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Abstract— In upcoming wireless systems, different linearity
requirements in different frequency regions may be required
due to data load and channel condition differences. This article
presents a novel approach for identifying digital predistortion
(DPD) coefficients that target multimetric linearity performance.
First, a mathematical framework is established to evaluate the
multimetric linearity performance in different frequency regions.
Then, the DPD coefficients are extracted by optimizing the
multimetric evaluation using the iterative quadratic simultane-
ous perturbation stochastic approximation (Q-SPSA) algorithm,
which has been enhanced for improved numerical stability and
reduced complexity. The experimental results demonstrate that
the proposed approach achieves the multimetric requirements
with fewer computational resources compared to conventional
methods that only optimize the time-domain normalized mean
square error (NMSE) metric. The proposed approach sheds
light on DPD models, showing that DPD coefficients can be
optimized to have different multimetric performances as the
iteration process progresses. Detailed experimental results and
complexity analysis further support the potential of the proposed
approach for future systems.

Index Terms— Digital predistortion (DPD), multiobjective
optimization, power amplifier (PA), simultaneous perturbation
stochastic optimization (SPSA).

I. INTRODUCTION

THE advent of next-generation wireless systems, such as
6G and Wi-Fi 7, will bring further improvements in data

transmission rate and lower latency through the implementa-
tion of advanced features and techniques [1], [2]. For instance,
Wi-Fi 7 may utilize high-order modulation techniques of up
to 4096-quadrature amplitude modulation (QAM) and a wider
transmission bandwidth of 320 MHz [3], [4]. To accommodate
these enhancements, digital predistortion (DPD) is gaining
importance in both cellular base stations [5], [6], [7] and Wi-Fi
transmitters [8], [9], [10] as it ensures that power amplifiers
(PAs) can operate with both high efficiency and high linearity.

One of the key characteristics of future wireless systems
is coordination. For instance, in Wi-Fi 7, multiple access
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Fig. 1. Multimetric linearity requirements.

points (APs) can work together in a collaborative manner to
efficiently allocate communication resources [11], [12], [13],
[14]. As a result, different linearity requirements can arise in
different frequency regions based on the coordination scenario.
For example, the in-band (IB) linearity requirement, closely
related to the error vector magnitude (EVM) indicator, can
vary in strictness depending on the deployed modulation order,
which is influenced by the distribution of data load and chan-
nel condition. The out-of-band (OOB) linearity requirement,
such as the spectrum mask requirement, can also fluctuate
depending on channel conflicts during coordination among
multiple APs. As depicted in Fig. 1, for a specific AP or
wireless transmitter, its nonlinearity may need to be suppressed
to varying levels in different frequency regions. The solid
curve represents the original distortion level distribution in the
frequency domain without introducing DPD, while the dashed
line shows the required linearity error levels after DPD in
different regions. In some bands, such as Band-A and Band-B,
the required linearity level may be relaxed when the OOB
regions are lightly occupied or not occupied, while in Band-E
and Band-F, where the OOB is heavily occupied, the distortion
must be suppressed to lower levels to avoid impacting other
APs using the channel. In IB regions, that is, Band-C and
Band-D, higher-order QAM also requires lower linearity error
levels. This presents significant challenges for DPD operation
since in the existing systems, DPD is operated in the time
domain, which does not distinguish distortions in different
frequency bands.
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Furthermore, the existing DPD usually uses the least-
square (LS) algorithm to extract coefficients, particularly,
for the linear-in-parameter models such as memory poly-
nomial (MP) [15], generalized MP (GMP) [16], dynamic
deviation-reduction (DDR) [17], and decomposed-vector rota-
tion (DVR) [18]. The LS is a closed-form solution and can
find the optimal coefficients in just one iteration. However,
very high computational complexity is involved that can put a
heavy burden on hardware resources. Moreover, in many cases,
a suboptimal solution might be sufficient to satisfy the linearity
requirement, as opposed to the optimal solution found by LS.
To reduce computational complexity, iterative algorithms,
such as the quadratic simultaneous perturbation stochastic
approximation (Q-SPSA), which updates the coefficients by
random perturbations on coefficients with low algorithmic and
hardware implementation complexity, is of growing interest in
DPD recently [19], [20], [21]. However, the existing Q-SPSA
algorithms extract the DPD coefficients via minimizing the
time-domain normalized mean square error (NMSE) only,
which cannot approach linearity requirements in different
frequency regions in a computationally cost-effective manner.

Concerning achieving different linearization performances
in different frequency regions, there are some methods pro-
posed in the literature. In [22], a band-limited DPD concept
was proposed that uses a filter to control the linearization
bandwidth in the system. Later in [23], the concept was
generalized to frequency-selective DPD in which the focused
band of linearization can be selected not only for IB, but also
for OOB. Both [22] and [23] have to use a filter at the output
of PA to process the signals in different frequency regions.
This implies that the passband of the filter must be modified
when the band of interest changes from time to time, which
could undermine the flexibility of the system. Besides, these
methods still use LS to extract the DPD coefficients for the
interested band, which suffers high computational complexity.

In this article, a multimetric DPD concept is proposed and
a low-complexity iterative model extraction algorithm based
on Q-SPSA is derived. A mathematical form of multimetric
linearity evaluation for characterizing linearity error in differ-
ent frequency regions is first established and then the DPD
coefficients are identified based on the multimetric evaluation.
When compared with our preliminary work [24], we provide
not only more details in the algorithm derivation, but also
conduct detailed complexity analysis and make it applicable in
practical online DPD model adaptation scenarios. An enhanced
way of Q-SPSA progression step calculation is also proposed
and multiple experimental validations are given.

The rest of this article is organized as follows. Section II will
further introduce theoretical foundations for multimetric DPD.
Section III will introduce the DPD implementation details
consisting of DPD system architecture, specific algorithm
operations, as well as complexity analysis. Then experimental
results will be given in Section IV. Finally, Section V will be
the conclusion.

II. THEORETICAL FOUNDATIONS

In this section, we will introduce the theoretical foundation
of multimetric linearization. We will start by discussing the

Fig. 2. DPD schematic and error spectrum comparison.

conventional single-metric NMSE-based optimization and then
move on to explain how it is derived to become multimetric
linearization and the introduction of a new loss function. All of
these are established based on simple and neat algebraic-level
operations.

A. Single-Metric Linearization

In conventional DPD model extraction, either using LS [15],
[16], [18] or SPSA [19], [20], [21], the optimization target
is NMSE, that is the normalized sum of the linearity errors
between the desired transmitted signal x and the distorted PA
output signal y, as shown in Fig. 2, and it can be expressed
as follows:

NMSE(x, y) = 10 log10
(y− x)H (y− x)

xH x
(dB). (1)

For simplicity, if we define linearity error vector as
e = y−x and ignore the constant denominator xH x that is used
for normalization, the sum of square error (SSE), expressed
as follows:

L(e) = SSE(x, y) = eH e (2)

can be used as an equivalent indicator for NMSE. It is not
hard to find that the SSE indicator is a scalar that counts the
energy of error vector e in the time domain only, which means
that, at the same SSE level, that is,

eH
1 e1 = eH

2 e2 (3)

the linearity error distribution in different frequency regions,
such as IB and OOB, could be totally different, as illustrated
in Fig. 2, where the solid and dashed curves are the spectrums
for e1 and e2, respectively, with e1 has more IB energy, while
e2 has more OOB energy.

Since the error is not distinguished in the frequency domain,
the NMSE- or SSE-based model extraction will reduce the
linearity error blindly in all frequency regions. In other words,
if using the NMSE or SSE as the only target, the linearity
error in different frequency regions, such as IB and OOB
errors, cannot be reduced with the desired preference. The
conventional DPD, therefore, cannot effectively achieve the
satisfaction of different linearity requirements in different
frequency regions, as shown in Fig. 1.
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Fig. 3. Different performance trajectories.

B. Multimetric Linearization

In future systems, it is desirable to have different linear-
ity requirements in different frequency regions such as IB
and OOB. Thus, IB and OOB errors should be optimized with
preference. Fig. 3 illustrates different performance trajectories
in terms of IB and OOB errors with progression of iteration,
where the middle solid trajectory is assumed to have equal
weightings on IB and OOB, and by placing different weight-
ings on IB and OOB, different performance trajectories can
be obtained, for example, with higher IB weighting, the upper
dashed trajectory in Fig. 3 allows a higher OOB error but a
lower IB error, at the same error level of SSE.

To characterize linearity errors in different frequency
regions, new measurements of e must be established. An indi-
cator of the sum of channel power (SCP) proposed in our
earlier work [24] can be used to calculate the energy of error
signal e in different channels, as follows:

SCP(e) = eH FH BFe (4)

where e is of size N×1 and N is the number of signal samples,
and F is the normalized N -point discrete Fourier transform
(DFT) matrix (with zero frequency locating in center posi-
tions), and B is the band-selection matrix of N×N that selects
the band for summing up energy. In detail, B is diagonal with
filling in its diagonal positions to select corresponding DFT
frequency components. For example, to compute center-band
or IB energy, B will be

B =

O(N−n)/2
En

O(N−n)/2

 (5)

where En is an identity matrix with size n, which is the
number of discrete DFT frequency points n that corresponds
to the modulated signal bandwidth. O(N−n)/2 is a zero matrix
with size (N − n)/2. When B is diagonally fully filled as an
identity matrix, the SCP will compute full-band energy, and
its expression will degenerate to SSE in (2) due to the unitary
property of DFT matrix such that

FH F = E. (6)

To sum up energy in several frequency regions, different diag-
onal positions in B can be filled correspondingly, as illustrated
in Fig. 4, where the energy in three different frequency regions

Fig. 4. SCP and corresponding band-selection matrix.

is summed up. The SCP indicator can also be used separately
with B of different fillings, for example,

SCP1(e) = eH FH B1Fe
SCP2(e) = eH FH B2Fe
SCP3(e) = eH FH B3Fe
SCP4(e) = eH FH B4Fe. (7)

To avoid confusion, it is worth clarifying that the band
selections here that we refer to, for example, the A, B, and C
bands illustrated in Fig. 4, are the different frequency regions
within the single bandwidth of the PA. In other words, the
selected frequency regions of interest are around one carrier
frequency.

Without loss of generality and for ease of explanation and
visualization, this article will mainly focus on two typical
frequency regions of IB and OOB to introduce and validate
the idea. To calculate IB and OOB energy, B1 will be the same
as (5) and B2 = E− B1 will be

B2 =

E(N−n)/2
On

E(N−n)/2

. (8)

Similar to the mathematical form in (4), the linearity vector e
can be decomposed into IB and OOB components as follows:

e = eIB + eOOB (9)

= FH B1Fe+ FH B2Fe. (10)

The two FH s will transform the selected frequency compo-
nents back into the time domain. Substituting the specific
B1 and B2 and unitary property (6) into (10), it is not hard to
find it holds. Equations (9) and (10) is just decomposition of
e without preference, and to add in preferences, a new error
vector can be generated as follows:

ϵ = αFH B1Fe+ (1− α)FH B2Fe (11)

where α ∈ [0, 1] is a real number that controls the rel-
ative contribution of IB and OOB components, and when
α = 0.5, ϵ is with equal preference on IB and OOB errors
and will degenerate to e/2. The derived new loss function for
multimetric linearization will be

L(e) = ϵHϵ

= α2eH FH B1Fe+ (1− α)2eH FH B2Fe
= eH FH9Fe (12)

where

9 = α2B1 + (1− α)2B2 (13)
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Fig. 5. Multimetric DPD system architecture.

and it can be found that the weightings on eIB and eOOB result
in squared effect on two metrics of IB error eH FH B1Fe and
OOB error eH FH B2Fe.

For scenarios where multiple frequency divisions, rather
than IB and OOB divisions are required, the loss function
can be established as follows:

L(e) =
∑

i

α2
i eH FH Bi Fe

= eH FH9Fe (14)

with

9 =
∑

i

α2
i Bi (15)

where Bi designates specific frequency divisions and α2
i is the

corresponding weighting. Note that a squared form is used to
keep it similar to (13), and it is a more general case when
compared with (13).

III. DPD IMPLEMENTATION

A. System Architecture

The entire architecture of the proposed multimetric DPD
system is given in Fig. 5, where xh represents the modulated
signal sequence to be transmitted at iteration index h. In the
online DPD identification process, each xh at iteration h will
be different as it is generated from real-time data bit streams.
Xh is the model kernel matrix generated by xh , for example,
using MP [15] or GMP [16] terms. uh is the predistorted signal
generated by Xh and current DPD coefficients Ch , and yh is the
corresponding PA output signal. The online multimetric DPD
update will be conducted using the linearity error vector eh =

yh − xh , kernel matrix Xh , and desired multimetric preference
on linearity error in different frequency regions. Then new
DPD coefficients Ch+1 will be generated and used as the “old”
coefficients for the next iteration h + 1. Details will be given
in Sections III-B and III-C. We will first brief the Q-SPSA
algorithm for the direct learning DPD. After that, the Q-SPSA
algorithm will be derived for multimetric DPD identification,
and finally, an enhanced method to calculate the progression
step will be given.

B. Online DPD Update Using Q-SPSA

In direct learning DPD, it is assumed that the linearity
error after the PA, that is, eh = yh − xh , can be linearly

backpropagated before the PA [20], [25], [26] and then −eh

is regarded as the amount of DPD output update, that is,

uh+1 − uh ≈ −eh . (16)

For linear-in-parameter DPD models, the above equation can
be further expressed as follows:

XCh+1 − XCh = X1C ≈ −eh (17)

which means that it is assumed that an update of 1C on the
DPD coefficients will make the PA output updated by X1C.
To eliminate eh , that is, make yh and xh as close as possible,
X1C and −eh should then be as close as possible. Thus,
in direct learning DPD, the actual residual vector to be
evaluated is

rh = eh + X1C. (18)

In the single-metric SSE optimization, error vector evaluation
(2) is employed and the actual loss function for acquiring 1C
will be

L(rh) = L(eh + X1C)

= (eh + X1C)H (eh + X1C)

= L(1C). (19)

The objective can be realized by LS as follows:

1CLS = −
(
XH

h Xh
)−1XH

h eh (20)

which will be of great complexity [19], [20] and not favorable
for online DPD scenario as the above operations may not be
conducted in a timely manner before the coming of following
Xh+1 and eh+1. As opposed to the above huge resource-
consuming operations, the Q-SPSA algorithm was proposed
in [20] to realize the minimization of (19) by three loss
function measurements

L(+1h) = (eh + Xh1h)
H (eh + Xh1h)

L(−1h) = (eh − Xh1h)
H (eh − Xh1h)

L(0) = eH
h eh (21)

at 1C = 0 (zero vector) and ±1h , corresponding to not
perturbing the coefficients and perturbing the coefficients
by ±1h , where 1h is the current perturbation vector which
is of the same size as coefficients vector Ch . Then the update
of the coefficients vector will be found by

1CQ−SPSA = −
L(+1h)− L(−1h)

2
(
L(+1h)− 2L(0)+ L(−1h)

)1h . (22)

An illustration of 1C obtaining at iteration h using LS and
Q-SPSA is given in Fig. 6, where the LS gets the global opti-
mal solution that minimizes (19) while the Q-SPSA algorithm
gets the optimal solution in the quadratic slice determined
by 0 (zero vector) and perturbation direction ±1h , which
means that the obtained 1CQ−SPSA must be in the straight
line that passes 0 and ±1h . For online DPD identification,
the Q-SPSA will bring about two advantages. One is that
the complexity of (22) is much lower than that of (20) [19],
[20], and the other one is that (22) is usually smaller in scale
when compared with (20), which will make the direct learning
assumptions (16) and (17) better hold.
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Fig. 6. Different algorithms to acquire 1C at iteration h.

C. Multimetric DPD Update Using Enhanced Q-SPSA

To realize multimetric DPD identification, (12) will be
employed to conduct error evaluation of direct learning resid-
ual vector rh . Similar to (21), three new loss functions can be
derived as follows:

L(+1h) = (eh + Xh1h)
H FH9F(eh + Xh1h)

L(−1h) = (eh − Xh1h)
H FH9F(eh − Xh1h)

L(0) = eH
h FH9Feh . (23)

Equation (22) can also be employed to calculate the desired
coefficients update under the above three loss measurements
for multimetric identification, and the full progression step of
DPD coefficients update will be

Ch+1 = Ch +1CQ−SPSA (24)

but it is found that 1CQ−SPSA can be calculated in an enhanced
way that is mathematically equivalent and with many advan-
tages. The enhanced progression step would be

Ch+1 = Ch −
R
{
1H

h XH
h FH9Feh

}
1H

h XH
h FH9FXh1h

1h (25)

where R{·} is the real part operator. Detailed derivations
are given in Appendix A and the complexity reduction will
be discussed in Section III-D. In addition, this enhanced
progression step will also bring better numerical stability.
Specifically, in later iterations, L(+1h), L(−1h), and L(0)

could be very close, and in the conventional step (22) and (24),
catastrophic cancellation effect [27] could be introduced,
in which precision will be lost when adding/subtracting these
very close values. In comparison, the enhanced step (25)
avoids adding/subtracting these close values. The complete
DPD implementation procedure of the proposed method is
given in Algorithm 1.

D. Complexity Analysis

Now let us discuss the complexity of the proposed multi-
metric DPD iteration step and related comparisons. First, when
compared with closed-form LS identification which is resource
extensive in terms of both algorithmic level and hardware
resources, the Q-SPSA, as an iterative identification algorithm,
is of very low per iteration complexity [19], [20] and flexible
to find adequate solutions of DPD coefficients that just satisfy
the requirements to realize performance versus complexity
tradeoff. The detailed complexity analysis and comparison will
be conducted in two parts. The first part will analyze the

Algorithm 1 Online Multimetric DPD Model Extraction
Input: H different input sequences {xh}, h = 1, 2, . . . , H ,

initial coefficient vector C1, desired multimetric prefer-
ence parameter α

Output: DPD coefficient vector Ch

1: initialization
Iteration index h ← 1

2: repeat
3: Generate model kernel matrix Xh from xh

4: Generate predistorted signal uh = XhCh

5: Send uh to PA, and Collect PA output yh

6: Generate Ch+1 from Ch by (25)
7: h ← h + 1
8: until IB and OOB error requirements are satisfied or

iteration number limit is reached: h > H
9: return Ch

complexity of the existing Q-SPSA progression step in (24)
with (22) and the enhanced step in (25). In the second part,
we will compare the complexity of the enhanced Q-SPSA for
single-metric SSE and multimetric optimization, to provide
a more reasonable comparison that considers not only the
number of iterations, but also the complexity per iteration.

1) Existing and Enhanced Q-SPSA for Multimetric Opti-
mization: The complexity analysis is based on floating-point
operations (FLOPS). The overall FLOPS consumed for each
conventional Q-SPSA [20] iteration step in (24) with (22) and
enhanced Q-SPSA step in (25), when applied on the same
multimetric loss function (12), is provided as follows. The
FLOPS for conventional Q-SPSA step on the multimetric loss
function is

β1 = N (4K + 15 log2 N − 8)+ 4K + 39 (26)

and the FLOPS for enhanced Q-SPSA step on the multimetric
loss function is

β2 = N (4K + 10 log2 N − 8)+ 4K + 23 (27)

where details to derive these values can be found in
Appendix B. The enhanced method enjoys a complexity reduc-
tion of 5N log2 N+16 FLOPS per iteration step. As mentioned
earlier, the existing step (24) with (22) and the enhanced
step (25) are actually mathematically equivalent in which the
savings are from the algebraic level calculations as detailed in
Appendix A. When there are K = 50 coefficients and N =
16 384 samples, the enhanced step consumes 82.6% FLOPS
of the conventional step. Besides, the proposed step can also
avoid the catastrophic cancellation effect as introduced earlier.
Thus, the proposed enhanced Q-SPSA step (25) will be used
as the common basis for both multimetric and single-metric
SSE optimization comparison.

2) Enhanced Q-SPSA for Multimetric and Single-Metric
SSE Optimization: In our preliminary work [24], it is demon-
strated that using the multimetric loss function will result in
a significantly smaller number of iterations to reach some
multimetric requirements, when compared with the case that
SSE-only one-metric is used as the loss function. However,
not only the number of iterations, but also the complexity of
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Fig. 7. Complexity ratio γ for different K and N values.

per iteration step should be considered together to provide a
more reasonable complexity comparison. When the enhanced
Q-SPSA is applied on single-metric SSE optimization, that is,
when α = 0.5, the iteration step in (25) degenerates to

Ch+1 = Ch −
R
{
1H

h XH
h eh

}
1H

h XH
h Xh1h

1h (28)

and the complexity in terms of FLOPS for this step is

β3 = N (4K + 8)+ 4K − 1 (29)

where detailed analysis can also be found in Appendix B. As it
is compared with (25) which is for multimetric optimization,
the extra complexity mainly comes from the FFT-related
operations. Referring to (27) and (29), a ratio can be defined
as the FLOPS consumed for each step of enhanced Q-SPSA
for multimetric optimization over that for single-metric SSE
optimization, that is,

γ =
N (4K + 10 log2 N − 8)+ 4K + 23

N (4K + 8)+ 4K − 1
(30)

where K is the number of DPD coefficients and N is the
number of signal samples. An illustration of how the com-
plexity ratio γ changes with different K and N values is
given in Fig. 7. It is worth mentioning that we should pay
attention to the parameter settings with larger K and N values
as highlighted by the red box since in future systems, the PA
behavior will become more complex due to wider bandwidth
and therefore more complex models will be required. For small
K and N values, the complexity for either single-metric or
multimetric would be very low, which is of less necessity to
analyze, and the LS algorithm could be favored without the
need for iterative or multimetric methods.

In the zone of interest in Fig. 7, all the γ values are smaller
than 1.35, for example, for K = 100 DPD coefficients and
N = 8192 signal samples, γ is only approximately 1.28, which
means that the extra cost for the multimetric step (25) when
compared with the single-metric SSE step (28) is not that much
and only 28%. In other words, to reach some requirement
threshold, if the number of iterations for using multimetric is
smaller than 1/γ of single-metric iterations, then the overall
complexity of the multimetric would be lower, for example,

Fig. 8. Testbench setup.

to reach some multimetric requirement, if 100 iterations were
used for multimetric method (25) and 300 iterations were
used for single-metric method (28), considering γ ≈ 1.28 for
K = 100 and N = 8192, and then the overall complexity
of using multimetric steps is only 100 × 1.28/300 ≈ 43%
of the overall complexity using single-metric method. The
above method considers not only the number of iterations, but
also FLOPS per iteration will also be used later for analyzing
complexity in experimental results.

IV. EXPERIMENTAL VALIDATION

A test bench based on a 5-GHz Wi-Fi nonlinear front-end
module was used to validate the idea. The Wi-Fi front end
was configured to the TX mode to linearize the PA inside.
As shown in Fig. 8, an R&S vector signal generator (VSG)
SMW200A was configured to generate different modulated
signal sequences to feed into the front end. The output of the
front end was attenuated and collected by an R&S spectrum
analyzer FSW and sent back to the PC. The PC with MATLAB
acted as a central controller to conduct automatic test routines
for signal generation and data acquisition.

To emulate the online DPD identification scenario where
the PA stimuli signal changes from time to time, different
signal sequences must be generated. First, enough different
256-QAM orthogonal frequency division multiplexing
(OFDM) signal sequences with sequence length
N = 8192 were generated, with an over-sampling factor
of 4, that is, the actual bandwidth of the signal would be 1/4
of the system sample rate deployed, for example, 40-MHz
bandwidth for 160-MHz system sample rate, 160 MHz for
640-MHz sample rate. Then, to avoid performance fluctuation
in online DPD identification scenario [20] in which PA input
sequences are different, all of the sequences were processed
using crest factor reduction (CFR) algorithm to make sure
that they have similar peak-to-average power ratio (PAPR).

A. Test Case 1: 40-MHz Signal

A 40-MHz modulated signal with a 160-MHz system
sample rate was first employed to validate the multimetric
performance. The average input power fed into the front
end was −15 dBm and the center frequency was 5.3 GHz.
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Fig. 9. Multimetric DPD performance. (a) IB error. (b) OOB error. (c) Performance trajectories.

Referring to (12), 3 settings of α with values {0.8, 0.5, 0.2}
were used. The larger the α, the more preference for the IB
error, and vice versa. α = 0.5 means equal consideration
on IB and OOB error which corresponds to the conventional
method [20] that only NMSE/SSE is used as the loss function,
which is set as the benchmark for comparison. After that, for
each setting of α, H = 5000 iterations were conducted, using
5000 different input sequences {xh}.

The linearity IB and OOB errors (between DPD input and
PA output) are illustrated in Fig. 9(a) and (b), respectively.
In Fig. 9(a), at the same number of iterations, it can be found
that generally the larger the α (the more preference on IB), the
lower IB error is acquired, meaning that the faster convergence
on IB error. A similar phenomenon can be found in Fig. 9(b),
the smaller the α (the more preference on OOB), also the faster
convergence on OOB error. In Fig. 9(a), the IB error advantage
of α = 0.8 over α = 0.5 become less and may reverse in later
iterations (e.g., after 4000), which indicates that the iteration
steps with α = 0.8 and α = 0.5 are approaching similar
performance at convergence level of IB error (note that the
y-axis is in log-scale), however, in the procedure, the α =

0.8 iterations get significant IB error level advantage. To get
a clear view of IB and OOB error simultaneously, the OOB
versus IB error with the progression of iteration, namely, the
multimetric performance trajectory, is provided in Fig. 9(c),
in which each square, circle, or triangle marker marks the
performance after every 500 iterations, that is, iterations 500,
1000, . . . , 5000, and the dashed lines are equal iteration lines
at iterations of 1000, 2000, and 4000. The iterations with three
α settings will all descend the IB and OOB errors, but with
different trends. At the same number of iterations, larger α

tends to achieve lower IB error energy and higher OOB error
energy, and vice versa.

Some details are also given in Table I, and it can be
found that lower EVM that corresponds to IB error energy is
achieved for larger α and lower adjacent channel power ratio
(ACPR) that corresponds to OOB error energy is achieved for
smaller α, at the same number of iterations. All of the above
indicates that the proposed method can optimize IB and OOB
linearity error with preference or priority by using different α.
Comparison in some practical scenarios will also be given as
follows.

TABLE I
MULTIMETRIC PERFORMANCE COMPARISON

1) Scenario 1: Priority Optimization of Either Metric: As
briefed in Section I, there could be different IB and OOB lin-
earity requirements, and one of the practical scenarios would
be either EVM or ACPR would be required to be optimized
with priority. The following will provide the comparison of
the only SSE targeted optimization (equivalent as α = 0.5)
as in [20], EVM priority optimization (α = 0.8), and ACPR
priority optimization (α = 0.2). To provide a more reasonable
complexity evaluation, the FLOPS consumed other than just
the number of iterations are considered. In the test, the GMP
model [16] with K = 150 coefficients is employed and each
sequence is of length N = 8192. Substituting K and N value
into (30), it can be found that γ ≈ 1.19, which means that
one multimetric step (25) (α = 0.8, 0.2) takes 1.19 × of the
complexity of one single-metric step (α = 0.5) (28), where
the multimetric step (25) with α = 0.5 just degenerates to
the simpler equivalent form in (28), namely, the single metric
step, which is of less complexity.

Then, the EVM requirement is defined to be met when
the EVM values on five consecutive sequences are all
lower than the setting threshold. The complexity analysis for
α = 0.8 and α = 0.5 (benchmark group) to satisfy some
EVM requirements is given in Table II. In the table, the
normalized complexity is the equivalent single-metric SSE
optimization steps, for example, for multimetric steps with
α ̸= 0.5, the normalized complexity is γ times the number
of iterations used. The proposed method saves a considerable
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TABLE II
EVM PRIORITY OPTIMIZATION

TABLE III
ACPR PRIORITY OPTIMIZATION

number of iterations to reach the same EVM, and even if the
extra complexity of the multimetric step is taken into account,
the proposed method still saves appreciable FLOPS.

Similarly, ACPR requirements are defined to be met when
both the lower and upper ACPR are lower than the threshold
on five consecutive sequences. The comparison of α = 0.2 and
α = 0.5 (benchmark group) is given in Table III. Not only the
number of iterations, but also FLOPS are saved considerably,
and the amount of saving is more significant than that on the
IB error or EVM case in Table II.

From the EVM and ACPR priority optimization results
presented in Tables II and III, it can be concluded that the
proposed method with different α settings can reach either
EVM or ACPR requirements with significantly lower com-
plexity, in terms of not only the number of iterations, but also
FLOPS consumption.

2) Scenario 2: Meeting Arbitrary Multimetric Require-
ments: Real systems may impose requirements on multiple
metrics simultaneously. Let us assume that there are 36 com-
binations of multimetric requirements in terms of EVM and
ACPR, with EVM requirements from 1.50% to 4.00% with the
step of 0.5% and ACPR requirements (both upper and lower)
from −33 to −38 dBc with the step of 1 dBc. Similarly,
the requirement is defined to be met when five consecutive
sequences all satisfy it, and normalized complexity considering
FLOPS is considered. Fig. 10 reveals the best α settings to
reach arbitrary multimetric requirement combinations at dif-
ferent coordinates using the minimum normalized complexity.

Fig. 10. α settings reaching different multimetric requirements with minimum
normalized complexity.

It can be found that the iterations with α = 0.8 (higher IB
preference) are good at the multimetric requirements with
stricter IB or EVM, and vice versa for the ones with α = 0.2
(higher OOB preference), while the ones with α = 0.5 are
better at relatively balanced EVM and ACPR requirements.
This indicates that for unbalanced multimetric requirements,
the conventional SSE-only considered method [20] will con-
sume more FLOPS and be unfavorable, and the proposed
method with different α settings can reach these unbalanced
requirements with less complexity.

It is worth mentioning here that the specific settings of α

to reach some given multimetric for EVM and ACPR would
be a very practical problem. A feedback control mechanism
may be employed. Specifically, performance check can be con-
ducted routinely to evaluate the current distance to the given
multimetric requirement, and α can be adjusted accordingly
in which higher weighting can be applied to the target that
is still “far away” while lower weighting to the one that is
nearly met.

3) Scenario 3: SSE-Monitored DPD System: Indicators
such as EVM, which is an end-to-end quality metric, and
the linearization error in some bands, may not be easily
accessible to the DPD system, and instead, the DPD system
may only monitor the energy of the linearity error vector e
by using an indicator such as SSE (2) or NMSE. Thus, the
following will provide a comparison when the optimizations
with different weightings in different frequency regions reach
the same SSE. As shown in Table IV, at almost the same
SSE level, α = 0.8 gets lower IB error and EVM, and higher
OOB error and ACPR, while α = 0.2 gets lower OOB error
and ACPR, and higher IB error and EVM. The error power
spectrum density (PSD) plots at SSE threshold 5.00 for the
three α settings is given in Fig. 11, which indicates that at
almost the same SSE/NMSE level, the frequency distribution
of error could be totally different. The proposed method with
α = 0.8 can find the DPD coefficients with lower IB error,
and the method with α = 0.2 can find the ones with lower
OOB error. Fig. 12 shows the IB error advantage, or EVM
advantage for the proposed method with α = 0.8 over the
benchmark group with α = 0.5 that corresponds to [20].
Fig. 13 demonstrates the OOB advantage, or ACPR advantage
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TABLE IV
SAME SSE COMPARISON

Fig. 11. Error PSDs at SSE threshold 5.00.

Fig. 12. IB/EVM advantage at SSE threshold 5.00. (a) α = 0.5 and
EVM = 1.57%. (b) α = 0.8 and EVM = 1.28%.

for the proposed method with α = 0.2 over the benchmark
with α = 0.5 and also the case with α = 0.8.

In addition, to demonstrate that the proposed method can
also be applied to scenarios with multiple frequency divisions
that are more complicated than IB/OOB, a supplemental
experiment was also conducted. As depicted in Fig. 14, the
proposed method applies α1 = 0.8 weighting in multiple
frequency divisions designated by the solid double arrows, and
applies α2 = 0.2 elsewhere, while and the benchmark method
with α = 0.5 [20] means equal weighting everywhere as a
comparison. It can be found that the proposed method can
also distinguish the error in multiple frequency divisions, not
limited to IB/OOB.

B. Test Case 2: EVM Priority Optimization of the 160-MHz
Signal

To validate the performance of the proposed method
for wider bandwidth signals, another test was conducted

Fig. 13. OOB/ACPR advantage at SSE threshold 5.00.

Fig. 14. Error PSDs at SSE threshold 5.00 for multiple frequency divisions.

Fig. 15. IB error comparison.

Fig. 16. Error PSDs at iteration 2000.

employing a 160-MHz signal with a 640-MHz system sample
rate at the center frequency of 5.57 GHz (Wi-Fi channel 114)
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TABLE V
EVM PRIORITY OPTIMIZATION

and input power of −12 dBm. Considering the upper and
lower ACPR (480-MHz range) for a 160-MHz signal is very
unbalanced, which will make the situation much more com-
plicated, thus, only EVM priority optimization-related results
will be given. The IB error energy comparison is given in
Fig. 15. When compared with the 40-MHz test case shown
in Fig. 9(a), in the “tougher” 160-MHz case, the proposed
method with α = 0.8 reveals a greater advantage in IB error
energy optimization. The error PSD comparison at iteration
2000 is also provided in Fig. 16, and it can be found that in
the IB region (from −80- to +80-MHz offset), the error PSD
of α = 0.8 is lower. Similar to Table II, normalized complexity
comparison to reach some EVMs is given in Table V.

V. CONCLUSION

In this article, a multimetric DPD concept is proposed
which enables that linearity performance in different frequency
regions can be approached with desired preference. This is
especially beneficial in terms of approaching speed and overall
complexity in cases where unbalanced linearity requirements
in different frequency regions are needed. The method is
implemented in an online DPD identification scenario in
which the input signal sequences for training DPD coefficients
change from time to time. A mathematical form to evalu-
ate the linearity error in different frequency regions is first
established and then the Q-SPSA is employed as an efficient
optimization algorithm and derived for online multimetric
DPD identification, by distinguishing and weighting the error
energy in different frequency regions. Meanwhile, an enhanced
calculation form of the iteration step is also derived, which
is mathematical equivalent but of less complexity and better
numerical stability.

Experimental results of 40- and 160-MHz modulated signals
running on a 5-GHz Wi-Fi nonlinear front-end validate that the
proposed method can realize priority optimization of different
metrics. Linearity requirements in different frequency regions
can be met with considerably less complexity in terms of
not only the number of iterations, but also FLOPS. Also,
at the same SSE/NMSE level, better linearity performance
in desired frequency regions can be achieved by using the
proposed approach, when compared with the conventional
method that considers SSE/NMSE only in the optimiza-
tion. As a proof of concept, this work only employs fixed

weightings on error energy in different frequency divisions.
While adaptive weightings can be more favorable for some
specific multimetric requirements given, the control mecha-
nism of weightings would become more complex, especially
for three or more metric requirements. We leave that in future
work.

APPENDIX A
DERIVATION OF ENHANCED Q-SPSA

The three loss function measurements (23) can be expressed
in fully expansion form as follows:

L(+1h) = eH
h FH9Feh +1H

h XH
h FH9Feh

+ eH
h FH9FXh1h +1H

h XH
h FH9FXh1h

L(−1h) = eH
h FH9Feh −1H

h XH
h FH9Feh

− eH
h FH9FXh1h +1H

h XH
h FH9FXh1h

L(0) = eH
h FH9Feh . (A.1)

Then the numerator and the denominator in (22) can be derived
as follows:

L(+1h)− L(−1h) = 2
(
1H

h XH
h FH9Feh

+ eH
h FH9FXh1h

)
(A.2)

= 4R
{
1H

h XH
h FH9Feh

}
(A.3)

and

L(+1h)− 2L(0)+ L(−1h) = 21H
h XH

h FH9FXh1h (A.4)

respectively, where R{·} is the real part operator. Derivation
from (A.2) to (A.3) can be made since 1H

h XH
h FH9Feh and

eH
h FH9FXh1h are both scalar complex numbers and they

conjugate. Finally, substituting (A.3) and (A.4) into (22)
and (24), the enhanced Q-SPSA progression step can be
derived as follows:

Ch+1 = Ch −
R
{
1H

h XH
h FH9Feh

}
1H

h XH
h FH9FXh1h

1h . (A.5)

APPENDIX B
DETAILED COMPLEXITY ANALYSIS

First of all, the conversion between different operations and
the number of FLOPS consumed is defined as follows.

1) Complex multiplication: Six FLOPS.
2) Complex addition/subtraction: Two FLOPS.
3) Real multiplication/division: One FLOPS.
4) Real addition/subtraction: One FLOPS.

A. Conventional Step for Multimetric Optimization

The conventional iteration step for multimetric optimiza-
tion (24) with (22) is

Ch+1 = Ch −
L(+1h)− L(−1h)

2
(
L(+1h)− 2L(0)+ L(−1h)

)1h (B.1)

and corresponding complexity analysis step-by-step will be
given as follows.

Step 1.1: Compute eh = yh − xh: eh , xh , and yh are all
of size N × 1, where N is the number of signal samples. N
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complex additions are conducted, and 2K FLOPS is for this
step.

Step 1.2: Compute Xh1h: Xh is of size N × K , where
K is number of DPD coefficients and 1h is of size K × 1.
This step should not be regarded as a complex N × K matrix
multiplies a complex K × 1 vector, which uses N K complex
multiplications and N (K −1) complex additions. Considering
each element of 1h vector must be one of {1+1 j, 1−1 j,−1+
1 j,−1− 1 j} [19], [20] which are actually adding/subtracting
instead of multiplying elements in Xh , and

Xh1h = R{Xh}R{1h} − I {Xh}I {1h}

+ j (R{Xh}I {1h} + I {Xh}R{1h}) (B.2)

where R{·} and I {·} are the real and imagine part operator.
4N (K − 1)+ 2N = N (4K − 2) FLOPS is for this step.

Step 1.3: Compute e+h = eh +Xh1h and e−h = eh −Xh1h:
2N complex additions involved, and 4N FLOPS is for this
step.

Step 1.4: Compute Feh , Fe+h , and Fe−h : As for the product
of an N × N DFT matrix and an N × 1 vector, counting it as
product of complex N × N matrix and complex N × 1 vector
will overestimate the FLOPS. Instead, thanks to the fast
Fourier transform (FFT) algorithm, the DFT can be calculated
with only N log2 N complex additions and N (log2 N−3)/2+
2 complex multiplications [28]. Then the FLOPS for this step
is N (15 log2 N − 27)+ 36.

Step 1.5: Compute L = (Feh)
H9(Feh), L+ = (Fe+h )H

9(Fe+h ), and L− = (Fe−h )H9(Fe−h ): In this step, we are sure
that the product must be a real number. To count operations
conducted, let us first analyze the calculation of the real part
of the product of two complex numbers, that is,

R{(a1 + jb1)(a2 + jb2)} = a1a2 − b1b2 (B.3)

from which it can be found that only two real multiplications
and one real addition are conducted per product. Thus, for the
real part of the product of a complex vector of 1 × N , real
diagonal matrix of N×N , and a complex vector of N×1, 2N
real multiplications and N real additions will be conducted for
getting the real parts, and another N real multiplications will
be conducted for multiplying the diagonal entries, and finally
N − 1 real additions will be conducted for summing them up,
where 3N real multiplications and 2N − 1 real additions are
conducted. In total, 15N − 3 FLOPS is for this step.

Step 1.6: Compute A = L+− L− and B = L+− 2L + L−:
Four FLOPS is for this step.

Step 1.7: Compute Ch+1 = Ch − A/(2B)∗1h: 2K + 2 real
multiplication is involved for getting A/(2B) ∗ 1h and N
complex additions involved later. 4K + 2 FLOPS is for this
step.

Overall: N (4K + 15 log2 N − 8) + 4K + 39 FLOPS is
involved.

B. Enhanced Step for Multimetric Optimization

The proposed enhanced iteration step for multimetric opti-
mization (25) is

Ch+1 = Ch −
R
{
1H

h XH
h FH9Feh

}
1H

h XH
h FH9FXh1h

1h (B.4)

and corresponding complexity analysis will be given as
follows.

Step 2.1: Compute eh = yh − xh: 2N FLOPS is for this
step.

Step 2.2: Compute Xh1h: Similar to Step 1.2, N (4K − 2)

FLOPS is for this step.
Step 2.3: Compute v1 = Feh: Similar to Step 1.4,

N (5 log2 N − 9)+ 12 FLOPS is for this step.
Step 2.4: Compute v2 = F(Xh1h): N (5 log2 N − 9) + 12

FLOPS is for this step.
Step 2.5: Compute A = R{vH

1 9v2}: Similar to Step 1.5,
we are only interested in the real part of the product. 5N − 1
FLOPS is for this step.

Step 2.6: Compute B = vH
1 9v1: 5N − 1 FLOPS is for this

step.
Step 2.7: Compute Ch+1 = Ch − A/B ∗ 1h: Similar to

Step 1.7, 4K + 1 FLOPS is for this step.
Overall: N (4K + 10 log2 N − 8) + 4K + 23 FLOPS is

involved.

C. Enhanced Step for Single-Metric SSE Optimization

The proposed enhanced iteration step for single-metric
optimization (28) is

Ch+1 = Ch −
R
{
1H

h XH
h eh

}
1H

h XH
h Xh1h

1h (B.5)

and corresponding complexity analysis will be given as
follows.

Step 3.1: Compute eh = yh − xh: 2N FLOPS is for this
step.

Step 3.2: Compute Xh1h: Similar to Step 1.2, N (4K − 2)

FLOPS is for this step.
Step 3.3: Compute A = R{(Xh1h)

H eh}: Similar to Step 2.5
and Step 2.6, and note that no 9 is involved here, so 4N − 1
FLOPS is for this step.

Step 3.4: Compute B = (Xh1h)
H (Xh1h): Similar to

Step 3.3, 4N − 1 FLOPS is for this step.
Step 3.5: Compute Ch+1 = Ch− A/B ∗1h: 4K +1 FLOPS

is for this step.
Overall: N (4K + 8)+ 4K − 1 FLOPS is involved.
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