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Synthesis of Coupling Matrix for Diplexers Based
on a Self-Adaptive Differential Evolution Algorithm
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Abstract— Diplexer coupling matrix synthesis often involves
both analytical methods and optimization techniques. At present,
general purpose optimization algorithms are used, but they need
strong supporting information (e.g., high-quality starting points
and very narrow search ranges) from analytical methods, which is
not available or too complex to be obtained in many cases. Aiming
to obtain the desired coupling matrix with highly reduced sup-
porting information to relieve the pressure of analytical methods,
a new optimization algorithm, called self-adaptive differential
evolution for coupling matrix synthesis (SADEC), is proposed.
Considering the landscape characteristics of diplexer coupling
matrix synthesis problems, a new self-adaptive multipopulation
search framework and a self-adaptive algorithm parameter
control strategy are proposed and organized in a particular
way. The performance of SADEC is demonstrated by two
all-resonator-based narrowband diplexers using large search
ranges only with the requirement of matching the diplexer
topology and no ad hoc analysis is included. Experiments and
comparisons show the high performance of SADEC and clear
advantages compared with the state-of-the-art global optimiza-
tion methods. SADEC is also applicable to filter coupling matrix
synthesis and is downloadable.

Index Terms— Coupling matrix, coupling matrix synthesis,
differential evolution (DE), diplexer.

I. INTRODUCTION

THE coupling matrix model is often employed in modern
filter and diplexer design [1]. Because of the direct con-

nection between the coupling matrix and the geometric para-
meters of the physical design, the coupling matrix is a widely
used tool to obtain the initial geometric design parameters
before 3-D full-wave electromagnetic (EM) simulation-based
design optimization. Bandler et al. [2] and Liu et al. [3] show
that both the local optimization and global optimization-based
EM simulation-driven design optimization methods can benefit
from a good initial design for complex filters and diplexers.
Therefore, the high-quality synthesis of a coupling matrix is
essential.
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Coupling matrix synthesis methods can be mainly classified
into three categories: analytical methods [4]–[6], optimization-
based methods [7]–[9], and hybrid analytical and optimization
methods [10], [11]. In analytical methods, the appropriate
coupling coefficient and external quality factor values are ana-
lytically calculated based on the properties of the microwave
device. They are theoretically sound and with guaranteed
good results. Optimization-based methods, on the other hand,
obtain the appropriate coupling matrix through a black-box
optimization process. Except for the selection of cost func-
tions [9], [12], [13], much less theoretical analysis is involved,
providing the advantages of ease of use and being general.

However, as the complexity of the response and topology
increases, especially for multiport devices, both kinds of
methods face challenges: the analytical methods can become
intricate and sometimes impossible to realize [14] and the
optimization methods may have a low success rate even with
fine tuning of the cost function and the search range [9], [15].
Traditional genetic algorithms or genetic algorithm-based
memetic/hybrid algorithms and state-of-the-art global opti-
mization algorithms (e.g., differential evolution (DE) [16] and
particle swarm optimization (PSO) [17]) are tested in our
pilot experiments. The success rate is low for various diplexer
coupling matrix synthesis problems.

Therefore, the hybrid analytical and optimization-based
methods are attracting much attention. In such methods,
an optimization engine is employed, but the optimization
problem is highly simplified based on analytical methods, such
as a high-quality starting point [11], a well-organized synthesis
process [10], or highly reduced search ranges [18]. Due to such
strong supporting information, the optimization algorithm does
not need to be strong. At present, the widely used methods are
general purpose optimization methods, such as Nelder–Mead
simplex method [19], sequential quadratic programming [20],
and evolutionary algorithms (EAs), which are widely used in
microwave engineering [21]–[24].

However, the main application area of hybrid analytical and
optimization-based methods is filter synthesis. To the best of
our knowledge, for more complex topologies, such as the
all-resonator-based diplexer, which is a new and promising
component in satellite communication systems, there are a few
matured coupling matrix synthesis methods. When applying
the above hybrid method for diplexer synthesis, it is not easy
to obtain a good enough starting point or the search range is
not narrow enough in many cases, causing optimization not to
be successful [15]. Hence, developing a strong optimization
mechanism for complex coupling matrix synthesis, which
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can considerably relieve the pressure of the prior analytical
analysis, is important to complement the state of the art for
coupling matrix synthesis for multiport devices.

Aiming to fill this gap, an optimization method for cou-
pling matrix synthesis for diplexers, called self-adaptive DE
for coupling matrix synthesis (SADEC), is proposed. The
main innovations include a new self-adaptive multipopulation
search framework and a self-adaptive DE algorithm parameter
control strategy. Both of them are designed to tackle the
landscape characteristics of the targeted problem. SADEC
aims as follows.

1) To obtain highly optimal solutions for diplexer coupling
matrix synthesis with a high success rate.

2) Do not rely on good initial values, highly reduced search
ranges, or other specific properties of the targeted design
cases.

We believe that if these two goals are met, diplexer coupling
matrix synthesis with weak, easy to obtain, or highly reduced
supporting information from analytical methods is expected
to be successful in most cases. General purpose optimization
techniques (e.g., sequential quadratic programming and PSO),
which show difficulty for the targeted problem, can therefore
be replaced.

The remainder of this paper is organized as follows.
Section II introduces the basic techniques, including a brief
introduction of the coupling matrix method and the standard
DE algorithm. Section III introduces the SADEC algorithm,
including its main ideas, the design of the new algorithm
framework and algorithmic components and parameter setting.
Section IV demonstrates SADEC by two all-resonator-based
diplexers. Large search ranges only with the requirement of
matching the diplexer topology are used. Comparisons with
standard DE and PSO are also provided. The concluding
remarks are provided in Section V.

II. BASIC TECHNIQUES

A. Coupling Matrix Method for Diplexer Design

The S-parameter design specifications of a diplexer can be
calculated using the scaled external quality factors qei and the
general matrix [A] using the following equations [18]:

S11 = ±
(

1 − 2

qe1
[A]−1

1,1

)

Si1 = 2
1√

qe1qei
[A]−1

i,1 , i = 2, . . . , n (1)

where n is the number of ports. The general matrix [A] can
be expressed as

[A] = [q] + p[U ] − j [m] (2)

where [q] is an n × n matrix with all entries zero, except
for qii = (1/qei ), i = 1, 2, . . . , n (i stands for the index of
a resonator connected to an external port), [U ] is an n × n
identity matrix, p is the complex lowpass frequency variable,
and [m] is the general normalized coupling matrix, which is
what SADEC targets at.

B. Differential Evolution Algorithm

The DE algorithm [16] is the fundamentals of SADEC.
DE is a population-based global optimization algorithm, which
outperforms many EAs for continuous optimization prob-
lems [16] and is widely used in the EM design optimization
domain. Nevertheless, DE is not the only choice, other popular
EAs (e.g., PSO and evolution strategy) may also be improved
following similar ideas in this paper.

DE is an iterative method. In each iteration, the mutation
operator is first applied to generate a population of mutant
vectors. A crossover operator is then applied to the mutant
vectors to generate a new population. Finally, selection takes
place and the corresponding candidate solutions from the old
population and the new population compete to comprise the
population for the next iteration.

In the t th iteration, the i th candidate solution in the popu-
lation, P , can be represented as

x i (t) = [
xi

1, xi
2, . . . , xi

d

]
(3)

where d is the number of design variables.
In DE, mutation is the main approach to explore the design

space. There are a few different DE mutation strategies trading
off the convergence speed and the population diversity in
different manners. Arguably, the most widely used one is
DE/rand/1 [16], which is as follows:

v i (t + 1) = xr1(t) + F · (xr2(t) − xr3(t)) (4)

where xr1 , xr2 , and xr3 are three different solutions randomly
selected from the current population, P . v i is the i th mutant
vector in the population after mutation. F ∈ (0, 2] is a control
parameter, called the scaling factor.

Crossover is then applied to the population of mutant vectors
to produce the child population U , which works as follows.

1) Randomly select a variable index jrand ∈ {1, . . . , d}.
2) For each j = 1 to d , generate a uniformly distributed

random number rand from (0, 1) and set

ui
j (t + 1) =

{
v i

j (t + 1), if (rand ≤ CR)| j = jrand

xi
j (t), otherwise

(5)

where CR ∈ [0, 1] is a constant called the crossover
rate.

Following that, the selection operation decides on the pop-
ulation of the next iteration, which is often based on a one-
to-one greedy selection between P and U . Considering a
minimization problem, the selection operator is

xi (t + 1) =
{

ui (t + 1), if f (ui (t + 1)) < f (xi (t))

xi (t), otherwise.
(6)

III. SADEC ALGORITHM

A. Challenges and Motivations

Aiming to propose a general method for diplexer coupling
matrix synthesis, case-specific information is not included
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Fig. 1. Illustrative figure of diplexer coupling matrix synthesis problem
landscape (the Ackley benchmark test function [25] is used for illustration).

in the cost function. Our cost function only involves viola-
tion of S-parameter constraints, such as max{max(|S11|) −
(−20 dB), 0} for the constraint of max|S11| < −20 dB in
the passband(s). The cost function is defined as the sum
of normalized S-parameter constraint violations. For normal-
ization, the violation of each constraint for each candidate
solution is divided by the maximum constraint violation so
far for the corresponding constraint. Examples are shown in
Section IV. Transmission and reflection zeros are not used due
to generality consideration. Transmission zeros do not always
exist. We also found that for some complex synthesis prob-
lems, there are many solutions with very close transmission
and/or reflection zeros compared with the desired ones, but
the S-parameter response is far away from the specifications.

Using the above cost function, by studying various diplexer
coupling matrix synthesis problems (e.g., sampling and sweep-
ing), Fig. 1 (illustrative figure) shows the characteristics of
the landscape. It can be seen that: 1) if without an ad hoc
selection of the search range, the optimal regions locate in
several narrow valleys of the search space and the outer
region is flat. This characteristic is understandable because
most diplexers are narrowband, and resonance only happens
in very particular design parameters; 2) the optimal regions
are separated because these narrow valleys are not connected
with each other; 3) the best solution in most of the narrow
valleys is only a local optimum (point B in Fig. 1), which
is not useful (an example is shown in Section IV-A); and
4) even in a narrow valley, the landscape is multimodal (has
local optima).

EAs are stochastic optimization methods and there is always
a balance between the exploration ability and the probability
to find the correct search direction [26]. In a stochastic search
process, if the diversity of possible movements is limited, it is
easy to get trapped in a local optimum. When the diversity
of possible movements increases, the capacity of exploring
unknown space is promoted, but the probability to find the
correct search direction decreases considerably. The charac-
teristics of the targeted landscape require the optimization
algorithm having a good exploration ability because it is
multimodal. However, it also requires the algorithm having
a high capacity to find the correct search direction because

the optima locate in narrow valleys. In addition, most of the
narrow valleys only provide local optima even if they are
visited. Therefore, it is not a surprise that modern EAs, such as
standard DE and PSO, have a very low success rate. Our pilot
experiments show that standard DE and PSO have difficulty
in converging at the global optimum and may converge at a
local optimum (i.e., point B in Fig. 1).

In the computational intelligence field, various improved
DE and PSO are proposed [27] and many of them focus
on jumping out of local optima. Their general idea is to
promote the exploration ability. However, these methods do
not seem suitable for the targeted problem. These meth-
ods target at highly multimodal problems, but their optimal
regions are not narrow and not separated [25]. Hence, find-
ing the correct search direction is not a main consideration
for those methods, but it is an important challenge for the
coupling matrix synthesis problem. Arguably, the benchmark
test problem with the narrowest optimal region used in the
computational intelligence field is the Ackley function [25],
while our experiments show that the optimal region of the
targeted problem is much narrower than that of the Ackley
function. Therefore, promoting exploration ability makes the
optimization algorithm be trapped in the outer region when
synthesizing diplexer coupling matrix, which is verified by
our pilot experiments. For example, several popular improved
DE even cannot detect the narrow valleys.

To the best of our knowledge, there are few works focusing
on identifying the correct search direction for the targeted
landscape. Therefore, the goal of the SADEC algorithm is
to increase the probability of finding and preserving the
correct search direction while maintaining its exploration
ability. SADEC is based on DE and its design is described
in Sections III-B and III-C.

B. Self-Adaptive Parameter Control Strategy

There are four key algorithmic parameters in DE, which
are the population size (NP), the mutation strategy, the scaling
factor (F), and the CR. The selection of them has a significant
influence on the performance of DE for complex optimization
problems [28], [29]. The mutation strategy and the scaling fac-
tor control the exploration of the decision space. In particular,
the mutation strategy can be considered as the choice of the
search direction, while the scaling factor can be considered as
the step length. An example is the DE/rand/1 mutation (4).
Selecting different kinds of mutation strategies and scaling
factor leads to different capabilities of exploration. Besides,
by increasing the size of the population, the exploration ability
is promoted. As described above, the probability of finding
the correct search direction is therefore decreased. According
to (5), the crossover operator decides how many decision
variables in expectation are changed in a population member.
Thus, it decides to what extent that the visited search patterns
(or search directions) can be changed/preserved.

A central question then becomes how to control these
parameters so as to promote the probability of finding and
preserving the correct search directions while maintaining
the exploration ability. As described in Section III-A, there
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are almost no guidelines for the landscapes of the targeted
problem. Hence, empirical tests using various coupling matrix
synthesis problems with different complexities are carried out
and the following observations are obtained: 1) the inventor
of DE suggests that the population size NP should be around
5 × D to 10 × D [16]. Our experiments show that when
using the DE/rand/1 mutation with a reasonable scaling factor,
NP = 5 × D always provides enough exploration ability and
2) when using DE mutation strategies with higher exploration
ability than DE/rand/1 (e.g., DE/rand/2 [16]), the probability
of visiting the narrow valleys decreases. Given the settings of
NP = 5× D and the DE/rand/1 mutation, the control of F and
CR is discussed in the following.

Considering the characteristics of the targeted landscape,
large F is needed to explore the decision space so as to get
access to the narrow valleys. Small F is also needed to per-
form local exploitation in the narrow valley. Price et al. [16]
suggest that F should not be smaller than 0.4, while a widely
used parameter study Gämperle et al. [30] argue that the lower
bound of F is problem dependent. Both studies suggest that
if F is larger than 1.0, the convergence speed will decrease.
Price et al. [16] and Gämperle et al. [30] recommend to use
F = 0.5 and F = 0.6 as a default value, respectively.
Considering above, SADEC uses the following method to
decide the scaling factor:

Ftemp = norm(0.5, 0.25)

Fi (t) =

⎧⎪⎨
⎪⎩

1, if Ftemp > 1

0.1, if Ftemp < 0.1

Ftemp, otherwise

(7)

where norm(0.5, 0.25) is a Gaussian distributed random num-
ber with a mean of 0.5 and a standard deviation of 0.25.

It can be seen that: 1) because of the Gaussian distri-
bution, there is about 68% probability, the generated F is
between 0.25 and 0.75 (near the recommended default values).
For about 27% probability, F is between 0.1 and 0.25 or
between 0.75 and 1 (emphasizes exploration or exploitation
in particular) and 2) for each candidate solution in each
iteration, there is a separate F . In this way, different kinds of
candidate designs have the opportunity to use various kinds
of F (i.e., step size) in an appropriate range to either perform
exploration or exploitation.

In terms of CR control strategy, various DE parameter
studies show different recommendations [16], [30], [31].
Unfortunately, none of them works in our pilot tests using
diplexer coupling matrix synthesis problems. In our empirical
study, using various candidate solutions (x) and their mutant
vectors (v) in the optimization process, a number of child
candidates (u) are generated for a certain CR value. The
number of successful crossovers, for which, u is better than
x , can be observed. Two main observations include: 1) for
different candidate solutions, there is not a universal workable
CR value and the fit CR values can be very different and 2) in
many cases, the workable CR value for a candidate solution
spans in a narrow range (e.g., 0.4–0.5). This explains why a
fixed setting rule of CR cannot work for the targeted problem.
Therefore, a possible way is to explore random CR values and

inherit the workable ones, which is shown as follows:

CRtemp = 0.1 + rand1 × 0.8

CRi (t) =
{

CRtemp, if rand2 < 0.1

CRi (t − 1), otherwise
(8)

where rand is a uniformly distributed random number between
0 and 1. CR(1) = 0.9, which is based on the suggested default
value in [16].

It can be seen that for 10% probability, CR can be any
value between 0.1 and 0.9 (the possible range suggested
by [16]); Otherwise, CR is inherited from the last iteration.
Note that each candidate solution in the optimization process
has its own CR value. Pilot experiments show that there is
a considerable probability that a feasible CR for a certain
candidate solution is sampled and inherited in the optimization
process. Comparisons with several widely used self-adaptive
setting rules (see [32]) show that this control method has the
highest success rate.

C. Self-Adaptive Multipopulation Search Framework

Despite employing the above self-adaptive parameter con-
trol mechanism, obtaining the appropriate F and CR values
cannot be guaranteed. Sometimes, the optimization converges
to narrow valleys that only contain local optima (such as
point B in Fig. 1). In almost all of the local optima that
we have encountered, some resonance happens in undesired
frequency ranges, while the others are correct. Hence, a new
operator, called self-adaptive return operator, is activated when
the optimization is judged to be trapped in local optima,
which can often be observed in earlier iterations if it happens.
The judgment of being trapped in local optima is based
on two conditions: 1) the maximum standard deviation of
decision variables in the current population is smaller than
a predefined threshold δ and 2) the number of reflection
zeros in any passband is incorrect. Using the return operator,
the optimization returns to the original initial population, and
the F and CR will be resampled based on (7) and (8) and
the optimization process will restart. The effectiveness of this
operator is shown by various test cases, and an example is
shown in Section IV-B.

Uhm et al. [7] shows that the choice of initial population
has an effect on the final result for coupling matrix synthesis
problems. Our pilot experiments show a similar observation
that some initial populations have a higher probability to
obtain the desired global optimum than others using the same
process in Section III-B. Hence, a multipopulation framework
is proposed to increase the success rate.

Two populations are used. For one of them (P), the ini-
tialization is based on random sampling. The initialization of
the other one (P̄) is the opposite population of P , which is
composed by

x̄ i (1) = a + b − xi (1) (9)

where xi(1) is the i th candidate solution in initial P , x̄ i (1) is
the corresponding candidate solution in initial P̄ , and [a, b]d

is the search range. Experiments show that in many cases,
if the optimization is not successful when using P as the initial
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Fig. 2. Flow diagram of SADEC.

population, using P̄ as the initial population has much larger
success rate than using another randomly sampled population.
This is understandable because P̄ is often the best complement
of P , covering search patterns that do not exist in P as much
as possible.

D. General Framework of the SADEC Algorithm

The flow diagram of the SADEC algorithm is shown
in Fig. 2, which consists the following steps.

Step 1: Initialize P and P̄ using the method in
Section III-C. Initialize NP to be 5 × D. Initialize
CR to be 0.9 for the crossover of the first iteration.

Step 2: Check if the stopping criteria (e.g., a certain number
of iterations) are met. If yes, output the result;
otherwise, go to Step 3.

Step 3: Apply the DE/rand/1 mutation (4) on P and P̄
to generate mutant vectors Vp and Vp̄ . Use (7) to
generate F values for the composing of each mutant
vector.

Step 4: Apply the crossover operator (5) on Vp and Vp̄ to
generate Up and Up̄ . If it is in the first iteration,
CR = 0.9; otherwise, use (8) to generate CR for
each crossover.

Step 5: Apply the selection operator (6) to generate P and
P̄ for the next iteration.

Step 6: Check if the return criteria for P or P̄ are met.
If yes, return to the corresponding initial popula-
tion(s) and go to Step 2; otherwise, go to Step 3.

The only user defined algorithmic parameter in SADEC
is δ when judging whether the population is trapped in a
local optimum or not, which is the threshold of the maximum
standard deviation of the decision variables in the current
population. This threshold should be small enough making
sure that the difference between the members of the current
population is small, indicating that convergence happens.
Clearly, this parameter is not sensitive if it is small enough,
and the worst case is wasting function evaluations when the

search stucks in a narrow valley that only contains a local opti-
mum. Considering the search range of (normalized) coupling
matrix optimization problems, which is often around [−1, 1],
a recommended setting is δ = 0.01.

IV. NUMERICAL RESULTS AND COMPARISONS

SADEC has been tested by coupling matrix synthesis
problems of seven real-world all-resonator-based diplexers.
SADEC obtains high-quality results with very high success
rate to all of them. In this section, two examples are used
to demonstrate different operators in SADEC. To the best of
our knowledge, there are no general global optimization-based
methods to solve them. The two diplexers have Chebyshev
response, but SADEC is applicable to any response (e.g.,
Butterworth response) that can be generated by a coupling
matrix. In both examples, the sum of normalized constraint
violations is set as the cost function to be minimized. Because
we are working with normalized values, practical diplexers
can in principle be made at any frequency with any type of
resonator [1]. Hence, we only concentrate on the normalized
coupling matrix in the following.

For both examples, 20 runs are carried out for SADEC,
standard DE, and PSO and the results are compared statisti-
cally. DE and PSO are the state-of-the-art global optimization
methods, which have both strong global exploration and local
exploitation ability. The stopping criterion for SADEC is that
the maximum number of activating the return operator is 3
and the maximum number of iterations after each activation
(if there is) is 1000. If the return operator is not activated,
the maximum number of iterations is 1000. The stopping
criterion for DE and PSO is also 1000 iterations. In all the
runs for the three methods, the convergence happens before
1000, either stucks in a local optimum or obtains a successful
result.

For the parameter setting of standard DE, the population
size is the same as SADEC, the same DE/rand/1 mutation is
used. As suggested by [16] and [33], F = 0.5, CR = 0.9
are used. PSO is implemented using the MATLAB Global
Optimization Toolbox. The star topology is used. As suggested
by [34], the cognitive coefficient and the social coefficient are
both set to 2. According to [35], when the swarm size is larger
than 50, PSO is not sensitive to the size of the population.
Similar to DE, to improve the probability of finding the correct
search direction, larger swarm size should not be used. Hence,
the swarm size is set to 50. There are various methods to set
the inertia weight. Our experiments show that using a constant
inertia weight of 0.4 shows the best performance, which is
used for comparison.

The examples are run on a PC with Intel 3.5-GHz Core
(TM) i7 CPU and 8-GB RAM under Windows operating
system. Since each function evaluation costs around 1 s,
computational time is not a problem. Each SADEC run often
costs about 40 min to 1 h, while each DE and PSO runs often
costs about 20 min. In the SADEC optimization, the number of
cost function calls, for example, 1 is around 1660 and that, for
example, 2 is around 2870. In each cost function evaluation,
4000 frequencies are swept.
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Fig. 3. Topology of example 1.

A. Example 1

The first example is a 10-resonator diplexer with a symmet-
rical Chebyshev response [36] (Fig. 3), which is a moderate
test case among all the problems. This is a novel all-resonator-
based diplexer topology that eliminates the need of additional
common junction such as T-junction or power splitter. It is
especially suitable for applications that need reduced size and
volume of the circuit. A full description is in [36]. Due to
the symmetry of the response and topology, the total number
of variables in the coupling matrix is reduced to 9 [36]. The
external quality factors can be straightforwardly calculated,
which are qe1 = 1.943 and qe2 = qe3 = 3.886. The ranges
of the design variables are in Table I. The design variables
are the coupling matrix elements mij defined in (2). It can
be seen that the search range is decided without any careful
selection and no additional information is provided to SADEC.
The design specifications over the normalized frequency are:
two passbands (PB1 and PB2) are with the same bandwidth
of 0.5 centered at −0.75 and 0.75 and the max(|S11|) within
the passband should be at least less than −20 dB. The
normalized stopbands for channel 1 (PB1L and PB1R) are from
−2 to 0.25 and from 1.25 to 2, where the max(|S21|) should
be less than −20 dB. The normalized stopbands for channel
2 (PB2L and PB2R) are from −2 to −1.25 and from −0.25
to 2, where the max(|S31|) should be less than −20 dB. The
design specifications are

PB1 ≤ −20 dB

PB2 ≤ −20 dB

PB1L ≤ −20 dB

PB1R ≤ −20 dB

PB2L ≤ −20 dB

PB2R ≤ −20 dB (10)

where

PB1 = max(|S11|), 0.5 to 1

PB2 = max(|S11|),−1 to −0.5

PB1L = max(|S21|),−2 to 0.25

PB1R = max(|S21|), 1.25 to 2

PB2L = max(|S31|),−2 to −0.75

PB2R = max(|S31|),−0.25 to 2 (11)

where the numbers in (11) are normalized frequencies.

TABLE I

RANGES OF THE NINE DECISION VARIABLES FOR EXAMPLE 1

Fig. 4. Example 1: response of a typical optimized solution by SADEC.

TABLE II

TYPICAL OPTIMAL RESULT FOR EXAMPLE 1

The cost function is defined as

f1 = max(PB1 − (−20), 0)

MPB1

+ max(PB2 − (−20), 0)

MPB2

+ max(PB1L − (−20), 0)

MPB1L

+ max(PB1R − (−20), 0)

MPB1R

+ max(PB2L − (−20), 0)

MPB2L

+ max(PB2R − (−20), 0)

MPB2R

(12)

where MPB1 is the max{max(PB1 − (−20), 0)} so far (i.e.,
the maximum violation of the PB1 ≤ −20-dB constraint,
found so far), so do the others.

A typical response of SADEC is shown in Fig. 4, and the
corresponding optimal design variables are shown in Table II.
Other normalized coupling coefficients are: m27 = m23, m78 =
m34, m89 = m45, m9,10 = m56, m77 = −m33, m88 = −m44,
m99 = −m55, and m10,10 = −m66. Plugging in the optimal
values to (2) and then to (1), the response can be obtained.
The average optimized responses of SADEC, standard DE,
and PSO are shown in Table III. It can be seen that SADEC
obtains successful results and is much better than DE and PSO
in terms of optimization quality for this example.

The most important criterion for comparison is the success
rate. In a diplexer design flow, the coupling matrix synthesis
provides an initial design for 3-D EM simulation-driven design
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TABLE III

OPTIMIZED RESULTS USING DIFFERENT METHODS FOR EXAMPLE 1
(AVERAGE OF 20 RUNS, IN DECIBEL)

Fig. 5. Local optimum (example 1).

optimization, rather than the final design. Hence, we define a
successful result based on the following rules: 1) the reflection
zeros are located in proper frequency ranges and the number
is correct. A poor example is shown in Fig. 5. We consider
that it is a local optimum, because performing various kinds
of local optimization (e.g., sequential quadratic programming)
from this starting point cannot find a better solution. When
it comes to 3-D EM simulation-driven local optimization,
experiments show that using such a starting point often cannot
obtain a successful final design and 2) the S-parameter design
specifications are (almost) satisfied.

Using the above rules, the success rate of SADEC is 20/20,
while those for DE and PSO are 4/20 and 1/20, respectively.
Most DE and PSO runs obtain solutions like Fig. 5 (like
point B in Fig. 1). For SADEC, in 17/20 runs, the return
operator is not activated to either P or P̄ , which means that
successful results are obtained directly using the self-adaptive
parameter control strategy starting from both P and P̄ . In the
other three runs, the return operator is only activated for once
and successful results are obtained. This verifies the consid-
erable improvement of the capacity of finding and preserving
correct search directions compared to standard DE, thanks to
the algorithm parameter control strategy in Section III-B.

B. Example 2

The second example is a 12-resonator diplexer with a cross-
coupling topology shown in [18] (Fig. 6). This topology allows
the design of diplexers with sharp rejection in the guard
band and is especially suitable for applications that require
a reduced guard bandwidth. A full description is in [18].
A cross coupling between resonators 2 and 5 is introduced in
a quadruplet to provide a pair of transmission zeros for both
channels. Using the symmetry characteristics of the diplexer,
the total number of variables is reduced to 12 [18]. The ranges

Fig. 6. Topology of example 2.

of design variables are in Table IV. Again, the search range
is decided without any careful selection and no additional
information is provided to SADEC. The design specifications
over the normalized frequency are: two passbands (PB1 and
PB2) are with the same bandwidth of 0.5 centered at −0.75
and 0.75 and the max(|S11|) within the passband should be at
least less than −20 dB. The constraints for the middle guard
bands (PB1M and PB2M ) (−0.3 to 0.3) of channels 1 and 2 are
that max(|S21|) and max(|S31|) should be less than −40 dB
due to the introduction of transmission zeros. The max(|S21|)
for the right stopband of channel 1 (PB1R) (1.2 to 2) and
max(|S31|) for the left stopband of channel 2 (PB2L ) (−2 to
−1.2) should be less than −20 dB. Therefore, the optimization
problem is formulated as

PB1 ≤ −20 dB

PB2 ≤ −20 dB

PB1M ≤ −40 dB

PB2M ≤ −40 dB

PB1R ≤ −20 dB

PB2L ≤ −20 dB (13)

where

PB1 = max(|S11|), 0.5 to 1

PB2 = max(|S11|),−1 to −0.5

PB1M = max(|S21|),−0.3 to 0.3

PB2M = max(|S31|),−0.3 to 0.3

PB1R = max(|S21|), 1.2 to 2

PB2L = max(|S31|),−2 to −1.2 (14)

where the numbers in (14) are normalized frequencies.
The cost function is defined as

f2 = max(PB1 − (−20), 0)

MPB1

+ max(PB2 − (−20), 0)

MPB2

+ max(PB1M − (−40), 0)

MPB1M

+ max(PB2M − (−40), 0)

MPB2M

+ max(PB1R − (−20), 0)

MPB1R

+ max(PB2L − (−20), 0)

MPB2L

(15)

where MPB1 is the max{max(PB1 − (−20), 0)} so far
(i.e., the maximum violation of the PB1 ≤ −20-dB constraint,
found so far), so do the others.

A typical response of SADEC is shown in Fig. 7, and the
corresponding optimal design variables are shown in Table V.
Other normalized coupling coefficients are: m6,10 = m67,
m10,11 = m78, m11,12 = m89, m10,10 = −m77, m11,11 =
−m88, and m12,12 = −m99. The average optimized responses
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TABLE IV

RANGES OF THE 12 DECISION VARIABLES FOR EXAMPLE 2

Fig. 7. Example 2: response of a typical optimized solution by SADEC.

TABLE V

TYPICAL OPTIMAL RESULT FOR EXAMPLE 2

TABLE VI

OPTIMIZED RESULTS USING DIFFERENT METHODS FOR EXAMPLE 2
(AVERAGE OF 20 RUNS, IN DECIBEL)

of SADEC, standard DE, and PSO are shown in Table VI.
It can be seen that SADEC obtains successful results and is
much better than DE and PSO in terms of optimization quality
for this example.

In this example, the success rate of SADEC is 20/20,
while those for DE and PSO are 0/20 and 0/20, respectively.
In 11/20 runs, the return operator is not activated to either
P or P̄ in SADEC. Among these 11 runs, successful results are
obtained from either P or P̄ in 10 of them (only starting from
P or P̄ obtains successful results); for the other one run, suc-
cessful results are obtained from both P and P̄ . This verifies
that using two opposite populations, P and P̄ , in initialization
establishes an effective complementation. Among the other 9
runs, the return operator is only activated for once in 7 of
them; among 2/9 runs, the return operator is activated for twice
and successful results are obtained. These nine runs verify the

effectiveness of the return operator to avoid converging into a
narrow valley that only contains local optima.

It is intuitive that with the increase of the number of
decision variables, the valley that contains the global optimum
is narrower and narrower with respect to the decision space.
This causes any optimization algorithm, including SADEC,
to have difficulty in detecting the narrow valley. We found
that for coupling matrix synthesis problems with more than
25 design variables, the success rate of SADEC is low if using
large search ranges only with the requirement of matching
the topology (e.g., [−1, 1]25). In such cases, the support from
analytical methods that reasonably narrow down the search
ranges is needed. Note that SADEC does not aim to replace
the analytical methods; instead, it aims to provide a much
stronger optimizer than the existing general purpose optimizers
applied in hybrid analytical and optimization-based coupling
matrix synthesis methods.

V. CONCLUSION

In this paper, the SADEC algorithm for diplexer coupling
matrix synthesis has been proposed. SADEC aims at fill-
ing the gap that strong supporting information (e.g., high-
quality starting points and narrow enough search ranges) from
analytical methods is essential for the success of diplexer
coupling matrix synthesis when employing available general
purpose optimizers. SADEC focuses on proposing a stronger
optimization mechanism especially for the targeted problem,
which only requires weak, easy to obtain, or highly reduced
supporting information in most cases. Experiments show that
SADEC is able to obtain highly optimized coupling matrix
solutions with very high success rate even without ad hoc sup-
porting information for various diplexers. Much better solution
quality and success rate are shown compared with the state-
of-the-art global optimization methods, DE and PSO. These
results are achieved by our self-adaptive parameter control
strategy and self-adaptive multipopulation search framework.
Future works include developing software tools using SADEC
and coupling matrix synthesis for multiplexers.
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