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Abstract— Knowledge-based neural network modeling tech-
niques using space-mapping concept have been demonstrated
in the existing literature as efficient methods to overcome the
accuracy limitations of empirical/equivalent circuit models when
matching new electromagnetic data. For different modeling
problems, the mapping structures can be different. In this paper,
we propose a unified automated model generation algorithm that
uses l1 optimization to automatically determine the type and the
topology of the mapping structure in a knowledge-based neural
network model. By encompassing various types of mappings
of the knowledge-based neural network model in the existing
literature, we present a new unified model structure and derive
new sensitivity formulas for the training of the unified model. The
proposed l1 formulation of modeling can force some weights of
the mapping neural networks to zeros while leaving other weights
as nonzeros. We utilize this feature to allow l1 optimization to
automatically determine which mapping is necessary and which
mapping is unnecessary. Using the proposed l1 optimization
method, the mapping structure can be determined to address
different needs of different modeling problems. The structure of
the final knowledge-based model can be flexible combinations
of some or all of linear mapping, nonlinear mapping, input
mapping, frequency mapping, and output mapping. In this way,
the proposed algorithm is more systematic and can further
speed up the knowledge-based modeling process than existing
knowledge-based modeling algorithms. The proposed method is
illustrated by three microwave filter modeling examples.

Index Terms— Design automation, electromagnetic (EM)
modeling, knowledge-based neural network, microwave filter,
parametric model.

I. INTRODUCTION

ARTIFICIAL neural network (ANN) techniques have been
recognized as powerful tools in microwave modeling

and design [1]–[4], such as on-chip inductor modeling [5],
power amplifier modeling [6]–[8], parametric microwave
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components modeling [9], [10], and electromagnetic (EM)
optimization [11]. ANNs learn EM data through the training
process and the trained neural networks are then used as
fast and accurate models for efficient high-level circuit and
system design. In the microwave modeling area, knowledge-
based neural network modeling approaches using the space-
mapping (SM) concept [1], [12], [13] have been described
in the literature for obtaining a better model with limited
data. The idea of the knowledge-based model is to exploit
existing knowledge in the form of empirical or equivalent
circuit models together with neural networks to develop a
faster and more accurate model. For the microwave design,
there exist many empirical or equivalent circuit models that
are computationally efficient and widely used in practical
design. However, such models are often valid only in a limited
parameter range, beyond which the model predictions become
inaccurate. As with the SM concept, the empirical/equivalent
circuit models are considered as “coarse model” [14], [15]
and the EM data is considered as “fine data.” The SM
technique is developed to use linear mappings to establish
a mathematical link between the coarse model and the fine
data [14], [15], and to obtain a faster and more accurate
model. However, when the modeling range becomes large,
linear mappings only are not enough. The neural networks
are used to provide a nonlinear computational approach to
bridge the gap between the empirical/equivalent circuit model
and the new EM simulation data [13]. This is achieved with
the SM concept using neural networks to represent the nonlin-
ear mappings between the empirical/equivalent circuit model
and the EM data. Extrapolation capability is also enhanced
because of the embedded knowledge in the model [12]. For
simplicity and convenience of the ongoing descriptions, we
will use the term “empirical model” to imply the empirical
and/or equivalent circuit models in the subsequent part of this
paper.

By taking advantage of the vast set of empirical models
already available, SM-based neural network models decrease
the number of EM simulations for training, improve model
accuracy and generalization ability, and reduce the complexity
of the ANN topology with respect to the classical neural
network modeling approach [13], [14]. A number of papers
cover different kinds of SMs, including input SM [10], [14],
frequency SM [16], and output SM [17]. Input SM is used
to modify the values of the geometrical design variables to a
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different set of values to be supplied to the empirical model,
so that the modified empirical model response can match the
EM simulation data [14], [18]. For those cases where the
shapes of the EM simulation and the empirical model response
are nearly identical, but shifted in frequency, the frequency
SM is used to align both the responses [16]. Output SM is
used to enhance the robustness of the modeling process in
case other SMs cannot provide sufficient matching with the
EM data [17], [19]. Any of these three mappings can be either
linear or nonlinear. For simple modeling problems within a
small geometrical parameter range, linear mappings [15], [20]
are used to obtain a good match between the model and the
training data. For complicated modeling problems within a
large geometrical parameter range, nonlinear mappings [21]
are necessary in order to obtain an accurate model.

Several approaches for the structure selection of the
knowledge-based model are described in the existing litera-
ture [20], [22]–[24]. In [20], both input and output SMs are
used in the knowledge-based model for microwave device
optimization. However, all the mappings in [20] are linear
mappings, and the decision about whether to use input map-
ping or output mapping is made manually with the designer’s
knowledge of the problem and engineering experience. The
method in [22] uses genetic algorithm to find suitable combi-
nations of the mapping structure and the empirical model, but
it cannot distinguish between linear mapping and nonlinear
mapping.

In [25], automated model generation method is described to
automate the structure selection process of the pure neural net-
work modeling. In [23], automated model generation method
is expanded from generating pure neural network models
to generating knowledge-based models. It integrates all the
subtasks in generating a knowledge-based model into one
framework and further reduces the number of training data
required. However, the structure of the knowledge-based
model in [23] is fixed at a predetermined structure and the
automated algorithm is more focused on the automation of
data sampling process. The model structure in [23] is a com-
bination of an empirical model and a nonlinear input mapping
which is realized by a three-layer multilayer perceptron (MLP)
neural network. However, the selection of different mapping
structures is not addressed in [23]. For some complicated EM
modeling problems, input mapping only may not be good
enough to achieve an accurate model. On the other hand, for
some simple modeling problems, a nonlinear input mapping is
redundant and only one simple linear mapping may be good
enough to meet the accuracy requirement.

Different mapping structures should be needed for dif-
ferent modeling problems. The mapping structure depends
on many factors, such as the complexity of the specific
modeling problem, the quality of the empirical model, and
the modeling range of geometrical parameters. For example,
for a given set of EM data, different empirical models may
need different mapping structures. For another example, if an
empirical model is to be mapped to different sets of EM data
with different ranges of geometrical parameters, the mapping
structures in the final model must be different. Since the
mapping structure is problem dependent, the development of

the automated model structure adaptation algorithm is very
important.

Most recently, preliminary work for a relatively flexible
automated model structure adaptation method for knowledge-
based model development is described in [24]. It takes both
input and output mapping, and linear and nonlinear mapping
into consideration during the modeling process. The final
knowledge-based model can be any combination of the empir-
ical model and the mapping neural networks. However, when
determining the mapping structure, the algorithm is based on
a brute force sequential trial and error mechanism, first trying
input mapping and then output mapping, first trying linear
mapping and then nonlinear mapping. It compares various
combinations of mappings and finds a suitable knowledge-
based neural network model. The process involves many trial
and error computation steps and is usually time-consuming.

In this paper, we propose a more elegant and unified auto-
mated model structure adaptation algorithm for knowledge-
based parametric modeling. The proposed technique is a
substantial advance over [24]. We propose a new formu-
lation using l1 optimization to automatically determine all
the mappings in the knowledge-based model. We propose an
extended and unified model structure to encompass various
types of mappings. New sensitivity formulas for the training
of the unified model are also proposed and derived in this
paper. The use of the l1 optimization, based on its theoretical
properties [26], [27], is a critical part of the proposed training
algorithm and optimization process. The l1 optimization has
the distinctive property for feature selection within the training
process. At the end of l1 optimization, some weights in
the mapping neural networks are zeros while others remain
nonzeros. Zero weights mean that the corresponding parts of
the mapping can be ignored and deleted. Using this property,
we formulate l1 optimization solutions to indicate whether a
mapping is linear or nonlinear, and whether a mapping should
be input mapping, frequency mapping, or output mapping.
Compared to traditional knowledge-based models with a fixed
mapping structure, the proposed method can automatically
adjust the mapping structure to achieve an accurate model
with the most suitable and compact structure. Compared to
the existing literature on the model structure selection method,
our proposed method is a more systematic technique and can
further speed up the process of developing a knowledge-based
neural network model.

In Section II, we propose a unified and general knowledge-
based neural network structure. In Section III, we describe
the proposed training method with l1 optimization and the
computation of error derivatives needed during the training
process. A summary and flowchart of the proposed algorithm
are presented in Section III. The proposed method is illustrated
by three microwave filter modeling examples in Section IV.

II. PROPOSED UNIFIED KNOWLEDGE-BASED

MODEL STRUCTURE

Let x = [x1, x2, . . . , xN ]T represent a vector of the inputs
of the proposed knowledge-based model. We define N as the
number of the model inputs. x contains the physical geomet-
rical parameters of a microwave device, such as the length
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Fig. 1. Proposed unified knowledge-based model structure. It combines the empirical model with three mapping neural networks. Each mapping neural
network contains linear mapping and nonlinear mapping.

and the width of an EM structure. Let y = [y1, y2, . . . , yM ]T

represent a vector of the outputs of the knowledge-based neural
network model, such as S-parameters. We define M as the
number of the model outputs. Empirical models often exist
to represent the relationship between x and y. However, the
accuracy of the empirical model is usually limited, especially
when the values of the EM geometrical parameters change.
The mapping method using neural networks is utilized to
address the situation when an existing empirical model can-
not fit the new EM data well. The mapping structures are
affected by many factors and the determination of the mapping
structures is not straightforward. In [24], the knowledge-
based model structure combines the empirical model with
one input mapping, one frequency mapping, and one output
mapping. The three mappings can be either a two-layer MLP
or a three-layer MLP, which represents linear mapping or
nonlinear mapping, respectively. In this paper, we propose
a new unified knowledge-based model structure which is
expanded from [24]. This is done by expanding the mapping
neural network from MLP to include an additional direct
connection between the input layer and the output layer of the
neural network. This structure is a composite two-layer and
three-layer MLP, which allows the neural network to have
explicit linear/nonlinear mapping. Thus, the proposed unified
model has three mixed linear and nonlinear mapping neural
networks that are the input mapping, frequency mapping,
and output mapping. The structure of the proposed unified
knowledge-based model is shown in Fig. 1.

We define the various symbols needed to represent various
aspects of the mapping structure, modeling and the training.
Let f map1, fmap2, and f map3 represent the mapping functions
for input mapping, frequency mapping, and output mapping,
respectively. Each mapping function is a neural network. Let
H1, H2, and H3 represent the number of hidden neurons in
f map1, fmap2, and f map3, respectively. We define umap1, umap2,
and umap3 as vectors of the weights for the proposed direct
connections between the input neurons and output neurons in
the input mapping f map1, frequency mapping fmap2, and output
mapping f map3, respectively. Let u = [uT

map1 uT
map2 uT

map3]T

be defined as a vector containing all weights for the pro-
posed direct connections between the input neurons and
output neurons in all mapping neural networks. We define
tmap1, tmap2, and tmap3 as vectors of the weights between
the input neurons and hidden neurons in f map1, fmap2, and
f map3, respectively. We also define vmap1, vmap2, and vmap3
as vectors of the weights between the hidden neurons and
output neurons in f map1, fmap2, and f map3, respectively. Let
v = [vT

map1 vT
map2 vT

map3]T be defined as a vector containing all
weights between the hidden neurons and output neurons in all
mapping neural networks. Therefore, in our proposed unified
model structure, the weights in u represent the linear mapping
weights and the weights in v represent the nonlinear mapping
weights.

We define xE = [xE1, xE2, . . . , xE N ]T , ωE and yE =
[yE1, yE2, . . . , yE M ]T as the geometrical inputs, the frequency
input, and the outputs of the empirical model, respectively. The
empirical model is represented as

yE = f E

([
xT

E ωE
]T

, wE
)

(1)

where wE is a vector of parameters in the empirical model.
Various empirical models have been developed in the past.
They are computationally efficient but the accuracy is limited
when matching new EM data. In other words, if we directly
supply the geometrical parameter values x to the empirical
model, the outputs of the empirical model may not sufficiently
match the outputs y of the EM data, that is,

y �= f E ([xT ω]T , wE ). (2)

This paper addresses the problem when the existing empirical
model cannot fit the new EM data well. We use mappings
to alter the relationship between x and y, therefore altering
the model. The input mapping is used to modify the values
of the geometrical parameters to a new set of values to
be supplied to the empirical model. The purpose to modify
(map) the values of the geometrical parameters is to make
the subsequent response of the empirical model better match
the EM simulation data. x represents the original values of the
geometrical parameters and xE represent the modified values
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of the geometrical parameters to be supplied to the empirical
model. Because the relationship between x and xE is unknown,
we use a neural network to represent this relationship, i.e.,
the input mapping function. In the proposed algorithm, the
input mapping neural network, which has N input neurons
and N output neurons, is defined as

xE = f map1(x, wmap1) (3)

where wmap1 = [uT
map1 tT

map1 vT
map1]T represents the weights

in the input mapping neural network f map1. The proposed
algorithm determines the structure of the input mapping,
whether linear or nonlinear, or no mapping. Here, we formu-
late the internal structure of the input mapping neural network
to include linear and nonlinear mappings as follows. The
i th output of the input mapping is computed as

fmap1,i =
N∑

j=0

umap1,i j x j +
H1∑

k=0

(vmap1,ik zmap1,k),

i = 1, 2, . . . , N (4-1)

zmap1,k =

⎧
⎪⎨

⎪⎩

σ

(
N∑

j=0
tmap1,kj x j

)

, k �= 0

1, k = 0

(4-2)

x0 = 1 (4-3)

where zmap1,k is defined as the output of the kth hidden neuron
of the input mapping neural network. To accommodate the
convenient representation of the bias parameters in neural net-
works, we assume the fictitious neurons in the input mapping
as x0 and zmap1,0 [3]. σ (·) is the sigmoid function. umap1,i j ,
vmap1,ik , and tmap1,kj represent the connection weight between
the j th input neuron and the i th output neuron, the weight
between the kth hidden neuron and the i th output neuron, and
the weight between the j th input neuron and the kth hidden
neuron of the input mapping neural network, respectively.
umap1,i j represents the linear mapping weight and vmap1,ik

represents the nonlinear mapping weight in the input mapping
neural network. In this way, the proposed input mapping can
encompass linear mapping, nonlinear mapping or no mapping
by one neural network.

The frequency mapping is usually used for those cases
where a shift in frequency exists between the empirical
model response and the EM data. The proposed algorithm
determines the structure of the frequency mapping, whether
linear or nonlinear, or no mapping. The internal structure of
the frequency mapping neural network, which has one input
neuron and one output neuron, is defined as

ωE = fmap2(ω, wmap2)

= fmap2
(
ω,

[
uT

map2 tT
map2 vT

map2

]T )

=
1∑

m=0

umap2,1mωm +
H2∑

n=0

(vmap2,1nzmap2,n) (5-1)

zmap2,n =

⎧
⎪⎨

⎪⎩

σ

(
1∑

m=0
tmap2,nmωm

)
, n �= 0

1, n = 0
(5-2)

ω0 = 1 (5-3)

where wmap2 = [uT
map2 tT

map2 vT
map2]T represents the weights

in the frequency mapping neural network fmap2. zmap2,n is
defined as the output of the nth hidden neuron of the fre-
quency mapping neural network. In order to accommodate
the convenient representation of the bias parameters in neural
networks, we assume the fictitious neurons in the frequency
mapping as ω0 and zmap2,0 [3]. umap2,1m , vmap2,1n , and tmap2,nm

represent the connection weight between the mth input neuron
and the output neuron, the weight between the nth hidden
neuron and the output neuron, and the weight between the
mth input neuron and the nth hidden neuron of the frequency
mapping neural network, respectively. umap2,1m represents the
linear mapping weight and vmap2,1n represents the nonlinear
mapping weight in the frequency mapping neural network.
Therefore, the proposed frequency mapping can encompass
linear mapping, nonlinear mapping, or no mapping by one
neural network.

The output mapping is used to enhance the robustness of
the modeling process. In the proposed method, the output
mapping neural network, which has M inputs and M outputs,
is defined as

y = f map3(yE , wmap3) (6)

where wmap3 = [uT
map3 tT

map3 vT
map3]T represents the

weights in the output mapping neural network f map3. Similar
to (4-1) and (5-1), here we formulate the internal structure
of the output mapping neural network to include linear and
nonlinear mappings as follows. The r th output of the output
mapping is computed as

fmap3,r =
M∑

p=0

umap3,rp yE,p +
H3∑

q=0

(
vmap3,rq zmap3,q

)
,

r = 1, 2, . . . , M (7-1)

zmap3,q =

⎧
⎪⎨

⎪⎩

σ

(
M∑

p=0
tmap3,qp yE,p

)

, q �= 0

1, q = 0

(7-2)

yE,0 = 1 (7-3)

where zmap3,q is defined as the output of the qth hidden neuron
of the output mapping neural network. To accommodate the
convenient representation of the bias parameters in neural
networks, we assume the fictitious neurons in the output map-
ping as yE,0 and zmap3,0 [3]. umap3,rp, vmap3,rq , and tmap3,qp

represent the connection weight between the pth input neuron
and the r th output neuron, the weight between the qth hidden
neuron and the r th output neuron, and the weight between
the pth input neuron and the qth hidden neuron of the output
mapping neural network, respectively. umap3,rp represents the
linear mapping weight and vmap3,rq represents the nonlin-
ear mapping weight in the output mapping neural network.
In this way, the output mapping can encompass linear map-
ping, nonlinear mapping, or no mapping by one neural
network.

We define w = [wT
map1 wT

map2 wT
map3]T as a vector containing

all the neural network weights that are treated as optimiza-
tion variables during the training process. Combining all the
mappings with the empirical model, the overall relationship



NA et al.: UNIFIED AUTOMATED PARAMETRIC MODELING ALGORITHM 733

between x and y, i.e., between the inputs and outputs of the
overall model, can be represented as

y = f map3(yE , wmap3)

= f map3
(

f E

([
xT

E ωE
]T

, wE
)
, wmap3

)

= f map3
(

f E

([
f T

map1(x, wmap1) fmap2(ω, wmap2)
]T

,

wE
)
, wmap3

)
. (8)

This input and output relationship depends on not only the
empirical model, but also the various mappings. Therefore,
changing the mappings (including changing the mapping struc-
ture and changing the values of neural network weights in the
mappings) will allow us to change the model.

This unified knowledge-based model includes all cases of
mappings, which are no mapping, linear mapping, and nonlin-
ear mapping for each of input mapping, frequency mapping,
and output mapping. Usually, a modeling problem with a
small range of geometrical parameters needs linear mappings
and a modeling problem with a large range of geometrical
parameters needs nonlinear mappings. However, a quantitative
decision of when to use linear mapping or when to use
nonlinear mapping is problem-dependent and is unknown in
advance. The input mapping, frequency mapping, and output
mapping are not necessarily all linear or all nonlinear. They
can be different combinations of linear and nonlinear functions
because they have different effects on the modeling behavior.

Existing automated model structure adaptation techniques
for knowledge-based model development use a brute force
sequential trial and error mechanism to try different combi-
nations of SM structures and compare to determine the most
suitable knowledge-based neural network structure. Here, we
utilize the new unified knowledge-based model structure and
propose a new training method to automatically determine the
mapping structure in the final model.

III. PROPOSED AUTOMATED MODEL GENERATION

ALGORITHM USING l1 OPTIMIZATION

A. Proposed Training Method With l1 Optimization

In order to train the model, we generate training
data. We define the training data as pairs of (x(a), d(a)),
a = 1, 2, . . . , NA , where d(a) is a vector containing the
desired outputs of the overall knowledge-based neural network
model for the ath training sample x(a), and NA is the total
number of training samples. For training purposes, the error
function E(w) in the existing knowledge-based neural network
literature (see [3]) is denoted as

E(w) =
NA∑

a=1

(
1

2
‖y(x(a),w) − d(a)‖2

)
(9)

which represents the difference between the model outputs and
the EM data outputs over all the training samples.

In the proposed method, we perform model training with
l1 optimization. The training process is divided into two stages.
In the first stage, the proposed algorithm determines whether
to use linear mapping or nonlinear mapping in various parts
of the model. In the second stage, the algorithm determines
whether a linear mapping, if exists, can be removed or not.

After these two stages, the proposed method automatically
produces the mapping structure of the knowledge-based model
for the modeling problem.

For the first stage, we propose a new formulation of the
error function for training. We add the l1 norms of the
neural network weights between hidden neurons and output
neurons to the traditional training error function in (9). The
new training error function in the first stage of our proposed
training process is formulated as

E (1)
train (w) =

NA∑

a=1

(
1

2
‖y(x(a),w) − d(a)‖2

)

+
N∑

i=1

H1∑

k=0

λ
(1)
map1,ik |vmap1,ik |

+
H2∑

n=0

λ
(1)
map2,1n|vmap2,1n|

+
M∑

r=1

H3∑

q=0

λ
(1)
map3,rq |vmap3,rq | (10)

where λ
(1)
map1,ik , λ

(1)
map2,1n and λ

(1)
map3,rq are all nonnegative con-

stants during the first stage training process. The proposed
training problem of the first stage is to minimize the training
error by adjusting w and force as many nonlinear mapping
weights in v to zeros as possible.

The use of the l1 norm as compared to the other l p

norms with p > 1 has the distinctive property that some
large components of nonlinear mapping weight vector v
can be ignored during the optimization process [26], [27],
i.e., at the solution there may well be a few nonlinear mapping
weights v’s which are nonzeros while others are zeros. This
means that, the important components of nonlinear mapping
weight vector v can be automatically selected by the l1 norm.
The robustness of the l1 optimization in dealing with large
components of nonlinear mapping weight vector v is the result
of a mathematical property related to the necessary conditions
for optimality [28]. The solution of the first stage training is
usually situated at a point where one or more of the v’s equal
zero while some large v’s are in effect ignored completely by
optimization process.

The formulation in (10) has two properties. The purpose of
the first part in the error function is to optimize the model
to match the training data. By adding the remaining parts
to the error function, we penalize the error function for any
large values of the nonlinear mapping weights in v. Since the
l1 norm is used, one or a few large v’s are still allowed. In this
way, the model optimization can get good training accuracy
as well as many v’s to zeros. After the first stage training, the
nonzero v’s represent the selected nonlinear mapping function
and nonlinear mapping structure. If some of the nonlinear
mapping weights v’s are nonzeros, the mapping is nonlinear
mapping; if all nonlinear mapping weights v’s are zeros, the
nonlinear mapping can be deleted, and the remaining mapping
structure is linear mapping. In this way, the proposed algorithm
automatically detects and determines whether to use linear
mapping or nonlinear mapping.
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We have three mapping neural networks in our proposed
knowledge-based model and each mapping neural network
can be linear or nonlinear. If all these three mappings remain
nonlinear mappings after the first stage training, the algorithm
will stop. Otherwise, the algorithm proceeds to the second
stage of the training process. The three mappings in the first
stage solution can be all linear, or all nonlinear, or a mixture
of some linear and some nonlinear. For the linear mapping,
we propose to further retrain the neural network weights
during the second stage of training process. For the nonlinear
mapping, the neural network weights are set as constants
during the second stage training. In the second stage of the
training process, our proposed algorithm determines whether
the linear mappings of the first stage training solution can
be further simplified into unit mapping or not. Unit mapping
means the values of the variables before mapping and after
mapping are the same. If a mapping is unit mapping, it means
this mapping is unnecessary and can be removed. Therefore,
the second stage of the training process can determine whether
a linear mapping is needed or not. The proposed l1 training
error function in the second stage is formulated as

E (2)
train(u) =

NA∑

a=1

(
1

2
‖y(x(a), w) − d(a)‖2

)

+
N∑

i=1

N∑

j=0, j �=i

λ
(2)
map1,i j |umap1,i j |

+
N∑

i=1

λ
(2)
map1,ii |umap1,ii − 1|

+λ
(2)
map2,10|umap2,10| + λ

(2)
map2,11|umap2,11 − 1|

+
M∑

r=1

M∑

p=0,p �=r

λ
(2)
map3,rp |umap3,rp |

+
M∑

r=1

λ
(2)
map3,rr |umap3,rr − 1| (11)

where λ
(2)
map1,i j , λ

(2)
map2,10, λ

(2)
map2,11, and λ

(2)
map3,rp are all non-

negative constants during the second stage training process.

λ
(2)
map1,i j are set to be zeros if the input mapping is nonlinear

mapping. Similarly, λ
(2)
map2,10 and λ

(2)
map2,11 (or λ

(2)
map3,rp) are set

to be zeros if the frequency mapping (or the output mapping)
is nonlinear mapping. In the second stage training solution, if

{
umap1,i j = 0, i �= j

umap1,i j = 1, i = j
(12)

the input mapping is unit mapping, that is

xE = x (13)

which means the input mapping is not needed in the final
knowledge-based model. Similarly, if

{
umap2,10 = 0

umap2,11 = 1
(14)

it means the frequency mapping is not needed in the final
model. If {

umap3,rp = 0, r �= p

umap3,rp = 1, r = p
(15)

the output mapping is unit mapping, which means the output
mapping is not needed in the final model. Otherwise, the linear
mappings are necessary in the final model. In this way, the
proposed algorithm can automatically determine whether a
mapping is needed or not.

B. Proposed Computation of the Error Derivatives in the
Proposed Training Method With l1 Optimization

During the training process, the derivatives of the error
functions in (10) and (11) with respect to the weights in
all the three mapping neural networks are needed. Due to
the complexity of the proposed unified model covering all
possibilities of mappings, the brute force derivation for deriv-
atives of the proposed model structure is complicated. Here,
we propose a simple and elegant approach based on the
back propagation (BP) concept for MLP [29], extended to
our unified knowledge-based structure and l1 training error
function. We define the error at the output of the overall
model as

�y(a)
r = y(a)

r − d(a)
r (16)

which represents the difference between the r th model output
and the EM data output of the ath sample. Then the proposed
BP algorithm will start from �y(a)

r and propagate this error
backward from the outputs of the output mapping neural
network through the hidden layer of the output mapping to the
inputs of the output mapping. Let �zmap3,q be defined as the
BP error back propagated from the output layer of the output
mapping to the qth hidden neuron of the output mapping. The
calculation of �zmap3,q can be derived as

�zmap3,q =
M∑

r=1

[
�y(a)

r · vmap3,rq · zmap3,q · (
1 − zmap3,q

)]

(17)

where �y(a)
r is the solution from (16).

The error BP continues from the output mapping to the
empirical model. Let �yE,p be defined as the BP error at the
pth output of the empirical model. The calculation of �yE,p

can be derived as

�yE,p =
M∑

r=1

(
�y(a)

r · umap3,rp
) +

H3∑

q=0

(
�zmap3,q · tmap3,qp

)

(18)

where �y(a)
r and �zmap3,q are the solutions from

(16) and (17), respectively.
Then the error BP continues from the empirical model to

the output layer of the input mapping. Let �xE,i be defined
as the BP error at the i th output of the input mapping neural
network, which can be derived as

�xE,i =
M∑

p=1

(
�yE,p · ∂yE,p

∂xE,i

)
(19)
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where �yE,p is the solution from (18). Let �zmap1,k be
defined as the BP error back propagated from the output layer
of the input mapping to the kth hidden neuron of the input
mapping. The calculation of �zmap1,k can be derived as

�zmap1,k =
N∑

i=1

[
�xE,i · vmap1,ik · zmap1,k · (1 − zmap1,k

)]

(20)

where �xE,i is the solution from (19).
The error BP also continues from the empirical model to the

output layer of the frequency mapping. Let �ωE be defined
as the BP error at the output of the frequency mapping neural
network. It can be derived as

�ωE =
M∑

p=1

(
�yE,p · ∂yE,p

∂ωE

)
(21)

where �yE,p is the solution from (18). Let �zmap2,n be
defined as the BP error back propagated from the output
layer of the frequency mapping to the nth hidden neuron of
the frequency mapping. The calculation of �zmap2,n can be
derived as

�zmap2,n = �ωE · vmap2,1n · zmap2,n · (1 − zmap2,n) (22)

where �ωE is the solution from (21).
After finishing the error BP process, the proposed training

algorithm starts to calculate the derivatives of the training
error with respect to the weights of the three mapping neural
networks. Although the unified model structure is complicated,
the final result of the sensitivity formula is surprisingly simple
and elegant as described next. For the first stage of the training
process, the error derivatives with respect to the weights in the
output mapping can be derived as

∂
(
E (1)

train

)(a)

∂(umap3,rp)
= �y(a)

r · yE,p (23-1)

∂
(
E (1)

train

)(a)

∂(vmap3,rq )
= �y(a)

r · zmap3,q ± λ
(1)
map3,rq (23-2)

∂
(
E (1)

train

)(a)

∂(tmap3,qp)
= �zmap3,q · yE,p. (23-3)

If vmap3,zrq ≥ 0, the “±” symbol in (23-2) is replaced by
the “+” symbol, otherwise is replaced by the “−” symbol.
For the neural network weights in the input mapping, the error
derivatives can be derived as

∂
(
E (1)

train

)(a)

∂
(
umap1,i j

) = �xE,i · x j (24-1)

∂
(
E (1)

train

)(a)

∂
(
vmap1,ik

) = �xE,i · zmap1,k ± λ
(1)
map1,ik (24-2)

∂
(
E (1)

train)
(a)

∂
(
tmap1,kj

) = �zmap1,k · x j . (24-3)

If vmap1,ik ≥ 0, the “±” symbol in (24-2) is replaced by the
“+” symbol, otherwise is replaced by the “–” symbol. For the

neural network weights in the frequency mapping, the error
derivatives can be derived as

∂
(
E (1)

train

)(a)

∂
(
umap2,1m

) = �ωE · ωm (25-1)

∂
(
E (1)

train

)(a)

∂
(
vmap2,1n

) = �ωE · zmap2,n ± λ
(1)
map2,1n (25-2)

∂
(
E (1)

train

)(a)

∂
(
tmap2,nm

) = �zmap2,n · ωm . (25-3)

If vmap2,1n ≥ 0, the “±” symbol in (25-2) is replaced by
the “+” symbol, otherwise is replaced by the “−” symbol.

For the second stage of the training process, the error
derivatives with respect to the linear weights (i.e., umap3,rp)
in the output mapping can be derived as

∂
(
E (2)

train

)(a)

∂
(
umap3,rp

) = �y(a)
r · yE,p ± λ

(2)
map3,rp. (26)

If umap3,rp ≥ 0, the “±” symbol in (26) is replaced by the
“+” symbol, otherwise is replaced by the “−” symbol. For
the linear neural network weights (i.e., umap1,i j ) in the input
mapping, the error derivatives can be derived as

∂
(
E (2)

train

)(a)

∂
(
umap1,i j

) = �xE,i · x j ± λ
(2)
map1,i j . (27)

If umap1,i j ≥ 0, the “±” symbol in (27) is replaced by
the “+” symbol, otherwise it is replaced by the “−” symbol.
For the linear neural network weights (i.e., umap2,1m) in the
frequency mapping, the error derivatives can be derived as

∂
(
E (2)

train

)(a)

∂
(
umap2,1m

) = �ωE · ωm ± λ
(2)
map2,1m . (28)

If umap2,1m ≥ 0, the “±” symbol in (28) is replaced by the
“+” symbol, otherwise it is replaced by the “−” symbol.

Using the above derivative information for training, the
proposed algorithm proceeds to find a training solution that
determines the mapping structure. In the proposed algorithm,
we do not need to manually determine whether the mappings
are linear or nonlinear, and whether an input, frequency, or
output mapping is needed or not. The model structure can be
automatically determined by training with l1 optimization. The
nonzero v’s represent the selected nonlinear mapping function
and nonlinear mapping structure. If the nonlinear mapping
weights v’s are nonzeros, the mapping is nonlinear mapping;
if the nonlinear mapping weights v’s are all zeros, the mapping
is linear mapping. The nonzero linear mapping coefficients u’s
represent the selected linear mapping.

C. Simple Illustration Examples of the Mapping Type for
One Mapping Neural Network

We take the input mapping as an example. If
⎧
⎪⎨

⎪⎩

umap1,i j = 0, i �= j

umap1,i j = 1, i = j

vmap1 = 0

(29)
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the input mapping function (4-1) is simplified as

fmap1,i = x j , i = j = 1, 2, . . . , N (30)

which means the input mapping is unit mapping and there is
no need for the input mapping in the final model.

If
{

umap1,i j �= 0, i �= j

vmap1 = 0
(31)

the input mapping function (4-1) is simplified as

fmap1,i =
N∑

j=0

umap1,i j x j , i = 1, 2, . . . , N (32)

which means the input mapping f map1 is linear mapping.
If

vmap1 �= 0 (33)

the input mapping function f map1 is nonlinear mapping.
The determinations for the frequency mapping and the out-

put mapping neural networks are similar to that for the input
mapping. In this way, the proposed algorithm uses l1 optimiza-
tion to automatically obtain a most suitable knowledge-based
model.

D. Simple Illustration Examples of the Overall Model
Structure Including Various Mappings

In this section, we show several examples of different
model structures to illustrate that the final model can be
various combinations of mapping neural networks after using
l1 optimization to obtain the knowledge-based model.

1) Model Structure Example 1: If after l1 optimization, the
nonlinear input mapping weights vmap1 �= 0, the nonlinear
frequency mapping weights vmap2 = 0, the linear frequency
mapping weights umap2,10 = 0, umap2,11 = 1, the nonlinear
output mapping weights vmap3 = 0, and the linear output map-
ping weights umap3,rp = 0, (r �= p) , umap3,rp = 1, (r = p) ,
(8) will be simplified as

y = f E

([
f T

map1(x, wmap1) ω
]T

, wE
)

(34)

which means the final knowledge-based model has only a
nonlinear input mapping. There is no need for frequency
mapping and no need for output mapping in the final model.

2) Model Structure Example 2: If the nonlinear input map-
ping weights vmap1 �= 0, the nonlinear frequency mapping
weights vmap2 �= 0, the nonlinear output mapping weights
vmap3 = 0, and the linear output mapping weights umap3,rp =
0, (r �= p) , umap3,rp = 1, (r = p), the final model will have a
nonlinear input mapping and a nonlinear frequency mapping.
There is no need for output mapping in the final model. Then
(8) will be simplified as

y = f E

([
f T

map1(x, wmap1) fmap2(ω, wmap2)
]T

, wE
)
. (35)

3) Model Structure Example 3: If the nonlinear input map-
ping weights vmap1 �= 0, the nonlinear frequency mapping
weights vmap2 = 0, the linear frequency mapping weights
umap2,10 �= 0, umap2,11 �= 1, and the nonlinear output mapping
weights vmap3 �= 0, the final model will contain a nonlinear
input mapping, a linear frequency mapping, and a nonlinear
output mapping. Then the model will be

y

= f map3
(
fE

([
f T

map1(x, wmap1) fmap2(ω, wmap2)
]T

,wE
)
, wmap3

)
.

(36)

Using l1 optimization, the proposed method can automati-
cally determine the combination of input mapping, frequency
mapping, and output mapping. Each mapping can be linear or
nonlinear mapping or no mapping.

E. Proposed Automated Modeling Algorithm

The proposed unified automated modeling algorithm uses
the training method with l1 optimization to train a unified
knowledge-based model structure, forcing the model to deter-
mine the type and topology of SM structure automatically. The
testing error Etest (w∗) is defined as

Etest(w∗) =
NB∑

b=1

(
1

2
‖y(x(b), w∗) − d(b)‖2

)
(37)

where w∗ is the optimal solution after the training process
containing the weight parameters of all the mapping neural
networks. d(b) represents the testing data output of the bth
input sample x(b) and NB represents the number of testing
data.

We define Ed as the user-defined threshold. During the
first stage of the training process, once Etest ≤ Ed is detected,
the algorithm checks the values of the trained nonlinear
mapping weights v in all the three mapping neural networks.
If all the three mappings are nonlinear mappings, the algorithm
stops. Otherwise, the algorithm proceeds to the second stage of
the training process to determine whether the linear mapping
is needed or not. The algorithm will retrain the weights in the
linear mapping until Etest ≤ Ed is achieved again.

The proposed algorithm can be summarized as follows.
Step 1) Perform EM simulation to generate training and

testing data using designed of experiments (DoE)
sampling method [30].

Step 2) Optimize the existing empirical model to make the
model approximate the training data as much as
possible.

Step 3) Test the optimized empirical model. If the empiri-
cal model satisfies the accuracy requirement, which
means the empirical model is good enough, stop
the modeling process. Else, we add mappings to the
empirical model to improve the model in subsequent
steps.

Step 4) Create initial mapping neural networks f map1, fmap2,
and f map3 with five hidden neurons in each
neural network, and initialize the weight parameters
of the mapping neural networks.
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Step 5) Perform the first stage training with l1 optimization,
using the training error function in (10) to determine
whether the mappings are linear or nonlinear.

Step 6) Test the model. If Etrain > Ed , the model is detected
as under-learning [23]; add one more hidden neuron
and go back to Step 5). Else if Etrain ≤ Ed

and Etest > Ed , the model is detected as over-
learning [23]; delete one hidden neuron in the non-
linear neural networks and go back to Step 5). Else,
go to Step 7).

Step 7) If vmap1 �= 0 and vmap2 �= 0 and vmap3 �= 0, all map-
pings are nonlinear and all mapping weights in the
neural networks are determined. Stop the modeling
process. Else, at least one mapping is linear. Set the
neural network weights in the nonlinear mappings as
constants, and leave the neural network weights in
the linear mappings as variables. Perform the second
stage training with l1 optimization until Etest ≤ Ed ,
using the training error function in (11).

Step 8) If one or more linear mappings are unit mapping,
which means the linear mappings are unnecessary,
delete the unnecessary linear mappings and perform
refinement training to fine-tune the overall model
until Etest ≤ Ed . Then stop the modeling process.
Else, the linear mappings are needed in the final
model. Stop the modeling process.

Fig. 2 shows the flow diagram of our proposed unified
automated modeling algorithm using knowledge-based neural
network and l1 optimization.

F. Discussion

λ
(1)
map1,ik , λ

(1)
map2,1n , λ

(1)
map3,rq in (10) and λ

(2)
map1,i j , λ

(2)
map2,10,

λ
(2)
map2,11, λ

(2)
map3,rp in (11) are user-defined factors. The values

of these factors are either zero or nonzero. Zero λ’s mean
the l1 norms of the corresponding parameters in the mapping
neural network are not included in the training error functions.
Nonzero λ’s mean that large values in the corresponding
parameters of the mapping neural network are penalized using
l1 optimization. For nonzeroλ’s, we use 10 as the default
value in this paper. In (10), if the values of the λ’s are large,
the training process will emphasize more on forcing as many
v’s to zeros as possible, while emphasize less on optimizing
the model to match the training data. On the other hand,
if the values of the λ’s in (10) are small but not equal to
zero, the training error of the model will tend to be small but
we cannot guarantee that the values of v’s in the model are as
small as possible. The λ’s in (11) work in a similar way as
those in (10).

An important difference between the proposed method
and the previous automated modeling method [25] is that
our algorithm finds the best knowledge-based models while
the previous method produces pure neural network models.
Knowledge-based models have better extrapolation capability
than pure neural network models as originally demonstrated
in [12]. Using the knowledge-based model formulation in
this paper, the proposed training method enables the extrapo-
lation capability of the models.

Fig. 2. Block diagram of the proposed unified automated knowledge-based
neural network modeling method using l1 optimization.

This paper focuses on proposing a computational method for
parametric modeling to represent the change in EM behavior
versus the change in geometrical parameters. We perform
validation using independent EM data that are never used in
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Fig. 3. Low-pass elliptic microstrip filter example: EM simulation for data
generation.

training of the model. For validation of EM simulation data
including measurement validation, we refer to existing works
such as [31] and [32].

IV. EXAMPLES

A. Parametric Modeling of Two-Section Low-Pass
Elliptic Microstrip Filter

In this example, we develop a knowledge-based para-
metric model for a two-section low-pass elliptic microstrip
filter [33]–[35], as shown in Fig. 3. The training and testing
data are obtained from EM simulator CST Microwave Studio
using DoE sampling method [30]. In Fig. 3, H is the thickness
of the alumina substrate and εr is the dielectric constant of
the substrate. H = 0.508 mm and εr = 9.4. The geometrical
input parameters of the model are x = [L1L2 Lc1 Lc2WcGc]T ,
chosen based on the sensitivity data of the above low-pass
elliptic filter example. The model output is the magnitude
of S21. The existing empirical model is the equivalent cir-
cuit for the low-pass filter using simple transmission lines,
which is shown in Fig. 4 [10], [20]. We build our empirical
model using formulas based on Keysight Advanced Design
System (ADS) [34], [36]. After optimization, the empirical
model still cannot satisfy the accuracy requirement, therefore
we proceed to add mappings using our proposed method.
NeuroModelerPlus software is used to drive EM simulators
for data generation, program the empirical model, implement
unified mapping structures, and perform the knowledge-based
model training and testing. The new training error func-
tions in (10) and (11) are implemented through Huber func-
tions in NeuroModelerPlus. The values ofλ(1)

map1,ik , λ
(1)
map2,1n ,

and λ
(1)
map3,rq in (10) are set to be 10.

For comparison purposes, we develop knowledge-based
models for two different cases. The range of the geometrical
parameters for Case 1 is small, while the range of the
geometrical parameters for Case 2 is large. These two
user-desired modeling ranges are shown in Table I. We set
the testing error threshold for this modeling example as 2%.

Fig. 4. Low-pass elliptic microstrip filter example: the empirical model.

TABLE I

TRAINING DATA AND TESTING DATA FOR PARAMETRIC

MODELING OF THE LOW-PASS FILTER EXAMPLE

TABLE II

COMPARISON OF THE MODELING RESULTS FOR LOW-PASS
FILTER WITH TWO DIFFERENT MODELING RANGES

The modeling results are listed in Table II and shown
in Fig. 5. For Case 1, after using l1 optimization, a linear
input mapping is good enough to obtain an accurate
knowledge-based model with about 2% testing error. The
values of λ

(2)
map1,i j , λ

(2)
map2,10, λ

(2)
map2,11, and λ

(2)
map3,rp in (11) are
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Fig. 5. Low-pass elliptic microstrip filter example: modeling results at four
different geometrical values (a) x = [1.15, 3.49, 4.25, 1.16, 0.18, 0.06]T ,
(b) x = [1.23, 3.47, 4.08, 1.17, 0.19, 0.069]T , (c) x = [1.03, 3.52, 4.29,
1.22, 0.23, 0.058]T , and (d) x = [1.13, 3.46, 4.35, 1.10, 0.21, 0.06]T . The
solid line, “o”, and “x” in the figures represent the EM simulation data, the
empirical model response and the proposed model response, respectively.

equal to 10. All nonlinear mapping weights vmap1, vmap2 and
vmap3 in mapping neural networks are almost zeros in the final
knowledge-based model, therefore all mappings in the final
model are linear mappings. Besides, the frequency mapping
and output mapping are unit mapping, which means frequency
mapping and output mapping are not needed. This result is
consistent with our observation that since the range of the
modeling space is small, a linear mapping is sufficient.

For Case 2, we also perform l1 optimization during the
model development. After l1 optimization, the nonlinear map-
ping weights vmap1 and vmap2 of the input mapping and
frequency mapping are nonzeros and the nonlinear mapping
weights vmap3 of the output mapping are zeros. The values of

λ
(2)
map1,i j , λ

(2)
map2,10, and λ

(2)
map2,11 in (11) are equal to 0, while the

values of λ
(2)
map3,rp in (11) are equal to 10. Besides, the output

mapping is unit mapping. This modeling result means the
proposed algorithm with l1 optimization automatically chooses
a nonlinear input mapping and a nonlinear frequency mapping
to map the difference between the empirical model and EM
simulation. The output mapping is not needed. For Case 2,
we have also generated another set of testing data, which is
beyond the training range to test the proposed model, i.e.,
L1 : 0.96–1.32 mm, L2 : 3.05–3.81 mm, Lc1 : 3.81–4.32 mm,
Lc2 : 0.96–1.32 mm, Wc : 0.12–0.28 mm, and Gc :
0.045–0.096 mm. The testing error is 2.35% which means the
proposed model also has reasonable accuracy beyond the train-
ing range because of the embedded knowledge in the model.
From these two modeling examples in Cases 1 and 2, it is
demonstrated that the proposed algorithm uses l1 optimization
to determine whether to use linear mapping or nonlinear
mapping for the specific modeling problem and determine the
types of mapping structures automatically.

TABLE III

COMPARISON BETWEEN THE MODEL FROM THE PROPOSED AUTOMATED
MODELING METHOD AND THE MODELS FROM EXISTING BRUTE

FORCE MODELING ALGORITHMS WITH DIFFERENT

COMBINATIONS OF MAPPINGS FOR THE

LOW-PASS FILTER MODELING PROBLEM

We compare the modeling results using existing brute
force knowledge-based modeling algorithm and the proposed
automated model generation algorithm, shown in Table III.
In the brute force knowledge-based modeling method, we
have to try different mapping structures in order to choose
an accurate knowledge-based model. Here, Table III shows
only some examples of the trials in the existing brute force
modeling algorithm. In reality, the number of the possible
combinations of the mappings in a knowledge-based model
is more than that listed in Table III. We also compare the
modeling time between the existing method in [24] and our
proposed method, as shown in Table IV. The proposed method
increases the modeling efficiency and develops the model in
a shorter time than the brute force modeling approaches.

To further compare between the model produced by the
proposed method and the fixed structured model, we consider
a fixed model structure where all neural network mappings
are nonlinear (refer to as “three nonlinear mapping structure”).
We use less training data to develop models for Cases 1 and 2.
The results are shown in Table V. The testing error of the
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TABLE IV

COMPARISON OF THE MODELING TIME FOR LOW-PASS FILTER USING THE
EXISTING METHOD IN [24] AND THE PROPOSED METHOD

TABLE V

COMPARISON OF THE MODELING RESULTS FOR LOW-PASS FILTER USING

THE THREE NONLINEAR MAPPING STRUCTURE AND THE PROPOSED

METHOD WITH TWO DIFFERENT MODELING RANGES

model with three nonlinear mappings is larger than that of the
proposed model, and cannot satisfy the user-desired accuracy.
In this situation, the status of training the model with three
nonlinear mappings is over-learning. More training data are
needed to obtain an accurate model satisfying the user-desired
accuracy. Because the proposed algorithm with l1 optimization
forces the model to be as simple as possible while preserving
accuracy, less data are needed by the proposed method to
develop the knowledge-based model. Therefore, the proposed
technique is more efficient than simply choosing three non-
linear mappings when the number of training data is limited.
In addition, the model produced by the proposed method is
simpler and more compact than the model with three nonlinear
mappings. The resulting compact model is easier to use and
easier to be incorporated into circuit simulators.

B. Parametric Modeling of Bandpass HTS Microstrip Filter

Consider the parametric modeling of an HTS quarter-wave
parallel coupled-line microstrip filter [16], [17], [35], illus-
trated in Fig. 6. In the figure, L1, L2, and L3 are the lengths
of the parallel coupled-line sections, and S1, S2, and S3 are
the gaps between the sections. L0 is the length of the input
and output transmission line feeding the coupled line filter.
The width W = 0.635 mm is assumed to be the same for all
the sections. A lanthanum-aluminate substrate with thickness
H = 0.508 mm and dielectric constant εr = 23.425 is used.

The model input variables x = [L1 L2 L3 S1 S2 S3]T for
this example are chosen based on the sensitivity data and the
model output is the magnitude of S21. The testing error criteria
for this modeling example is 4%. Training and testing data

Fig. 6. Bandpass HTS microstrip filter example: EM simulation for data
generation.

Fig. 7. Bandpass HTS microstrip filter example: the empirical model.

generation is performed by CST Microwave Studio EM simu-
lator using DoE sampling method [30]. We build the empirical
model using formulas based on Keysight ADS [36], [37],
shown in Fig. 7 [17]. After the optimization of the empirical
model, the error is still beyond our threshold. Therefore, we
proceed to add mappings using our proposed method. The
values of λ

(1)
map2,1n , and λ

(1)
map3,rq in (10) are set to be 10.

We develop knowledge-based bandpass filter models for
two different sets of geometrical parameter ranges, shown in
Table VI. For Case 1, the range of the geometrical parameters
is small, while the range of the geometrical parameters for
Case 2 is large. The modeling results are listed in Table VII
and Fig. 8 shows the comparison of the empirical model, the
proposed knowledge-based model, and the EM simulation at
four different sets of geometrical values.

For Case 1, the modeling range is relatively small.
We perform l1 optimization to develop the model. After
l1 optimization, the nonlinear mapping weights vmap1, vmap2,
and vmap3 are almost zeros, which means all mappings are
linear mapping. The values ofλ(2)

map1,i j , λ
(2)
map2,10, λ

(2)
map2,11, and

λ
(2)
map3,rp in (11) are equal to 10. Besides, the linear fre-

quency mapping and the linear output mapping are unit
mapping, which means these two mappings are not needed.
Therefore, the proposed algorithm with l1 optimization uses
only a linear input mapping to obtain a knowledge-based
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TABLE VI

TRAINING DATA AND TESTING DATA FOR PARAMETRIC
MODELING OF THE BANDPASS FILTER EXAMPLE

Fig. 8. Bandpass HTS microstrip filter example: modeling results at four
different geometrical values (a) x = [4.58, 4.86, 4.61, 0.47, 2.12, 2.4]T ,
(b) x = [4.76, 5.0, 4.64, 0.42, 2.12, 2.45]T , (c) x = [4.65, 4.9, 4.6, 0.5,
1.97, 2.1]T , and (d) x = [4.8, 5.0, 4.9, 0.47, 1.96, 2.12]T . The solid line,
“o”, and “x” in the figures represent the EM simulation data, the empirical
model response and the proposed model response, respectively.

model that meets the user-desired accuracy. This final model
structure from l1 optimization is consistent with observation
that a linear mapping is sufficient for the modeling problem
with a relatively small modeling range.

For Case 2, after l1 optimization, the nonlinear weights
vmap2 of the frequency mapping are all zeros while vmap1 and
vmap3 in the input mapping and output mapping are nonzeros.
Therefore, the final model contains a nonlinear input mapping,

TABLE VII

COMPARISON OF THE MODELING RESULTS FOR BANDPASS FILTER
WITH TWO DIFFERENT MODELING RANGES

TABLE VIII

COMPARISON BETWEEN THE MODEL FROM THE PROPOSED AUTOMATED

MODELING METHOD AND THE MODELS FROM EXISTING BRUTE

FORCE MODELING ALGORITHMS WITH DIFFERENT
COMBINATIONS OF MAPPINGS FOR THE BANDPASS

FILTER MODELING PROBLEM

a linear frequency mapping, and a nonlinear output mapping.
The values of λ

(2)
map1,i j and λ

(2)
map3,rp in (11) are equal to 0,
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TABLE IX

COMPARISON OF THE MODELING TIME FOR BANDPASS FILTER USING
THE EXISTING METHOD IN [24] AND THE PROPOSED METHOD

while the values of λ
(2)
map2,10 and λ

(2)
map2,11 in (11) are equal

to 10. For Case 2, we have also generated another set of
testing data, which is beyond the training range to test the
proposed model, i.e., L1 : 4.47–5.08 mm, L2 : 4.72–5.33 mm,
L3 : 4.47–5.08 mm, S1 : 0.44–0.58 mm, S2 : 1.72–2.03 mm,
and S3 : 1.98–2.29 mm. The testing error is 5.54%, which
means the extrapolation capability of the proposed model is
reasonable because of the embedded knowledge in the model.
The model structure in Case 2 is more complicated than that
in Case 1, which is consistent with the fact that the modeling
range is larger and the nonlinearity of the SM is stronger
for Case 2 than for Case 1. The comparison of the modeling
results between the existing brute force knowledge-based mod-
eling methods and the proposed automated modeling algorithm
is listed in Table VIII. In reality, the number of the possible
combinations of the mappings in a knowledge-based model
is more than that listed in Table VIII. We also compare the
modeling time between the existing method in [24] and our
proposed method, as shown in Table IX.

The modeling results illustrate that our proposed auto-
mated knowledge-based model generation algorithm with
l1 optimization has the ability to distinguish the linearity of
specific modeling example. For different modeling examples,
it can develop knowledge-based models with different map-
ping structures. The final model is forced to be as compact
as possible by l1 optimization property to force as many
weights to zeros as possible. In addition, the first part in
the l1 error function makes the final model satisfy the user-
required accuracy at the same time. Our proposed algorithm
increases the modeling efficiency and reduces the modeling
time compared with the existing method.

C. Parametric Modeling of Bandstop Microstrip
Filter With Open Stubs

The third example is the parametric model development
for a bandstop microstrip filter with quarter-wave resonant
open stubs [15], [17], [35], illustrated in Fig. 9. In the figure,
L1 and L2 are the open stub lengths, and W1 and W2 are the
open stub widths. L0 is the interconnecting transmission line
length between the two open stubs. W0 is the width of a 50 �
feeding line and W0 = 0.635 mm. An alumina substrate with
thickness of H = 0.635 mm and dielectric constant εr = 9.4
is used.

The input variables of the model x = [W1 W2 L0 L1 L2]T

are chosen based on the sensitivity data. The model output
is the magnitude of S21. Data generation is performed by

Fig. 9. Bandstop microstrip filter example: EM simulation for data
generation.

Fig. 10. Bandstop microstrip filter example: the empirical model.

TABLE X

TRAINING DATA AND TESTING DATA FOR PARAMETRIC

MODELING OF THE BANDSTOP FILTER EXAMPLE

CST Microwave Studio EM simulator using DoE sampling
method [30]. The empirical model is the equivalent circuit
for the bandstop filter using simple transmission lines, which
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TABLE XI

COMPARISON OF THE MODELING RESULTS FOR BANDSTOP
FILTER WITH TWO DIFFERENT MODELING RANGES

Fig. 11. Bandstop microstrip filter example: modeling results at four different
geometrical values (a) x = [0.185, 0.26, 2.69, 2.59, 2.79]T , (b) x = [0.19,
0.27, 2.59, 2.9, 3.2]T , (c) x = [0.11, 0.17, 2.29, 2.79, 2.79]T , and (d) x =
[0.17, 0.14, 2.92, 2.92, 2.67]T . The solid line, “o”, and “x” in the figures
represent the EM simulation data, the empirical model response, and the
proposed model response, respectively.

is shown in Fig. 10 [17]. We build our empirical model
using formulas based on Keysight ADS [36]. The testing
error threshold for this bandstop model is set as 2%. After
the optimization of the empirical model, the error is still
beyond our threshold. Therefore, we proceed to add mappings

using our proposed method. The values of λ
(1)
map1,ik , λ

(1)
map2,1n ,

and λ
(1)
map3,rq in (10) are set to be 10. Using l1 optimization,

the proposed method can force the weights of the unnecessary
mappings to zeros. Therefore, we can remove the unnecessary
mappings and produce the most compact mapping structure
for the final knowledge-based model to satisfy the accuracy
requirement.

For comparison, we develop knowledge-based models for
two different sets of geometrical parameter ranges using
l1 optimization, as shown in Table X. For Case 1, the
range of the geometrical parameters is small, while the

TABLE XII

COMPARISON BETWEEN THE MODEL FROM THE PROPOSED AUTOMATED
MODELING METHOD AND THE MODELS FROM EXISTING BRUTE

FORCE MODELING ALGORITHMS WITH DIFFERENT

COMBINATIONS OF MAPPINGS FOR THE

BANDSTOP FILTER MODELING PROBLEM

range of the geometrical parameters for Case 2 is large.
Table XI and Fig. 11 show the comparison of the modeling
results for bandstop filter with two different modeling ranges.

In Case 1, after l1 optimization, the nonlinear mapping
weights vmap1, vmap2, and vmap3 in three mappings of the
knowledge-based model are almost zeros, therefore all the
three mappings of the final model are linear mapping.
The values of λ

(2)
map1,i j , λ

(2)
map2,10, λ

(2)
map2,11, and λ

(2)
map3,rp in (11)

are equal to 10. Besides, the frequency mapping and the
output mapping are unit mapping. The proposed algorithm
with l1 optimization uses only a linear input mapping to obtain
a knowledge-based model that meets the required accuracy.
There is no need for frequency mapping and output mapping
in the final model. This modeling result and the observation
that a linear mapping is sufficient for a modeling problem with
small modeling range are consistent.

For a large modeling range (Case 2), the proposed algorithm
with l1 optimization develops a knowledge-based model with
a nonlinear input mapping, a linear frequency mapping, and
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TABLE XIII

COMPARISON OF THE MODELING TIME FOR BANDSTOP FILTER USING
THE EXISTING METHOD IN [24] AND THE PROPOSED METHOD

a nonlinear output mapping because after l1 optimization, the
nonlinear weights vmap1 and vmap3 of the input mapping and
output mapping are nonzeros while vmap2 in the frequency

mapping are all zeros. The values of λ
(2)
map1,i j and λ

(2)
map3,rp

in (11) are equal to 0, while the values of λ
(2)
map2,10 and λ

(2)
map2,11

in (11) are equal to 10. For Case 2, we have also generated
another set of testing data, which is beyond the training
range to test the proposed model, i.e., W1 : 0.06–0.24 mm,
W2 : 0.1–0.35 mm, L0 : 1.9–3.43 mm, L1 : 1.9–3.43 mm,
and 1.9–3.43 mm. The testing error is 4.53%. Within the
training range, the proposed model has small testing error,
which satisfies the user-desired accuracy. Beyond the training
range, the proposed model still has reasonable accuracy, which
means the extrapolation capability of the model is retained
because of the embedded knowledge.

Table XII shows the comparison between the proposed auto-
mated modeling method and the existing brute force modeling
method with different combinations of input, frequency, and
output mapping neural networks. In reality, the number of
the possible combinations of the mappings in a knowledge-
based model is more than that listed in Table XII. We also
compare the modeling time between the existing method
in [24] and our proposed method, as shown in Table XIII.
The modeling results demonstrate that for different modeling
examples, our proposed method with l1 optimization can
develop knowledge-based models with different combinations
of mappings, which makes the model development process
very flexible. The proposed algorithm increases the modeling
efficiency and develops a knowledge-based model with the
compact mapping structure in a shorter time than existing
knowledge-based modeling algorithms.

V. CONCLUSION

In this paper, a unified automated parametric modeling
algorithm using combined knowledge-based neural network
and l1 optimization has been proposed. In our method, we pro-
pose a new unified knowledge-based model structure and new
sensitivity formulas. The proposed knowledge-based model
combines the learning ability of the neural network with the
convenience and simplicity of the empirical model. We use the
properties of l1 norm to propose a training method that can
automatically determine whether a mapping is necessary, or
whether a mapping is linear or nonlinear. Instead of sequential
trials of linear and nonlinear mappings every time for every
mapping structure as in the existing literature, the proposed
algorithm uses l1 optimization to automatically determine

the final model structure. Compared to existing knowledge-
based modeling methods, the proposed algorithm increases the
knowledge-based modeling efficiency and speeds up the model
development process.
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