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Abstract— Fast Fourier transform (FFT)-accelerated integral-
equation-based electromagnetic (EM) simulators have gained
attraction for their capability to compute parasitics of arbitrarily
shaped and large-scale voxelized structures on a desktop com-
puter. Yet, FFT-based solvers have limitations due to the necessity
of using voxels of the same size in all three Cartesian dimensions
and suffer in the case of geometries with far-apart objects that
require meshing also the air between them, resulting in a huge
number of voxels and, thus, of unknowns. This work aims
to overcome both these limitations by developing a systematic
anisotropic strategy to compute matrix–vector products using
the FFT-based approach and to remove the air existing between
objects without sacrificing the desirable features of the FFT-based
approach. The proposed approach is presented in the framework
of the partial element equivalent circuit (PEEC) method, but
it is well suited to be used also with other integral equation-
based methods. The accuracy, efficiency, and applicability of
the proposed anisotropic and optimized FFT (aoFFT)-based
PEEC solver are demonstrated in the example of two structures
requiring to use voxels of different sizes along the three Cartesian
dimensions and with a large portion of air between the objects.

Index Terms— Computational electromagnetics (EMs), fast
Fourier transform (FFT), parasitic extraction, partial element
equivalent circuit (PEEC) method, voxelization.

I. INTRODUCTION

WITH the ever-increasing operating frequencies and
shrinking electronic systems and device sizes, tools

that allow for accurate model parasitic effects have become
indispensable for design explorations.

Over the last decades, many numerical algorithms and
computational methods have been developed for handling
more complex electromagnetic (EM) problems. Among them,
we list the finite-difference time-domain (FDTD) method [1],
the finite-element method (FEM) [2], the method of moments
(MoM) [3], and the finite integration technique (FIT) [4].

The partial element equivalent circuit (PEEC) method can
also be listed among the methods well suited to solving
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Maxwell’s equations for complex EM problems. It has been
introduced by Ruehli [5] combining the concept of partial
inductances [6] and partial capacitances [7]. Since then, it has
been developed through a series of remarkable developments
over the years, which have made it more robust and reli-
able [8]. Indeed, it has been used to model EM problems in
various fields including power plane-pair [9], [10], decoupling
capacitors [11], [12], PCB prelayout power integrity analysis
[13], power modules [14], [15], on-chip interconnections [16],
shielding [17], and antennas [18], [19].

Similar to the MoM [3], the PEEC method requires meshing
only the regions made of conductors, dielectrics, or magnetic
materials which is clearly an advantage over differential meth-
ods such as the FDTD technique [1]. Furthermore, assuming
that currents and charges radiate in the free space, according
to the volume equivalence principle, the free space Green’s
function can be used, analytically enforcing zero-field bound-
ary conditions at infinity.

The enforcement of Kirchhoff voltage and current laws
(KVL and KCL) to the equivalent circuit leads to a system
of delayed differential equations of the neutral type assuming
also propagation delays [8]. For geometrically complex and/or
electrically large problems, such a system of equations can be
easily very large, and iterative solvers are needed. Although
the computational complexity of iterative solvers is O(n2) and
is significantly smaller than that of direct methods O(n3),
it can still be too high for problems of industrial interest.
Thus, many techniques have been developed over the years to
accelerate the matrix–vector product which is the bottleneck
of iterative solvers. Among the others, the most popular
methods are the fast multipole method [20], [21], [22], the
QR-based approach [23], and the adaptive cross-approximation
(ACA) method [24], [25], [26], which is based on representing
the matrices as a product of two matrices of a lower rank
such that the matrix–vector product can be performed much
more efficiently. Furthermore, the hierarchical H class of
methods [27] has been employed successfully as well.

In the specific context of the PEEC method, algebraic
methods such as the ACA [28], [29], multiscale decomposition
techniques [30], and hierarchical matrices [31] have been used
in practice. However, algebraic iterative methods need good
preconditioning to keep the number of iterations reasonable.

The matrix–vector products associated with the iterative
solvers can also be accelerated by fast Fourier transform
(FFT), as shown in [32] for a volume integral equation
formulation. Indeed, such a method exploits the translational
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invariance of elementary magnetic and electric field interac-
tions providing significant memory saving and an excellent
improvement of the computation performances. The FFT-
based acceleration also implies a representation of the 3-D
modeling geometries with voxels. A parasitic inductance
extractor for voxelized structures was presented in [33]. Fur-
thermore, a Tucker-enhanced and the FFT-accelerated version
of the method was proposed for capacitance and inductance
extraction [34] and [35], respectively. An FFT-PEEC solver
accounting for both inductances and capacitances was pre-
sented in [36]. Furthermore, an efficient iterative solver with
the matrix–vector products involving the PEEC dense matrices
performed via FFT was presented in [37], demonstrating
that it was possible to solve large problems with millions
of unknowns achieving a fast convergence (low number of
iterations of the iterative solver) based on an efficient sparse
preconditioner.

A bottleneck of the FFT acceleration technique is that all
the voxels have the same size in each Cartesian direction
(rectangular prisms) and also that the free space between
3-D geometries with multiple nonconnected objects must be
meshed and properly handled through a zero padding strat-
egy [32]. This implies that the method is less suited to handle
problems involving far-apart objects because the number of
voxels quickly becomes huge.

The aim of this work is to present a new version of the FFT
acceleration method that allows overcoming both limitations,
permitting the use of voxels of different sizes along each
Cartesian direction and making it possible to handle far-apart
objects efficiently.

The work is organized as follows. Section II briefly summa-
rizes the PEEC method describing the formulation for which
the FFT technique is used. The new approach that allows
us to overcome the limitations of the standard FFT-based
technique in performing the matrix–vector products in the
framework of an iterative solver is presented in Section III.
In Section IV, the proposed technique is applied to two test
cases requiring both a nonuniform voxelization; the second
example also considers well-separated objects that could not
be handled by the standard FFT approach. The conclusions
are drawn in Section V.

II. BASIC PEEC FORMULATION

The PEEC method [8] is based on the volume equivalence
principle of Maxwell’s equations. It uses the electric field
integral equation (EFIE) and the continuity equation (CE) [38],
providing a circuit interpretation of these equations in terms
of partial elements, namely resistances, partial inductances,
and coefficients of potential. For this reason, the possibility of
studying the equivalent circuit in both the time and frequency
domains into a SPICE-like circuit solver [39] distinguishes the
PEEC method from other integral equation-based techniques
such as the MoM [40].

In the PEEC method [8], volumes and surfaces are dis-
cretized into hexahedra and patches, respectively, where the
current and charge densities are expanded into a series of basis
functions. Usually, rectangular basis functions are chosen,
meaning that the current and charge densities are assumed

to be constant over the elementary volume and surface cells.
Then, by applying the standard Galerkin’s testing procedure,
branches and nodes are generated, and electrical lumped
elements are identified modeling both the magnetic and elec-
tric field coupling. Dielectrics are modeled by their excess
capacitance taking the dielectric polarization into account [41]
while conductors can be modeled by their ohmic resistance
or through the introduction of a surface impedance [42].
Magnetic and electric field couplings are modeled by partial
inductances and coefficients of potential, respectively.

Enforcing KVL and KCL to the PEEC circuit yieldsZs + jωLp 0 A
0 P −MT

−AT jωM Yℓe

 ·

 I
Q
φ

 =

Vs

0
Is

 (1)

where
1) A is the incidence matrix;
2) M is a selection matrix introduced in [28];
3) Yℓe is the admittance matrix containing lumped ele-

ments;
4) P is the coefficients of the potential matrix;
5) Lp is the partial inductance matrix;
6) Zs is a diagonal matrix with the self-impedances of

elementary volumes computed as described in [37] to
properly model the skin effect;

7) Vs is the distributed voltage sources vector due to
external fields;

8) Is is the lumped current sources vector;
9) I, Q, and φ are the unknown vectors representing the

edge currents, the surface charges, and the potentials to
infinity, respectively.

As it may happen that different surface patches share the
same node, for example, as it happens at the corner of a con-
ductor, it becomes necessary to enforce their equipotentiality
and sum up their charges. Matrix M allows mapping surface
patches, on which the charges are assumed to be located, to the
circuit nodes, as described in detail in [28]. The use of the
matrix M allows for avoiding the inversion of the matrix P,
which is, in general, time-consuming or even impossible for
large problems and a potential cause of numerical inaccuracies.
Furthermore, this formulation has been found very robust and
reliable in terms of convergence properties when iterative
solvers are used [28]. In (1), the dependency from jω of
Zs, Lp, P matrices and of the right-hand sides is omitted for
simplicity.

As previously mentioned, the major limitation of the FFT
acceleration technique is that all the voxels must have the
same size in each Cartesian direction (rectangular prisms),
and, in addition, the air must be meshed and properly han-
dled through a zero padding strategy when performing the
matrix–vector products (the voxels made by air do not con-
tribute to the number of unknowns but increase only the size
of the circulant tensors used to perform the matrix–vector
products). In Section III, a novel anisotropic and optimized
FFT (aoFFT) technique is presented with the goal of lowering
the number of empty voxels and decreasing the number
of unknowns by using voxels having different sizes. When
an iterative solver is used to solve the PEEC system of
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Fig. 1. Matrix Lp for a simple voxelized structure example.

equation (1), the convergence is reached through the following
block partitioned preconditioner introduced in [37]:D−1

Z − D−1
Z AK1 jωD−1

Z AK2 −D−1
Z AK−1

3
D−1

P MT K1 D−1
P − jωD−1

P MT K2 D−1
P MT K−1

3
K1 − jωK2 K−1

3


(2)

where

K1 = K−1
3 AT D−1

Z (3a)

K2 = K−1
3 MD−1

P (3b)

K3 = Yℓe + AT D−1
Z A + jωMD−1

P MT (3c)

and where DL p and DP are diagonal matrices having on the
diagonals the diagonal elements of Lp and P, respectively.
Finally, since matrix K3 is sparse, its inversion can be per-
formed by resorting to the sparse multifrontal LU factorization
[37], [43] but, for large problems, this inversion requires large
computational cost and time. In the numerical examples, that
will be presented in Section IV, we will see how the proposed
technique allows for reducing the CPU time and the memory
required for the inversion of the matrix K3.

III. MATRIX–VECTOR PRODUCT THROUGH AN AOFFT

The technique will be presented for the case of the partial
matrix Lp. Let us consider a simple structure voxelized into
20 voxels, for simplicity only along the x-direction, with a step
size sx as shown in Fig. 1, where eight voxels are defined by a
material different than air and 12 voxels are empty (i.e., by air).
Namely, the modeling domain consists of two components
C1 and C2, where C1 is defined by three voxels and C2 by
five voxels.

In Fig. 1, the matrix Lp is filled by exploiting the fact that
a mutual coupling coefficient is the same for all the pairs
of voxels having the same relative position (in this example,

the knowledge of only 12 coefficients is required while the
useless coefficients are marked as “*”). When an iterative
solver is used to solve a linear system (1), the computational
cost is dominated by the product between the dense matrices
Lp and P with the vectors Iest and Qest, respectively, where
Iest and Qest are the estimated solution vectors for the currents
and charges, respectively, at a generic iterative solver step.
By referring to the example shown in Fig. 1, let us consider
the following matrix–vector product:

X = LpIest (4)

where X simply denotes the vector result of the matrix–vector
product and Iest can be written as

Iest
=
[

i1 i2 i3 i4 i5 i6 i7 i8
]T

. (5)

When the matrix–vector product LpIest is accelerated through
the FFT-based approach [32], [36], first, two 3-D matrices
(circulant tensors) of size 2Nx × 2Ny × 2Nz are stored for
both Lp and Iest through their multidimensional FFT where
Nx , Ny , and Nz denote the number of voxels along the x , y,
and z Cartesian axis, respectively. Then, a 3-D matrix X3-D
is computed as the result of the member-to-member product
between these two circulant tensors. Finally, the vector X is
restored from X3-D through its inverse FFT (IFFT). In this
process, it is sufficient to compute only one row of matrix
Lp including also empty voxels (voxels made by air). More
precisely, the underlying behavior of the FFT-acceleration
approach can be given by using a 2-D representation for
the matrices by skipping the multidimensional FFT and IFFT
steps. By referring to the example shown in Fig. 1, first, the
vector Iest defined in (5) is expanded in the vector Iest

exp, of size
20 × 1, as follows:

Iest
exp =

[
i1 i2 i3 0 · · · 0 i4 i5 i6 i7 i8

]T (6)

to include also the empty voxels. Such expansion can be
simply achieved by introducing a sparse expansion matrix E
of size 20 × 8 (total number of voxels × number of voxel
defined by a material different than air) such that

Iest
exp = EIest. (7)

Then, the row of Lp is filled with the self-interaction of voxel 1
and with all the mutual couplings between the voxel 1 with
all the other voxels. At this point, the 2-D matrix LFFT

p , which
describes in a comprehensive way the underline behavior
of the FFT matrix-products acceleration, is filled as shown
in Fig. 2.

It is important to remark that in the FFT acceleration, a 3-D
circulant tensor is built for Lp by using only one row of LFFT

p ,
while matrix LFFT

p is never explicitly computed and stored
(here it is introduced only to give a comprehensive expla-
nation). Finally, the result of the product in (4) is achieved
as

X = ET
(

LFFT
p Iest

exp

)
. (8)

In Fig. 2, the subblocks of Lp, shown in Fig. 1, are highlighted
to show the correlation between Lp and LFFT

p . From Fig. 2,
it is evident that if we have a large number of empty voxels
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Fig. 2. Matrix LFFT
p for a simple voxelized structure example.

their inclusion can be avoided to save memory and accelerate
the matrix–vector products. To this aim, the idea is to split the
matrix–vector product (4) as follows:

X =

[
X11 + X12
X21 + X22

]
(9a)

X11 = Lp11 Iest
1 (9b)

X12 = Lp12 Iest
2 (9c)

X21 = LT
p12

Iest
1 (9d)

X22 = Lp22 Iest
2 (9e)

Iest
1 =

[
i1 i2 i3

]T (9f)

Iest
2 =

[
i4 i5 i6 i7 i8

]T
. (9g)

From (9), it follows that the computation of X11 and X22
can be trivially performed by applying the standard FFT
acceleration twice: one time considering only the component 1
and one time considering only the component 2. The efficient
computation of X12 and X21 is the main idea of this work and
it will be presented in the rest of this section.

A. Mutual Coupling Products Between Different
Components—1-D Case

By considering two components C1 and C2, the number of
voxels in the x-direction for the first and the second component
is Nx1 and Nx2 , respectively. The minimal number of voxels
NTx required to build the circulant tensor, associated with
matrix Lp, that must be used to compute X12 or X21 in (9) is
given by

NTx = 2 max(Nx1 , Nx2) − 1. (10)

By applying (10) to the example of Figs. 1 and 2, it follows
that NTx = 9. Then, the starting position in which the mutual
couplings for the subblock Lp12 must be placed is given by

px = NTx − Nx2 − Nx1 + 2. (11)

For the example of Figs. 1 and 2, it follows that px = 3.
At this point, the reduced voxelization is built as shown

Fig. 3. Reduced voxelization and reduced partial elements matrix LaoFFT
p for

a simple structure example.

in Fig. 3 where in this case also the 2-D matrix LaoFFT
p is

introduced only to explain the technique in a comprehensive
way because in practice a 3-D circulant tensor is built through
the multidimensional FFT of one row of LaoFFT

p [36].
It is important to underline that only NTx = 9 voxels are

required for any distance between the components C1 and
C2. For the fill-in of the row vector associated with the
reduced voxelization of Fig. 3, the computation of the mutual
coupling coefficients must be done preserving the original
distance between the voxels. In particular, for the example of
Figs. 1 and 2, the center-to-center distance between the first
voxels of C1 and C2 is Rcc = 15sx . Let us denote this original
distance with ORcc . A mutual coefficient h is associated at
the distance of Rcc = 15sx that must be preserved also when
computing the coefficient in the reduced voxelization as shown
in Fig. 3 where the first voxel of the component C2 is located
now in position NTx − Nx2 + 1.

Hence, it is straightforward to observe that a mutual coef-
ficient between the first voxel of C1 and another voxel in
position NTx − Nx2 + 1 + 1, where 1 is an integer number
(also negative), must be computed assuming a distance equal
to ORcc + sx1.

Finally, X12 and X21, of (9), can be computed with the
introduction of the matrix LaoFFT

p , instead of LFFT
p , in the

following way:

[
X12
∗

]
= LaoFFT

p

[
0

4×1
Iest

2

]
(12a)

[
∗

X21

]
= LaoFFT

p

[
Iest

1
0

6×1

]
(12b)

where the not required subblocks are marked as “∗.” In
conclusion, from this simple 1-D example, it can be observed
that NTx = 9 is not the minimum number of voxels since for
this example the minimum number of voxels is 7. This little
overhead is paid to have generic formulas (10) and (11) that
can be used for any combination of values for Nx1 and Nx2 .
Indeed, if we consider the case in which Nx1 = Nx2 = Nx ,
from (10) to (11), it follows that NTx = 2Nx − 1 and
px = 1 that represents the minimum size of the reduced
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Fig. 4. Reduced voxelization for a 1-D case with Nx2 = Nx1 .

Fig. 5. Partial elements matrix Lp for a simple 2-D voxelized structure
example.

voxelization as clearly can be seen from a simple example
with Nx1 = Nx2 = 3 shown in Fig. 4.

In the next section, the 2-D case is analyzed to generalize
the reduction strategy.

B. Mutual Coupling Products Between Different
Components—2-D Case

Let us consider the voxelization shown in Fig. 5 and its
mutual coupling matrix Lp.

The reduction strategy introduced in Section III-A must
be applied now in the x- and y-directions. Hence, applying
(10) and (11), it follows that the reduced voxelization will
have NTx = 9, px = 3, NTy = 3, and py = 2 as shown in
Fig. 6.

It can be noted that, in this more general case, the matrix
LaoFFT

p has a partitioned subblock Lp12 . For this reason, in the
general case, the computation of X12 and X21 in (9) must be
performed with a straightforward partitioning strategy also for
the right-hand sides Iest

1 and Iest
2 .

It is important to underline that if in one direction the
components C1 and C2 have overlapped coordinates, the

Fig. 6. Reduced voxelization and reduced partial elements matrix LaoFFT
p for

a simple 2-D voxelized structure example.

Fig. 7. Mutual coupling products between components with different sizes
for a simple 2-D voxelized structure example.

proposed reduction strategy can be applied but there will be no
advantages in such operation (the proposed examples for the
1-D case in Section III-A are applied only in the x-direction
and not in the y-direction).

In conclusion, the extension of the proposed reduction
strategy, introduced in Section III-A, to all three directions,
is simply achieved by applying the 1-D case in each direction
with the same considerations made for the 2-D case. In addi-
tion, the reduction process is applied only for two components
C1 and C2 but in the general case it must be applied in the
same way for each pair of components.

C. Mutual Coupling Products Between Components With
Different Sizes

Let us consider the case of two different 2-D components
as shown in the upper part of Fig. 7 where the first component
meshes with voxels having sizes sx1 and sy1 while the second
one meshes with voxels having sizes sx2 and sy2 .

If the matrix–vector product is split as reported in (9),
it follows that the self-products Lp11 Iest

1 and Lp22 Iest
2 can be
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performed by applying the standard FFT matrix–vector prod-
uct acceleration inside each component. Hence, in this
case, also, the mutual coupling coefficients between differ-
ent components must be properly handled. In particular, the
matrix–vector products can be accelerated through the use
of the FFT if, for each pair of components, the voxel sizes,
in each Cartesian direction, can be expressed as multiple of a
certain common size sx , sy , and sz

kx1 sx = sx1; kx2 sx = sx2 (13a)
ky1 sy = sy1; ky2 sy = sy2 (13b)
kz1 sz = sz1; kz2 sx = sz2 (13c)

where kx1 , kx2 , ky1 , ky2 , kz1 , and kz2 are integer numbers. In the
example of Fig. 7, we simply assume that kx1 = ky1 = 1 and
kx2 = ky2 = 2. Let us consider now the following standard
evaluation of the matrix Lp coefficients between two inductive
cells γ and δ under the quasistatic hypothesis and by assuming
for simplicity a 0 thickness along the z-axis:

L pγδ
=

µ0

4πℓγℓδ

∫
Sγ

∫
Sδ

1
Rγδ

d Sγd Sδ (14)

where Rγδ is the distance between any two points on surfaces
γ and δ, while ℓγ and ℓδ denote the length of the edges that
are orthogonal to the current direction. By assuming that the
currents flow in the x-direction and by referring to Fig. 7,
we can write the mutual coefficient A between the voxels
1 and 4 as

A = L p1,4 =
µ0

4πsy1 sy2

∫ sx1

0

∫ sy1

0

∫ dx +sx2

dx

∫ dy+sy2

dy

×
1

R(x, y, x ′, y′)
dxdydx ′dy′. (15)

In the case, in which we split the voxels of the second
component (as reported in the middle of Fig. 7, it follows
that (15) can be rewritten as

A

=
µ0

4πsy1 sy2

[∫ sx

0

∫ sy

0

∫ dx +sx

dx

∫ dy+sy

dy

1
R(x, y, x ′, y′)

× dxdydx ′dy′

+

∫ sx

0

∫ sy

0

∫ dx +2sx

dx +sx

∫ dy+sy

dy

1
R(x, y, x ′, y′)

× dxdydx ′dy′

+

∫ sx

0

∫ sy

0

∫ dx +sx

dx

∫ dy+2sy

dy+sy

1
R(x, y, x ′, y′)

× dxdydx ′dy′

+

∫ sx

0

∫ sy

0

∫ dx +2sx

dx +sx

∫ dy+2sy

dy+sy

1
R(x, y, x ′, y′)

× dxdydx ′dy′

]
. (16)

Hence, by splitting the integral (15) as shown in (16), it follows
that the decoupling strategy can be adopted as reported in
Sections III-A and III-B and in the lower part of Fig. 7 with
the only difference that the voxels of the starting mesh must be

properly mapped into the split voxels. Practically, the standard
mutual matrix–vector product

Lp12 Iest
2 =

 A B C
D E F
G H I

 ·

 i4
i5
i6

 (17)

can be performed via FFT as

GT

3×28

(
LaoFFT

p
28×28

(
G

28×3
Iest

2
3×1

))
(18)

where LaoFFT
p is built on the uniform voxelization shown in the

lower part of Fig. 7 and where G is a sparse matrix having
nonzeros elements, equal to 1, only at:

1) column 1 and rows 17, 18, 23, 24;
2) column 2 and rows 19, 20, 25, 26;
3) column 3 and rows 21, 22, 27, 28.
It is evident that having components meshed with different

voxel sizes does not give any speed-up for off-diagonal prod-
ucts but it allows us to have a reduced number of unknowns
(the number of voxels full of material) of the system (in the
example of Fig. 7, we have six unknowns in the case of
components meshed with different sizes while in the case of
components meshed with same sizes, we have 15 unknowns).
A low number of unknowns allows having a faster precondi-
tioner setup, fewer memory requirements for its storage, and,
usually, a lower number of iterative solver iterations (fewer
unknowns must reach the convergence). Such advantages will
be shown in the examples reported in Section V.

As a final mark, it is important to underline that it is not
required to split explicitly the voxels when performing the
proposed FFT matrix–vector product, but it is sufficient to
apply only a proper mapping of the voxels (in the example
of Fig. 7, the voxel 4 in the proposed FFT approach will be
represented by voxels 17, 18, 23, and 24).

IV. NUMERICAL RESULTS

To validate the proposed aoFFT acceleration technique
introduced in Section III and the preconditioning and scaling
strategies, for iterative solvers, reported in [37], two practical
applications are presented in this section. All the simulations
have been carried out on a computer equipped with 1 TB of
RAM and a 32-core AMD processor operating at 3 GHz.

A. PCB Loop Example

In this example, a PCB loop presented in [37] is analyzed
again by resorting to the aoFFT acceleration technique intro-
duced in Section III. The model is shown in Fig. 8. The blue
line represents a lumped current port modeled as equipotential
squares of 0.1 mm2 centered around the red dots. The relative
permittivity of the dielectric is 4.4.

The entire structure has been analyzed, from 100 Hz
to 1 GHz, with the following methods.

1) The FW-PEEC method [37] with and without the scal-
ing strategy proposed in [37] reported also in Table I
for completeness. In this case, the mesh used for the
standard FFT approach is made by a 3-D grid having
Nx = 67, Ny = 110, and Nz = 92, where Nx , Ny , and
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Fig. 8. Geometry of the PCB loop example. The thickness of the conductors
is 0.0354 mm, the thickness of the dielectric is 1.55 mm, and the shoulders
is 0.381 mm. More geometrical details can be found in [37].

TABLE I
SCALED UNITS

Nz are the number of voxels along the x-, y-, and z-axis,
respectively.

2) The aoFFT-based FW-PEEC method with and without
the scaling units of Table I with a mesh made by a
3-D grid having Nx = 67, Ny = 110, and Nz = 8.
It implements the aoFFT strategy reported in Section III.
In particular, we identify three connected components:
the ground (meshed with Nz = 2), the dielectric
(meshed with Nz = 4), and the upper copper loop
part (meshed with Nz = 2). To satisfy the conditions
(13), the thickness of the dielectric is increased from
1.55 to 1.5576 mm (in this way, the thickness of the
dielectric is exactly 44 times greater than the thickness
of the conductors). It is important to underline that
since the maximum frequency is 1 GHz, the thickness
of 0.3894 mm for the voxels of the dielectric satisfies
the λ/40 criterion condition, that is, 0.3894 · 10−3 <

(c0/40 · 109).
3) Q3D denotes the quasistatic R-L solution obtained with

the commercial software ANSYS Q3D extractor that
assumes that the resistance increases with frequency
as

√
f .

4) The commercial software ANSYS HFSS, based on
the FEM, computes the solution for frequencies larger
than 1 MHz.

The thresholds for the GMRES convergence have been set
to 10−4 for all the PEEC methods. The scattering parameters,
evaluated using all these methods, are reported in Fig. 9 in
which also the comparison with the measurements, performed
using a Keysight E4991B Impedance Analyzer operating
from 1 to 500 MHz, is shown.

As can be clearly seen, a very good agreement between
all the methods and the measurements is achieved (the little
difference in measurements is due to the excitation provided
via a BNC connector, which is not included in the simulated
model). It can be noted that the skin effect is well caught by
using the surface impedance introduced in [37] and that the
PEEC methods are accurate over the whole frequency range.

Fig. 9. Scattering parameters for the PCB loop example shown in Fig. 8.
(a) Real part. (b) Imaginary part.

TABLE II
NUMBER OF UNKNOWNS AND EXPERIMENTAL RESULTS FOR

THE PCB LOOP EXAMPLE

The number of unknowns and experimental results for
both the FW-PEEC and aoFFT-based FW-PEEC methods are
summarized in Table II, where matrix K3 is the sparse matrix
reported into (3c) in which the inversion is performed by
resorting to the sparse multifrontal LU factorization [37], [43].
In Table II, the setup time denotes the time spent to perform
all the operations required to fill all the sparse matrices of the
system (1) including also the time for meshing.

From these results, it follows that for geometries in which
we use the aoFFT only to have different voxel sizes (without
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Fig. 10. Number of iterations of the implemented PEEC iterative solvers for
the PCB loop example shown in Fig. 8. Number of iterations (a) without the
scaling units and (b) with the scaling units.

removing big regions of air), the aoFFT requires, in general,
much more memory storage for the circulant tensors and CPU
time for the setup and matrix–vector products than the standard
FFT approach but, since it allows to have a lower number
of unknowns, the inversion of K3 (3c), required to build the
preconditioner, is accelerated both in terms of CPU time and
memory requirements. In general, when FFT or aoFFT is used,
the P fill-in is slower than Lp because, to model parallel
and orthogonal surfaces and their combinations, nine circulant
tensors are required while Lp requires only one circulant
tensor for each Cartesian direction [34], [35], [37]).

Finally, the number of GMRES iterations for the PEEC
methods are shown in Fig. 10 where it can be clearly seen
that the PEEC methods adopting the aoFFT strategy require,
in general, a lower number of iterations as they have a lower
number of unknowns. In addition, it can be seen that the
scaling strategy, reported in Table I, can be adopted until
100 MHz to improve the convergence of the iterative GMRES
algorithm.

B. WPT Antennas Example

In this example, a wireless power transfer (WPT) square
antenna, introduced in [44], is analyzed. The WPT system
consists of two identical printed square antennas symmetric
facing each other where the receiving antenna is 12 cm away

Fig. 11. Geometry of the WPT antennas example. More geometrical details
can be found in [44].

from the transmitting antenna. The model is shown in Fig. 11
where the blue lines represent the lumped current ports with
50-� reference impedance while the yellow lines represent
two 66-nH inductors (the gap of the inductor and the lumped
port is set to 0.2 cm). The thickness of the loop cooper strip
is 50 µm and it is printed on a 2-mm-thick FR-4 substrate
having a relative permittivity of 4.4 and loss tangent tanδ 0.2.

By considering the 66-nH inductors and the ports as edges
for the structures, it follows that four connected components
are identified.

1) The dielectric substrate of the transmitter antenna.
2) The copper loop of the transmitter antenna.
3) The dielectric substrate of the receiver antenna.
4) The copper loop of the receiver antenna.

Then, the bounding boxes of the copper loops are expanded
in the xy-plane to match the bounding boxes of the dielectric
substrates. This is done to guarantee the matching and the
continuity of the nodes between the touching connected com-
ponents. The analysis was performed from 500 MHz to 1 GHz,
with the following methods.

1) The FW-PEEC method [37] (without any scaling strat-
egy since it is helpful only at low frequencies). The
sizes of the voxels along the x-, y-, and z-axes are
sx = 746 µm, sy = 746 µm, and sz = 25 µm,
respectively. In particular, the mesh is achieved through
a rectangular 3-D grid having Nx = 134, Ny = 134,
and Nz = 4960, and Nx , Ny , and Nz are the number of
voxels along the x-, y-, and z-axes, respectively;

2) The aoFFT-based FW-PEEC method (without any scal-
ing strategy) implements the aoFFT strategy reported in
Section III. For this method, we use two meshes.

a) The first mesh (denoted as mesh 1) where all
the components are meshed with sx = 746 µm
and sy = 746 µm (Nx = 134 and Ny = 134).
Then, the conductors are meshed with sz = 25 µm
(Nz = 2), while the dielectric parts are meshed
with sz = 125 µm (Nz = 16). With these settings,
the λ/40 criterion condition is satisfied. Practically,
such a mesh is equivalent to that of the FW-PEEC
method.

b) The second mesh (denoted as mesh 2) is finer
than mesh 1. In detail, all the components are
meshed with sx = 500 µm and sy = 500 µm
(Nx = 200 and Ny = 200). Then, the
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Fig. 12. Scattering parameters for the WPT antennas example shown in
Fig. 11. (a) |S11|. (b) |S12|.

conductors are meshed with sz = 25 µm
(Nz = 2), while the dielectric parts are meshed
with sz = 25 µm (Nz = 16). Again, with these
settings, the λ/40 criterion condition is satisfied.

For both mesh 1 and mesh 2, the mutual products
between the conductor and the dielectric components are
performed with sz = 125 µm, to satisfy the conditions
(13), as explained in Section III-C.

3) The commercial software ANSYS HFSS.
In this case, also, the thresholds for the GMRES conver-

gence have been set to 10−4 for all the PEEC methods. The
scattering (S-) parameters evaluated using all these methods
are reported in Fig. 12. It is evident that the proposed aoFFT-
based FW-PEEC method using mesh 2 shows a better agree-
ment with HFSS than the PEEC methods using mesh 1 but
the FW-PEEC method cannot be implemented by decreasing
sx and sy due to RAM limitations.

The number of unknowns and experimental results for
both the FW-PEEC and aoFFT-based FW-PEEC methods are
summarized in Table III where the same notation of Table II
has been used.

From the presented results, it follows that the proposed
FFT-based approach strongly outperforms the standard FFT

TABLE III
NUMBER OF UNKNOWNS AND EXPERIMENTAL RESULTS FOR

THE WPT ANTENNAS EXAMPLE

Fig. 13. Number of iterations of the implemented PEEC iterative solvers for
the WPT antennas example shown in Fig. 11.

one in computing the matrix–vector products for the modeling
problems with a large portion of air between the objects and
requiring voxels of different sizes.

In addition, from Table III, it can be noted that the storage
of the circulant tensors for matrices Lp and P requires several
gigabytes. The mutual aoFFT circulant tensors, describing
the mutual coupling between basis functions inside different
components, have a low-rank behavior [45] and their storage
can be improved by performing a Tucker decomposition
combined with SVD or ACA [45], [46]. It guarantees very high
compression ratios without losing accuracy (usually tensors
of the order of gigabytes in compressed format occupy a few
megabytes [45], [46]) but, to perform matrix–vector products
via FFT, the tensors must be first decompressed. This limi-
tation will be the subject of future work by the authors with
the aim to achieve a computational speed-up in matrix–vector
products via FFT by exploiting a compressed form.

It is important to underline also that the performance of
the aoFFT-based FW-PEEC methods does not change for
any distance between the two antennas for the reasons given
in Section III.
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Finally, the number of GMRES iterations for the PEEC
methods is shown in Fig. 13. It can be seen that the PEEC
methods adopting the aoFFT strategy require, in general,
a lower number of iterations for equivalent meshes.

V. CONCLUSION

This work presents an aoFFT-based iterative PEEC solver
introduced to speed up the matrix–vector products and over-
come two major limitations of the state-of-the-art FFT-based
PEEC solver, that is, a uniform mesh with voxels of the
same sizes in each Cartesian direction and a requirement to
mesh unnecessary portion of air between the objects. From
the numerical experiments, it follows that the proposed aoFFT
method allows achieving high CPU time and memory saving
in the preconditioning step while a little overhead of CPU time
and memory requirements is paid in performing matrix–vector
products if the method is applied to problems with different
mesh sizes in the three Cartesian directions. In any case, such
little overhead is compensated by the fact that an iterative
method requires fewer iterations to reach the convergence
since the number of unknowns is smaller. Furthermore, if a
significant portion of air is removed, the proposed method
allows a significant speed-up in performing matrix–vector
products. This means that problems that are computationally
time- and memory-demanding can be analyzed faster even
on computers equipped with much less-performing hardware.
In conclusion, the developed aoFFT method, applied in this
work for the PEEC method, is a general technique that can
be applied to improve the standard FFT matrix–vector product
acceleration in any simulation environment requiring iterative
solvers.
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