochastic optimization
algorithm that iteratively measures a loss function with a
random perturbation on the model coefficients to determine
the coefficient updating direction and finally find the optimum
solution. The coefficient perturbation process only requires a
simple addition and subtraction operation, and all coefficients
are randomly perturbed together, which leads to substantial
savings in hardware resource usage in model extraction.
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To replace LS with SPSA to calculate �Ch in (5), we first
need to construct an error model with output emod given by

emod = XCerr. (6)

The goal of the SPSA process is to find the optimum error
coefficient vector Cerr to enable emod approach uerror, so that
Cerr can then be used to replace �Ch in (3) to update
the DPD coefficients in the next direct learning iteration.
As mentioned above, SPSA is an iterative search algorithm
and thus, as shown in Fig. 2, multiple internal iterations are
required to find the optimum Cerr coefficients each time.

The iteration procedure is outlined below. Note that we
use the index k to denote internal iterations as opposed to
the index h in (3). The iteration begins with perturbing the
current estimate of the error model coefficient vector Cerr,k
with a random perturbation vector, �k , weighted by a scalar,
ck , to generate two additional coefficient vectors

C+
err,k = Cerr,k + ck�k

C−
err,k = Cerr,k − ck�k . (7)

The perturbation vector �k is given by

�k = [�k,1,�k,2, · · · ,�k,K ]. (8)

where K is the number of terms in the model and each entry
�k,i is either +1 or −1 with equal probability. Using the
perturbed coefficients in (7) and the current coefficient set
Cerr,k , three error model outputs are calculated

emod,k = XCerr,k

e+
mod,k = XC+

err,k

e−
mod,k = XC−

err,k . (9)

By comparing with the desired error vector uerror, three
normalized mean square error (NMSE) loss function measure-
ments, L(Cerr,k), L(C+

err,k), and L(C−
err,k) can be obtained.

As discussed in [18], since the NMSE is quadratically related
to the model coefficients, the next updated coefficient estimate,
Cerr,k+1, can be found by moving directly to the minimum
point of the quadratic curve formed by the three loss function
measurements. Specifically, the new error coefficient vector is
calculated by

Cerr,k+1 = Cerr,k − ck�kμk (10)

where the perturbation update weighting, μk is given by1

μk = L
(
C+

err,k

) − L
(
C−

err,k

)

2
[
L
(
C+

err,k

) + L
(
C−

err,k

) − 2L
(
Cerr,k

)] (11)

As shown in Fig. 3, as the updating process iterates, the NMSE
is reduced in each iteration. The training finishes when the
desired accuracy is reached.

This method avoids the gradient calculations and result-
ing resource-intensive matrix operations required by LS.

1Due to a typing error, the scaling factor of 2 was missing in the
denominator part of the quadratic SPSA coefficients updating equation given
in [18]. It is included in (11) now.

Fig. 3. Evolution of the quadratic SPSA interpolation.

As shown in [18], this approach achieves a reduction in per-
iteration computational complexity of over 98%, while main-
taining comparable performance to conventional LS. However,
in terms of implementation complexity, the introduction of a
secondary error model is not desirable. At each SPSA iteration,
new error model outputs must be calculated according to the
expressions in (9). Note that the matrix Xh has dimensions
N × K , where N is the number of training samples and K is
the number of terms in the DPD model. In a practical system,
this calculation requires a large number of operations, leading
to significant resource usage and cost.

III. DIRECT ERROR-SEARCHING SPSA-BASED

MODEL EXTRACTION

To further reduce the implementation complexity of the
technique in [18], this paper proposes a novel extraction
method where the SPSA algorithm is applied directly to the
DPD model rather than to the error model.

A. Error Analysis

In a DPD system, shown in Fig. 1, the goal of the model
extraction process is to find a set of ideal coefficients that
can generate the ideal output uideal that enters the PA to
generate the perfect output, yideal that is equal to the original
input x. Clearly, uideal is not available before we find the ideal
coefficients, but it can be expressed as

uideal = uh − uerror,h (12)

where uh is the existing DPD output that can be obtained by

uh = XCh (13)

where Ch is the model coefficients vector. As in (4), for
a given set of DPD coefficients, the error signal uerror,h at
the DPD output can be approximated by the error measured
at the PA output, if the error is relatively small [22], [23].
Substituting (4) into (12) gives an approximate value for the
ideal DPD output

uideal ≈ uh − (yh − x). (14)

If we know uideal, the optimization task now is to find the ideal
DPD coefficients, Cideal, that minimize the error between the
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Fig. 4. Single SPSA iteration of the proposed algorithm.

DPD model output, uh , and its ideal value, uideal

Cideal = arg minCh

(|uh − uideal|2
)
. (15)

Considering the quadratic feature of SPSA, this optimization
problem can be solved by using SPSA directly, as illustrated
in Fig. 4, where the coefficients Ch are on the horizontal axis,
while the magnitude square of the output error signal |uerror,h |2
is on the vertical axis. Because both uh and uideal are linearly
related to the model coefficients, uerror,h is also linearly related
to Ch . Therefore, |uerror,h |2 is quadratic in relation to Ch .
It follows that the next error and the corresponding coefficients
can be found by simply forming a quadratic curve using
SPSA. As shown in Fig. 4, assuming that Ch corresponds to
the existing error |uerror,h |2, if we perturb the coefficients to
generate two other errors |u+

error,h |2, |u−
error,h |2, we can form

a quadratic curve. The minimum point of the curve is the
next error value |uerror,h+1|2, and thus, the new corresponding
coefficients Ch+1 can be found.

The difference compared with the existing approaches
described in Section II is shown as

Existing : Ch ⇒ uerror,h ⇒ �Ch ⇒ Ch+1

Proposed : Ch ⇒ uerror,h ⇒ uerror,h+1 ⇒ Ch+1 (16)

where in the existing approaches, the next coefficients vector
is updated using an error coefficients vector generated from
the existing error, while in the proposed approach, we find
the next DPD error from the SPSA quadratic curve fitting
and thus find the next optimum coefficient vector directly.
This approach is much simpler in terms of computational
complexity and hardware implementation compared with the
existing approaches, discussed as follows.

B. SPSA Training

To apply SPSA, we first define a loss function. In this paper,
we propose to use a loss function that is given as the residual
sum of squares (RSS) between the DPD output u and the ideal
DPD output uideal for a given set of measurements

RSS(uideal, u) =
N∑

n=1

|ũ(n) − ũideal(n)|2 (17)

Fig. 5. Quadratic fitting.

where N is the total number of training samples. It is similar
to the standard NMSE. The difference is that the division
operation in the NMSE definition is no longer required here
as uideal is constant across all three measurements during a
single SPSA iteration.

As discussed earlier, to perform quadratic SPSA, three
loss function measurements are required. One measurement
is conducted by using the existing coefficients Ch , while the
other two measurements are obtained by applying a random
perturbation vector �h , weighted by a scalar ch , to the existing
coefficients Ch to generate two additional DPD output signals.
Intuitively, we would think that we have to feed the coefficients
through the DPD block three times to generate three DPD
outputs, which will complicate the process. In fact, by taking
advantage of the quadratic property of SPSA, it is possible
to obtain the other two outputs with simple addition and
subtraction operations on the existing output, explained as
follows.

First of all, note that the two additional perturbed DPD
outputs are used to form the quadratic curve and find the
next DPD error only. They will not enter the PA to produce
new final outputs. The perturbation error levels therefore do
not affect the real-time system operation. Second, because we
have ensured a quadratic relationship between the coefficients
and loss function, with the same input signal, all possible
loss function measurements lie on the same quadratic curve,
no matter what weighting factor ch is used. As shown in Fig. 5,
two solid square points are generated from ch = 1, while two
solid round dot points are generated with ch = 0.15. All four
points lie on the same quadratic curve. This means that no
matter what weighting factor is used, the next minimum point
can always be found after three measurements. Although the
perturbation errors are bigger in the case of ch = 1 than those
with ch = 0.15, these errors do not affect the real system
operation since the perturbed coefficients will not be used
directly in the real-time DPD operation. As a result, to reduce
computational complexity, here we choose ch = 1 and the
perturbed model outputs, u+ and u− are given by

u+ = X(Ch + �h)

u− = X(Ch − �h). (18)
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Fig. 6. Loss function measurement implementation.

Expanding (18) gives

u+ = X(Ch + �h) = uh + (X�h)

u− = X(Ch − �h) = uh − (X�h) (19)

meaning the coefficient perturbation can be expressed as an
additional signal, �uh , to be added to and subtracted from
the original DPD output

u+ = uh + �uh

u− = uh − �uh (20)

where

�uh = X�h. (21)

Since the elements in �h are either +1 or −1, �uh in (21) can
be calculated with simple addition and subtraction operations
between each column of the model regression matrix, X
defined in Section II-A

⎡
⎢⎣

X1,1 X1,2 X1,3 · · ·
X2,1 X2,2 X2,3 · · ·

...
...

...
. . .

⎤
⎥⎦

⎡

⎢⎢⎢⎣

−1
+1
−1
...

⎤

⎥⎥⎥⎦

=
⎡

⎢⎣
−X1,1 + X1,2 − X1,3 + · · ·
−X2,1 + X2,2 − X2,3 + · · ·

...

⎤

⎥⎦ (22)

After obtaining �uh and considering (14) and (17), three
loss function measurements can be conducted

L (Ch) =
N∑

n=1

|ỹh(n) − x̃(n)|2

L
(
C+

h

) =
N∑

n=1

|ỹh(n) − x̃(n) + �ũh(n)|2

L
(
C−

h

) =
N∑

n=1

|ỹh(n) − x̃(n) − �ũh(n)|2 (23)

as shown in Fig. 6. The results from (23) along with the three
coefficients sets can be used to form a quadratic curve for
each coefficient and then new coefficients can be found by
using the same equations in (10) and (11). The updated DPD
coefficients produce a closer match to uideal at the DPD model
output. This operation significantly simplifies the updating
process and reduces system cost. More details on the digital
implementation will be given in Section IV.

Fig. 7. Proposed direct error-searching SPSA model extraction.

Fig. 8. Proposed model training routine.

The fact that the measurements in (23) are performed
at the DPD output is important for two reasons. First,
the desired quadratic interpolation SPSA algorithm can be
directly applied. Second, the three loss function measurements
can be conducted at the same time and there is no need to
feed the two perturbed DPD output signals through the PA to
measure the loss function, which means that the model training
process does not disrupt the real-time DPD operation. The
block diagram of the proposed full system is shown in Fig. 7.

C. Complete Model Extraction Procedure

Despite the use of the term “ideal” in the notation,
the approximation in (4) limits the accuracy of the calculated
Cideal coefficients. The signal uideal is not the “truly” ideal
DPD output but rather an estimated ideal output based on the
approximation in (4). Thus, even if we could train the DPD
coefficients to exactly fit uideal, the error at the PA output
would not be completely removed. The traditional direct
learning architecture faces an identical problem. Furthermore,
in the above training, we assume uideal is generated from a
fixed set of input signal samples x. In real operation, the input
signal x is randomly generated over time and a different x,
e.g., xh corresponds to a new uideal,h . To perform accurate
coefficient extraction in this environment, multiple iterations
of the coefficient extraction process are required.

The complete model training flow is depicted in Fig. 8. The
training procedure can be described as follows.

1) Set iteration index, h = 1, and choose initial DPD
coefficient set C1.
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2) Measure the PA output signal, yh .
3) Calculate the approximate DPD error signal, uerror,h

according to (4).
4) Calculate the ideal DPD signal, uideal according to (14).
5) Measure RSS (uideal, uh), RSS

(
uideal, u+

h

)
, and

RSS
(
uideal, u−

h

)
.

6) Calculate Ch+1 using the SPSA update equations in (10)
and (11) to minimize error between DPD output uh and
uideal.

7) Generate new DPD output using Ch+1 and pass to the
PA. If linearization criterion is satisfied, finish training,
if not, update h = h + 1 and return to step 2.

This iterative training process shares similarities with the con-
ventional direct learning procedure. At each iteration, the DPD
coefficients are updated to approach an estimate of the ideal
predistorted signal. Provided the approximation in (14) holds,
the error at the PA output is reduced after each DPD coefficient
update. It follows that the accuracy of the approximation in (4),
on which (14) is based, also improves with each update and
the DPD coefficients are trained to approach a more accurate
estimate of the ideal output at each iteration.

D. Comparison With the Existing Approaches

Although an iterative coefficient updating process is
employed, the proposed technique in this paper is funda-
mentally different from the conventional iterative approaches.
In the existing systems, LMS may be employed but its per-
formance is poor because LMS is a first-order approximation
algorithm that converges very slowly and it is sensitive to the
adaptation size. The second-order approximation approaches,
such as LS and RLS, can achieve high accuracy but come with
high implementation complexity.

The proposed approach is also different from the
conventional SPSA where the gradient is approximated by
the first-order line fitting. Such linear approximations are
highly sensitive to the choice of weighting factor and can
often struggle to converge [19]. By exploiting the quadratic
relationship that exists between the loss function and the DPD
coefficients, the optimum minimum point can be found directly
using quadratic curve fitting instead of gradient approximation.
This approach is equivalent to the second-order approximation
that significantly speeds up the convergence and guarantees the
optimum point can be found at each iteration. Furthermore,
due to the quadratic relationship, the perturbation step size is
no longer relevant because all the cost function measurement
points will fall on the same curve which leads that we could
use any perturbation step size. In this paper, we directly
use +/ − 1, which enables the cost function to be directly
obtained by adding and subtracting the basis waveforms that
have already been generated by the DPD model, dramatically
simplifying the hardware implementation.

While the optimization process is changed to the second-
order approximation, the proposed approach still keeps the
core feature of SPSA, namely, the optimum solution is found
using loss function measurements with simultaneous random
perturbation on model coefficients. It enables the algorithm
to achieve comparable accuracy to LS solutions but with a

TABLE I

SD-SPSA PER-ITERATION COMPLEXITY [18]

very low implementation cost. We call the proposed approach
“direct error-searching” SPSA-based model extraction.

IV. HARDWARE IMPLEMENTATION AND

COMPLEXITY COMPARISON

To quantify the improvement offered by the direct error-
searching SPSA approach outlined above, we compare it with
the generic SPSA-based DPD extraction method proposed in
[18], which we refer to from here on as SD-SPSA. It is
worth noting that the SD-SPSA method has already achieved
a 98% reduction compared with conventional LS algorithms,
as discussed in detail in [18]. To avoid replication, in this
paper, we only discuss further reduction from the SD-SPSA
solution, without comparison with LS.

A. Operations per Iteration

Both the SD-SPSA and the direct error-searching SPSA use
multiple iterations, in this section, we compare the complexity
per iteration.

The SD-SPSA solution directly replaces LS with SPSA
in the closed-loop direct learning architecture. In this case,
the SPSA algorithm calculates the error coefficients, Cerr,
using an error model in the same format as the LS estimation
technique would be applied. The solution in [18] employs a
novel steep descent SPSA algorithm to increase the training
speed and results showed that the linearization performance is
comparable with the existing LS solutions. However, as dis-
cussed in Section II-B, additional processing associated with
the error model substantially increases resource usage.

Table I reports the operations that account for the majority
of the real multiplication and addition operations used in a
single iteration of the algorithm in [18]. Generating the error
model output accounts for the vast majority of the complexity.
Taking a typical example of a DPD model with 50 terms
(K = 50) and using 8192 samples to calculate the NMSE on
each iteration (N = 8192), running the error model accounts
for over 98% of the total real multiplications and over 99%
of the total real addition operations performed each iteration.

The solution proposed in this paper removes the need for an
error model. It finds the next coefficients directly by perturbing
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TABLE II

PROPOSED APPROACH PER-ITERATION COMPLEXITY

the DPD model. As discussed in Section III-B, the real and
imaginary components of each term in �h are limited to values
of +/ − 1. In this scenario, the �uh vector can be calculated
using only simple addition and subtraction operations across
the columns of the matrix X. This amounts to a substantial
reduction in the number of operations required per iteration
and also allows the SPSA update equation to be evaluated
without the need for costly multiplication operations.

Table II reports the number of real multiplication and
addition operations required per iteration for the proposed
approach. Removing the need to run an offline error model
each iteration substantially reduces the number of mul-
tiplication operations required. To quantify the improve-
ment, resource usage for a practical training scenario with
K =50 and N =8192 is shown in brackets. Referring back
to Table I, in this scenario, the SD-SPSA technique in [18]
requires approximately 2.5 × 106 real multiplications and
5.7×106 real additions. By comparison, as shown in Table II,
the proposed error-matching SPSA uses approximately 5×104

real multiplications and 1.7 × 106 real additions.
It is also important to note that, in addition to the com-

plexity reported in Table I, the technique in [18] requires
the DPD matrix X and the captured PA output y to remain
constant throughout the offline training segment. This leads
to a complexity tradeoff in the design. On the one hand,
as proposed in [18], the matrix X can be stored after it has
been generated by the DPD model and reused for each SPSA
iteration, but this requires a large block of memory resources.
On the other hand, the system could store only the input signal
x and implement a secondary offline model to generate X each
iteration, reducing the memory requirements but significantly
increasing the computational complexity.

B. Hardware Implementation Complexity

The proposed extraction solution was synthesized for imple-
mentation in a field-programmable gate array (FPGA). The
designed system performs all of the computation necessary
to update the model coefficients each iteration: it takes the
signals, x, X, and y as inputs and processes them to generate
the SPSA update vector.

Fig. 9. Proposed hardware implementation accuracy.

TABLE III

HARDWARE IMPLEMENTATION DETAILS

The complex samples are represented using 32-b precision,
16 b each for the real and imaginary components. A hardware
simulation was performed to confirm the design feasibility.
The simulation used digital baseband samples and a full
precision model of the DPD-PA transmit chain. The DPD
model is a DVR-based function with S = 8 and M = 3, and
the PA is modeled using a dynamic deviation reduction-based
Volterra series with nonlinear terms up to the ninth order and
memory length 3 [8]. The PA model is based on data measured
from a gallium nitride (GaN) Doherty PA. A 20-MHz Long
Term Evolution (LTE) signal serves as the system input.
The primary objective of the simulation is to confirm that
the 16-b implementation provides sufficient precision that the
algorithm convergence is not affected. Fig. 9 shows the NMSE
measured after each iteration between the DPD output signal
generated using the 16-b FPGA coefficients and the output
signal generated using full precision coefficients. The NMSE
remains below −70 dB throughout the 40 000 iteration training
period, confirming there is no significant degradation due
to rounding error. Fig. 9 also reports the NMSE measured
between the system input and output for the bit-accurate
model extraction scenario. The system NMSE reaches the full
precision performance of approximately −43 dB, confirming
the implemented design achieves sufficient precision.

Table III reports digital hardware resource usage for the
implemented system. To demonstrate its simplicity, the com-
plete extraction solution is implemented in lookup tables
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(LUTs) and registers only—no specialized DSP units are used.
The system loads the DPD matrix columns serially, meaning
that the hardware usage reported in Table III is independent
of the DPD model length. Serial loading allows a single
accumulator to calculate �uh . This reduces hardware usage
but requires K clock cycles per input sample, where K is the
number of terms in the DPD model and thus columns in the
DPD matrix. Alternatively, if maximum throughput is required,
more than one column may be loaded simultaneously; full
parallel loading corresponds to the greatest hardware resource
usage but allows a new sample to be processed on every clock
cycle. This is one of a number of design tradeoffs that can
be made in implementing the proposed system. By requiring
only three loss function measurements to perform a coefficient
update, the flexibility of the SPSA algorithm permits a large
number of possible implementation strategies, tuned to differ-
ent criteria such as minimum resource usage, maximum data
throughput, or minimum power consumption. It is expected
that, compared with the proof-of-concept solution reported
in Table III, even lower resource usage can be achieved in
the future systems by leveraging known application scenarios
and employing more advanced hardware implementation tools.

Table III also includes power consumption figures for each
of the main blocks of the proposed system. The power
consumption measurements were obtained using the post
implementation power analysis tool in the Xilinx Vivado
integrated design environment software. It should be stressed
that these figures are reported only to provide the reader with
an approximate breakdown of the power consumption in the
circuit. In a real implementation, power consumption of the
real circuit is highly dependent on the application scenario,
e.g., signal bandwidth/sampling rate, number of coefficients
used, clock rate, digital circuit chip types (e.g., FPGA part
number), and implementation strategy. As a result, the power
consumption can vary largely in different cases. Nonetheless,
it is interesting to note that the main SPSA operation, i.e., the
model coefficient update, only requires an estimated 30 mW to
operate. This emphasizes the very low implementation cost of
the SPSA algorithm. The majority of the power consumption
is due to the loss function calculation. As discussed later in
Section VI, the loss function measurement may be imple-
mented in a highly efficient way in the analog domain in
the future that may provide the potential for further power
reduction.

To quantify the reduction in resource usage, we compare the
proposed technique with the offline SD-SPSA solution in [18].
In fact, the two designs share much of their infrastructure.
We first simplify the SD-SPSA method by swapping NMSE
with an RSS loss function and also ignoring the added com-
plexity of the offline steep-descent calculation. The reduced
complexity gives the SD-SPSA technique an advantage in the
comparisons but allows a clearer comparison between the key
features of the systems, namely, generating the loss function
measurement signals. For a fair comparison, we use an imple-
mentation of the SD-SPSA algorithm in [18], in which the
loss function is measured three times each iteration. In terms
of computational complexity, the primary advantage of the

TABLE IV

ERROR SIGNAL GENERATION COMPLEXITY

TABLE V

HARDWARE RESOURCE USAGE COMPARISON

Fig. 10. Experimental test setup.

proposed SPSA technique is in generating the RSS input sig-
nals, as shown in Fig. 6. Table IV compares guideline resource
usage between the SD-SPSA solution and the error-searching
SPSA technique. It can be seen that the complex multipli-
cations required to run the error model consume far more
resources than the simple addition and subtraction operations
of the error-searching technique reported in Table III. Note that
the resource usage in Table IV is for an efficient serial-loading
implementation of the SD-SPSA algorithm, where only three
complex multiplications are required. For higher throughput
scenarios, complexity will increase with the number of parallel
operations.

Table V compares the overall resource usage between the
two architectures. In addition to the reduced computational
resource requirements (i.e., raw LUTs and flip flops), the pro-
posed technique no longer requires large blocks of signal
samples to be stored. In [18], the algorithm requires the full Xh

matrix and the measured error vector to be stored during the
SPSA training run. Assuming 32-b accuracy for each complex
value, for a test scenario with K = 50 and N = 8192, this
amounts to a storage requirement of 32 × ((N × K ) + N) =
13 369kb. As shown in Table V, the proposed technique
requires no additional memory resources, substantially reduc-
ing implementation complexity.

V. EXPERIMENTAL RESULTS

A full RF test bench, as shown in Fig. 10, was set up to
evaluate the performance of the proposed architecture in a
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Fig. 11. Measured NMSE over 20 000 iterations with 20-MHz LTE signal.

real DPD training scenario. To evaluate the online coefficient
updating process in hardware, an automated test routine was
developed to run multiple iterations of the algorithm. The test
bench is centered on a master PC which is responsible for the
signal generation and control of the measurement equipment
to capture the PA input and output signals. DPD coefficients
are calculated in the PC according to the proposed SPSA
algorithm by using the captured error signal.

At the beginning of each iteration, the predistorted signal is
loaded onto a Rohde and Schwarz SMW200A vector signal
generator where it is up-converted to RF before transmission
to the PA. A linear driver boosts the signal power before
it enters the DUT, a high-efficiency 20-W GaN Doherty PA
operated with an average output power of 36 dBm. At the PA
output, an attenuator reduces the signal power before a Rohde
and Schwarz FSW signal and spectrum analyzer captures the
signal for demodulation, sampling and upload to the PC. This
process repeats automatically and the DPD coefficients are
updated each iteration until a desired linearization target (e.g.,
maximum number of iterations or specified NMSE threshold)
is reached. Accounting for settling time, instrument setup, and
data transfer, each iteration lasts approximately 1 s.

At the PC, the DVR-based model in (1) is used to generate
the predistorted signal. The model is set up with S = 8 and
M = 3. The sampling frequency for the signal generator and
spectrum analyzer is 184.32 MHz. A block of 15 000 signal
samples are loaded into the signal generator and captured at the
signal analyzer each iteration. To recreate a realistic training
scenario the input signal (x in Fig. 7) is varied for each new
SPSA iteration by selecting a different set of 15 000 contiguous
samples from a large stored data set.

A. 20-MHz Single-Carrier LTE Signal

The performance was first tested using a 20-MHz single-
carrier LTE signal with 6.5 dB peak to average power ratio.
The carrier frequency was 1.84 GHz and the average input
signal power to the PA was 20.5 dBm. Fig. 11 reports con-
vergence performance in terms of NMSE measured between
the system input and output signals. As mentioned above,
the input signal is varied on each iteration to recreate a realistic
training scenario, this causes the measured NMSE to fluctuate
around a decreasing mean value as the algorithm converges.

TABLE VI

20-MHz LTE MEASUREMENT RESULTS

Fig. 12. Measured PA output spectra for a 20-MHz LTE signal.

A 500-point moving average for the measured NMSE is
included in Fig. 11 to illustrate the overall convergence trend.
The reference NMSE measurement taken when the predistor-
tion coefficients are extracted using a standard LS/IDL method
is also reported. The convergence curve follows a familiar
pattern for SPSA with an initial fast training period that
rapidly slows down as the coefficients approach their optimum
values. Table VI compares the performance in terms of time
domain NMSE and frequency domain adjacent channel power
ratio (ACPR) with the conventional LS/IDL method. After
20 000 iterations, the NMSE performance of the proposed
method is within 0.1 dB of the conventional LS/IDL reference
case, and the difference between the two techniques in terms
of ACPR is less than 2 dB.

Fig. 12 shows the measured PA output spectra with and
without DPD applied. After 20 000 iterations, the linearization
performance is close to that of the conventional LS/IDL
approach. Fig. 13 shows the AM/AM and AM/PM char-
acteristics before and after linearization using the SPSA-
calculated coefficients. Compared with LS, the proposed
approach requires a large number of iterations, but as discussed
earlier, the computational complexity at each iteration is very
low and, thus, the overall operation can be very fast. In a prac-
tical implementation, the training time depends on the number
of the sampling points used and the sampling rate of the signal
at the DPD output. Assuming a sampling rate of 400 MS/s,
and capturing 8192 samples per iteration, a 20 000 iteration
training run would take approximately 400 ms to complete.
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Fig. 13. AM/AM and AM/PM plots for a 20-MHz LTE signal with and
without DPD.

Fig. 14. Measured SPSA convergence for a 40-MHz LTE signal.

TABLE VII

40-MHz LTE MEASUREMENT RESULTS

B. 40-MHz Dual-Carrier LTE Signal

The proposed technique was also evaluated using a 40-MHz
dual-carrier LTE signal with 9.5 dB peak to average power
ratio. The carrier frequency was again 1.84 GHz and the aver-
age signal power at the PA input was 20.5 dBm. Fig. 14 shows
the algorithm convergence over the course of 40 000 iterations.
The increased number of iterations illustrates that, although the
convergence speed slows as the iteration number increases,
the NMSE continues to improve. With 10 000 iterations,
the SPSA test case NMSE is approximately 4 dB worse than
the LS/IDL reference, however, after 40 000 iterations, the gap
between the two is reduced to 1.8 dB. Table VII reports the
NMSE and ACPR measurements for the test scenario. In terms
of ACPR, after 40 000 iterations, the measured values for the
SPSA DPD are within 2 dB of the LS/IDL reference. Fig. 15
shows the linearized output spectrum where the reduction

Fig. 15. Measured PA output spectra for a 40-MHz LTE signal.

Fig. 16. AM/AM and AM/PM plots for a 40-MHz LTE signal with and
without DPD.

in out-of-band spectral regrowth is comparable between the
SPSA and LS/IDL techniques. Finally, the AM/AM and
AM/PM curves in Fig. 16 show successful linearization using
the SPSA-calculated DPD coefficients.

VI. CONCLUSION

A low-complexity DPD model extraction technique has
been presented. The proposed solution integrates the SPSA
algorithm into the direct learning architecture and uses a
modified iteration technique for extracting DPD coefficients.
Measurement results indicated that the proposed technique can
achieve comparable linearization performance to the existing
LS-based solutions but with considerably lower implementa-
tion cost.

Because the algorithm is based on stochastic search, mul-
tiple iterations would be required to find the final optimum
solution. One may argue that the total computational complex-
ity of the proposed approach, i.e., computation per iteration
× number of iterations, may be comparable with or even
higher than what LS requires, since LS can converge within
a very few iterations while SPSA requires tens of thousands
iterations. When making this comparison, a few points should
be considered. First of all, it is worth mentioning that a large
number of iterations for SPSA training are only required
at the system startup. When the DPD system is running in
real time, a much smaller number of iterations are typically
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required to keep the performance in the acceptable range. The
complexity of real time maintenance is therefore very low.
This is in contrast to LS, where the full operation must be
conducted at each update cycle. If, therefore, considering a
life-time operation, the computational complexity and power
consumption of the SPSA approach would be much lower
compared with the LS approach.

Second, although computational operation is an important
concern, there are many other factors that need to be taken into
account when implementing a DPD system, including compo-
nent count, silicon area, and overall system cost, as highlighted
in [12]. The LS algorithm offers high accuracy and fast conver-
gence but comes with a high implementation cost in terms of
hardware resources as it requires complex matrix multiplica-
tion and inversion operations. These operations require special
DSP circuits, e.g., dedicated microprocessors, to implement,
which can occupy a large silicon area and be costly. High
implementation cost is particularly undesirable in 5G small-
cell base stations since these small cell stations operate at
much lower power levels and the overall cost of the system
shall be very low compared with those in conventional larger
cells. The cost of each component in the transmitter chain
must be carefully managed. Including a complex LS engine
in the transmitter for DPD model extraction would not be a
favorable solution. Furthermore, in the future wireless systems,
in particular small cells, the system will become much more
integrated. Including a large silicon area in the transceiver
would not be desirable. By employing the iterative approaches,
e.g., the proposed SPSA, the required silicon area and cost are
fractional compared with that required by LS, which makes
them far more attractive.

In addition, we shall point out that the proposed SPSA-
based technique in this paper is substantially different from
the conventional approaches. In the existing algorithms, such
as RLS, the computational complexity is heavily dependent
on the number of coefficients and the model structure used.
In the proposed approach, all the model coefficients are
perturbed at the same time and they are extracted based solely
on measurements of the loss function instead of gradient
calculation. The model extraction is thus independent of the
number of coefficients and it does not require knowledge of
the model structure or nonlinear term construction. It makes
model extraction much more flexible and the new coefficient
set can be generated with very few operations. Currently,
the loss function measurement, i.e., RSS calculation, consumes
the majority of power. It is envisioned that, in the future
systems, the loss function may be implemented in a highly
power efficient manner in the analog domain that can enable
the total power consumption to be further reduced. This is a
unique ability offered by the proposed approach.

In conclusion, although the total number of operations may
be comparable with the conventional LS when all iterations
are considered, the SPSA-based approach has many unique
advantages. These advantages make the proposed technique
as an attractive solution for DPD systems in the future 5G
small-cell networks, where energy efficiency and cost-effective
implementation are expected to become critical requirements.
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