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Stability Characterizing Function for Electronic
Circuit Design Based on Frequency-Domain

Analysis With Parametric Damping
Alberto Santarelli , Member, IEEE, Leonardo Pantoli , Member, IEEE, Giorgio Leuzzi , and Fabio Filicori

Abstract— A stability characterizing function (SCF) to be
used for small and large-signal stability analysis and design
of single and multitransistor electronic circuits is proposed.
Stability constraints based on this function can be integrated
with the framework of standard computer-aided design (CAD)
procedures. The method is based on the bounded-input–bounded-
output (BIBO) stability criterion, where a suitable set of input
and output variables is chosen at the ports of all the nonlinear
intrinsic electron device (IED) models. These variables are linked
by a nonlinear state perturbation (NSP) matrix, whose elements
are directly computed by analyzing an associated parametrically
damped (PD) (i.e., stabilized) circuit. The proposed SCF is defined
in terms of the NSP matrix elements and is a scalar function of
frequency and the damping parameter. Circuit stability margins
are easily evaluated by visual inspection of the plot of this
function. Preliminary experiment validation is carried out by
applying this approach for checking the self-starting capabilities
of an oscillator as well as for the small and large-signal stability
analysis of a two-transistor balanced amplifier and a single-
transistor PA.

Index Terms— Circuit analysis, computer-aided design (CAD)
techniques, frequency-domain techniques, stability, stability
analysis.

I. INTRODUCTION

THE design of analog electronic circuits consists of
searching for a circuit topology and an associated set

of values of the component characteristic parameters, which
provide acceptable performance under a set of hard design
constraints aimed at guaranteeing feasibility, reliability, and
stability.

Conditions for acceptable circuit performance, as well as
feasibility and reliability constraints, can be synthetically
and formally defined by a set of inequalities expressed in
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terms of figures of merit, which are defined under periodic
steady-state operating conditions [1], [2], [3]. For this reason,
they can be easily computed by Fourier transform (FT)-based
frequency-domain circuit solution algorithms in the framework
of commercial CAD tools (e.g., [2], [3]), like linearized ac
analysis for small-signal operation and harmonic balance (HB)
analysis for large-signals.

Stability constraint functions cannot be so directly and
easily computed by using the same periodic-steady-state
frequency-domain solution algorithms, since stability criteria
are defined in terms of circuit/system transient responses
or, equivalently, in terms of Laplace transform (LT)-based
circuit/system analysis. Several methods have been proposed
in the literature to solve the problem within the framework of
commercial CAD tools. Linear time-invariant (LTI) stability
problems, i.e., small-signal stability analysis, can be addressed
in terms of frequency-domain-based open-loop function anal-
ysis [4], [5], [6], [7]. For instance, the widely used method [7]
analyzes the stability of multidevice power amplifiers by look-
ing at Nyquist plots of open-loop transfer functions obtained
by inserting circulators and isolators at the interface ports
between passive and active subnetworks. Unconditional stabil-
ity conditions [1], [8] are sometimes searched for by adding
resistive feedback networks to transistors [9].

An overview of local and global stability analysis tech-
niques can be found in [10] and [11]. An analytical study
of the linear time variant (LTV) stability problem, i.e., large-
signal stability analysis, is addressed in [12], and further
developed in [13] and [14]. In the latter, an open-loop sys-
tem determinant calculation procedure within the framework
of frequency-analysis-based CAD tools is carried out by
modifying transistor models to evaluate suitable return ratio
matrices [5]. Alternative nonlinear stability analysis methods
are based on pole-zero identification of closed-loop transfer
functions [15], [16], [17], [18], [19], [20], [21]. Methods based
on conversion matrix [22] and bifurcation analysis through
auxiliary generators [23] have been proposed for the design of
frequency dividers. An extension of the Othomo technique [7]
for multitransistor circuits to the nonlinear stability analysis
case has been proposed in [24]. The technique described
in [25] and [26], combines conversion matrix and even/odd
mode theories for splitting the nonlinear stability analysis of
symmetrical multitransistor circuits into a set of equivalent
single-transistor problems.
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Time-domain circuit simulation (e.g., [27], [28], [29], [30],
[31], [32], [33], [34]) represents an interesting alternative
environment for the development of stability analysis methods.
Some of them are based on the approximation of passive
distributed circuit subsections in terms of lumped-element
equivalent networks (e.g., [32], [33], [34]).

In this article, we propose a novel stability characterizing
function (SCF) and a related set of stability constraints, which
can be systematically computed using the same algorithms
used for circuit performance evaluation, i.e., by means of
FT-based periodic-steady-state analysis methods available in
commercial CAD tools (e.g., [2], [3]). The positive feature of
this approach is that it enables defining stability criteria valid
for both single and multitransistor circuits, under both small-
and large-signal operating conditions. Moreover, considering
that the SCF is a real function of the frequency and an
auxiliary real parameter only, the method has the advantage of
performing the stability/instability check by direct inspection
of a single plot of a bivariate function even in the case of
multitransistor circuits.

This article is structured as follows. A proper choice of
input perturbation sources and output variables to be used in
the framework of the bounded-input–bounded-output (BIBO)
stability criterion is first discussed in Section II. By con-
sidering that circuit instability is necessarily associated with
the presence of incrementally active nonlinear devices, only
the state variables of charge-conservative quasi-static intrinsic
electron device (IED) models are chosen as output variables,
while a set of input series equivalent voltage sources at the
IED ports is adopted.

The new set of stability constraints for computer-aided
design (CAD) of single and multitransistor electronic circuits
is proposed in Section III. These are expressed in terms of a
SCF based on the elements of a nonlinear state perturbation
(NSP) matrix of transfer functions, which links the input and
output variables for BIBO stability analysis. It is shown how
the NSP elements along with the SCF can be directly com-
puted through frequency-domain periodic steady-state analysis
of an associated parametrically damped circuit (PDC).

The features of the PDC are introduced in Section IV,
along with practical guidelines for its implementation in CAD
tools for circuit analysis and design. The PDC equations
are directly obtained by simply adding parametrized damping
terms to all the derivative terms in the state-space linear
and nonlinear differential equations, which describe the whole
circuit dynamics. Practically, the implementation of the PDC
can be carried out, in the framework of commercially available
CAD tools for circuit analysis, by adding the same type of
parametric damping modifications to all the circuit component
model equations.

Preliminary validation examples of small and large-signal
stability analysis are presented in Section V to confirm that
the proposed stability constraints, and associated SCF, pro-
vide sufficient and necessary conditions for circuit stability
of single and multitransistor circuits. The method is used
for ascertaining the self-triggering of an oscillator, and for
checking the small- and large-signal stability features of both
a two-transistor balanced amplifier and a single-transistor PA.

Fig. 1. Circuit to be checked for stability. A number N of electron devices,
either one- or two-port are considered. Dashed lines indicate the second port
of IEDs if this is present.

Finally, the possibility of integrating the new stability con-
straints in the framework of iterative computer-aided circuit
design procedures is outlined in Section V, whereas conclusion
is drawn in Section VII. Details and examples related to the
parametric damping of linear and nonlinear state-space models
are reported in Appendixes A and B, respectively.

II. VARIABLES SELECTION FOR BIBO
STABILITY ANALYSIS

Let us consider a circuit with NP1 and NP2 incrementally
active one- and two-port electronic devices, respectively. Let
us also assume that the IED ports are all accessible and that
the extrinsic parasitic networks are all included in a single
passive linear network.

According to this type of description, the circuit under test
in Fig. 1 is split into two sections, the same way as done in
HB-based circuit analysis and similar to [12] and [13]. The
first section is a nonlinear active circuit, consisting of the full
set of IEDs, and the second is a linear passive network, which
includes the impedance matching networks, the bias networks,
the extrinsic parasitic components of the active devices, and
any other linear passive component in the circuit.

All the voltages and currents at the IED ports can be
grouped into two vectors v = [v1, . . . , vNP1 , v1,1, v1,2, . . . ,

vNP2,1, vNP2,2] and i = [i1, . . . , iNP1 , i1,1, i1,2, . . . , iNP2,1, iNP2,2],
consisting of NP = NP1 + 2NP2 elements, corresponding to
the total number of nonlinear ports. The circuit is powered
by a set of bias generators V B and signal sources aS(t).

A. Output Variables

The state variables describing each IED are related to the
amount of charge in the intrinsic regions. The IED port
voltages v(t) are chosen here as state variables since the
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Fig. 2. Thevenin-equivalent circuit to be analyzed for stability.

functional relationship between charges and voltages at the
intrinsic IED ports can be considered almost purely algebraic
(quasi-static assumption) in most practical cases so that the
current response can be directly expressed also in terms of
voltage derivatives.1

By naming x(t) the whole set of circuit state variables, the
voltage vector v(t) related to IEDs is the subset of x(t), which
is relevant for circuit stability analysis. In fact, if all elements
of v(t) satisfy stability criteria, then the same is necessarily
true for any other circuit state variable, given that the amount
of energy in the passive, linear, lossy network is attenuated
over time.

According to this statement, only the perturbations of v(t)
will be considered as output variables for BIBO-based stability
analysis purposes, with the great advantage that the number
NP of nonlinear ports is much lower than the total number Nx

of circuit state variables. On the other hand, it is worth noticing
that the knowledge of v(t) could allow the direct computation
of the entire set x(t) through standard nodal circuit analysis,
once the IEDs current response i(t) is provided from nonlinear
dynamic models. This choice of state variables is the same
adopted in [12].

B. Input Variables and Equivalent Perturbation Sources

The multiport Thevenin theorem is applied at the IED ports,
transforming the circuit in Fig. 1 into the one shown in Fig. 2,
where ṽ = [ṽ1, . . . , ṽNP1 , ṽ1,1, ṽ1,2, . . . , ṽNP2,1, ṽNP2,2] is the
vector of voltages at the NP ports of the Thevenin-equivalent
linear passive network and e(t) = E B+eS(t) are the Thevenin-
equivalent sources, which corresponds to the turned-off volt-
age generators V B and aS(t). The Thevenin-equivalent linear

1Active devices described by charge–voltage nonlinear relationships have
been considered in this work since these are mostly adopted in high-frequency
circuits. However, it is worth noticing that the proposed approach could be
easily extended to include nonlinear devices described also by flux-current
equations, leading to current-type state variables instead of voltages.

passive network can be described by state-space linear differ-
ential equations

ṽ(t) = e(t) − v(t) = A i(t) + B xLIN(t) (1)
dxLIN(t)

dt
= C i(t) + D xLIN(t) (2)

where xLIN(t) is a vector of state variables describing the
internal state of the network and A , B , C , D are matrices
depending on a set of circuit design parameters.

As outlined in Section II, the nonlinear network (i.e., the set
of N IEDs) is described here in terms of quasi-static nonlinear
models

i(t) = F
(
v(t)

)
+

d Q
(
v(t)

)
dt

(3)

where F and Q are vectors of memoryless nonlinear functions
and d Q(v(t)) = C(v(t))dv(t).

The triggering of circuit instability must be sought either
in internal noise generation or the possible existence of
external interferences, which may affect all the circuit com-
ponents. These perturbations need to be considered not only
to compute the circuit performance in terms of signal-to-
noise ratio but also for stability analysis purposes. By treating
these noise/interference sources as if they were any other
independent generator included in the circuit, it is concluded
that stability analysis can be based on equivalent perturbation
sources 1e(t) in series with the Thevenin-equivalent voltage
sources e(t).

The perturbation effects on the IED port voltages, deriving
from the equivalent perturbations 1e(t), can be described as
splitting v(t) into two contributions

v(t) = v̂(t) + 1v(t) (4)

where v̂(t) is the unperturbed stationary solution (IED port
voltages corresponding to 1e(t) = 0), while 1v(t) describes
the effects of perturbation sources 1e(t). Analogously, let the
corresponding currents flowing into the IEDs be named i(t) =

î (t) + 1i(t).
According to the BIBO stability criterion, instability detec-

tion can be based on the observation of the time evolution of
perturbations 1v(t) around the stationary solution e caused
by small-amplitude perturbation sources 1e(t). To this aim,
the definition of a NSP matrix is introduced in the following,
by separately considering the LTI (i.e., small signal) and LTV
(i.e., large-signal) analysis cases.

III. NSP MATRIX AND BIBO STABILITY CONSTRAINTS

A. NSP Matrix

In the case of small-signal stability analysis (i.e., LTI prob-
lem), the steady-state condition to be checked for stability is
defined by the circuit solution in the absence of perturbations,
i.e., when vs(t) = 0 and 1e(t) = 0. Let this be v̂(t) = V Q ,
where V Q is the time-invariant V B is the dependent vector of
quiescent voltages across the IED ports.

When perturbations 1e(t) are small enough to justify
linearization, the relationship between 1e(t) and 1e(t) can
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be expressed in terms of a convolution integral

1v(t) =

∫
∞

0
w(τ)1e(t − τ)dτ (5)

where w(t) assumes the meaning of a time-invariant NSP
matrix, i.e., a matrix of real impulsive responses, which
describes the evolution of the state variables v(t) at the port
of the nonlinear IEDs. The matrix element functions wm,n(t)
should be vanishing in time (or remain amplitude-limited) as
time approaches infinity in the case of a stable circuit.

By naming p = σ + jω the LT-domain complex variable,
state variable evolutions (5) can be equivalently expressed as

1v(t) = L −1{W (p) · 1E(p)
}

(6)

where W (p)
.
= L {w(t)}, 1E(p)

.
= L {1e(t)}, and L , L −1

are the direct and inverse-LT operators.
Coherently with the BIBO stability criterion, each complex

function Wm,n(p) of the NSP-matrix W (p) (with m, n =

1, . . . , NP) must be evaluated. If, and only if, these functions
show all poles with negative (or zero) real parts, the stationary
solution v̂(t) = V Q will be LTI stable, i.e., the impulsive
functions wm,n(t) will be vanishing or practically amplitude
limited. Since the presence of a pole in the right half of the
p-plane corresponds to a diverging behavior (function max),
stability constraints can be put in the form |Wm,n(σ + jω)|2 <

∞ or, equivalently (function min)∣∣Wm,n(σ + jω)
∣∣−2

> 0 ∀σ > 0, ω > 0 (7)

with m, n = 1, . . . , NP .
When large-signal sources as(t) are also present, the unper-

turbed steady-state solution v̂(t) at the IED ports becomes
time-varying (LTV problem) and the large-signal operating
point (LSOP) to be checked for stability depends both on the
given bias V B and signal source amplitudes aS .

In this case, the relation between the small perturbations
1v(t) and the state variables evolution 1v(t) is defined as

1v(t) =

∫
∞

0
w(t, τ )1e(t − τ)dτ (8)

where w(t, τ ) represents a time-variant NSP matrix of time-
pulse responses, depending on the actual LSOP (dependency
on V B and aS is not shown explicitly for the sake of notation
simplicity). By assuming a large-signal periodic regime in the
t-domain (with period Ts), the matrix w(t, τ ) can be expanded
in the Fourier series. By limiting the analysis to the maximum
order K , we obtain

w(t, τ ) =

+K∑
k=−K

wk(τ ) · e jk�s t (9)

where �s = 2π/Ts . The wk(τ ) terms represent complex
NSP matrices of pulse-response-like elements, associated with
each kth order harmonic component of the series expansion.
By replacing (9) in (8), we obtain

1v(t) =

+K∑
k=−K

1vk(t) · e jk�s t (10)

1vk(t) being complex Fourier coefficients of 1v(t) given by

1vk(t) =

∫
∞

0
wk(τ )1e(t − τ)dτ. (11)

By considering the conversion functions W k(p)
.
=

L {wk(t)} with k = 0, ±1, . . . ,±K

1vk(t) = L −1{W k(p) · 1E(p)
}
. (12)

To the aim of stability analysis, each function element
Wm,n,k(p) (with k = 0, ±1, . . . ,±K , m, n = 1, . . . , NP) of
the complex matrixes W k(p) needs to be evaluated. If, and
only if, these functions have all poles with negative (or zero)
real parts, then the LSOP considered (associated with signal
source amplitude aS) will be LTV stable, leading to evanescent
or amplitude-limited complex functions wm,n,k(t). Thus, a set
of stability constraints can be defined at any given source
amplitude aS as∣∣Wm,n,k(σ + jω)

∣∣−2
> 0 ∀σ > 0, ω > 0 (13)

with m, n = 1, . . . , NP , k = 0, ±1, . . . ,±K .
It is worth noting that, the definition of the NSP matrices

W k(p) under large-signal operation could be extended in line
with the principle from the strictly periodic to the more general
multitone case. To this aim, the periodicity of each single
elementary tone could be exploited in a way similar to how
HB single-tone analysis can be extended to the multitone case
(e.g., [2], [3]). A set of NSP matrices W k1,...,kNT

(p), where
k1, . . . , kNT are mixing-tone indexes, would be obtained in the
presence of a NT -tones excitation.

B. FT-Based Laplace-Equivalent NSP Matrix

A method is proposed for the evaluation of the NSP matrices
W (p) (LTI case) and W k(p) ∀k (LTV case), through purely
FT-based analysis techniques.

The method is based on the introduction of a modified
circuit, namely, a PDC, with the following features: 1) the
PDC can be analyzed by means of standard FT-based CAD
simulation tools; 2) its electrical response is dependent on
a real-valued damping factor σD ≥ 0; and 3) the frequency
transfer functions between small-signal sinusoidal perturba-
tions 1e and state variables deviations 1v from steady-state
solution v̂ are described by a matrix W( jω, σD) (LTI case),
or a set of matrices Wk( jω, σD) ∀k (LTV case), which are
equal, respectively, to W (σD + jω), or W k(σD + jω), for any
choice of σD within the Region of Convergence (RoC) of the
LT-domain matrix functions. Let us consider the LTI case first.
According to feature 3), linear ac-type analyses of the PDC
lead to W( jω, σD), with

W( jω, σD) = W (σD + jω) ∀ω > 0 (14)

provided that σD is chosen greater than the real part σrmp,m,n

of the rightmost pole of any function element in W (p), i.e.,
σD > σrmp,LTI with σrmp,LTI = σrmp,m,n [RoC of W (p)].
In other words, according to (14) the FT-based NSP matrix
W( jω, σD) of the PDC coincides with the LT-based W (p) of
the original circuit for each σ = σD > σrmp,LTI. It is also worth
noticing that, thanks to (14), the pulse response functions
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w(t, σD) = F −1
{W( jω, σD)} of the PDC are damped (or,

equivalently, parametrically stabilized) versions of the original
w(t) functions, i.e.,

w(t, σD) = w(t)e−σD t . (15)

Similarly, in the LTV case, provided that σD is chosen
greater than the real part σrmp,m,n,k of the rightmost pole of any
function element in any W k(p) ∀k, i.e., σD > σrmp,LTV with
σrmp,LTV = σrmp,m,n,k (RoC of the whole set of W k(p) ∀k),
Hamonic Balance-based analyses of the PDC lead, for any
given LSOP with signal amplitude aS , to a set of Wk( jω, σD)

matrices featuring

Wk( jω, σD) = W k(σD + jω) ∀ω > 0 (16)

with k = 0, ±1, . . . ,±K . Thanks to (16), it is concluded that

wk(t, σD) = wk(t)e
−σD t

∀k. (17)

PDC building rules compatible with features (14) (LTI) and
(16) (LTV) are introduced in Section IV. Practical examples
of parametrically damped (PD) linear circuit components are
given in Appendix A, whereas nonlinear components are dealt
with in Appendix B.

C. SCF and BIBO Constraints

According to the BIBO criterion, inequalities (7) and (13)
define the set of small- and large-signal stability constraints
for electronic circuit design. Thanks to features (14), (16)
of the associated PDC, the LT-based stability constraints can
be evaluated in terms of FT-based functions obtained by
analyzing the σD-dependent PDC with frequency-domain ac
or HB circuit analysis. In particular, the LT-domain Wm,n(σ +

jω), or Wm,n,k(σ + jω) functions in (7), or (13), can be
replaced with the associated equivalent FT-domain functions
Wm,n( jω, σD), or Wm,n,k( jω, σD).

Stability constraints can be verified across finite ranges
of both perturbation frequencies f = ω/2π and damping
factors σD . Frequencies can be swept from a minimum value
fmin, above the bias network cutoff region, up to a maximum
value fmax near the highest maximum oscillating frequency
of all the electron devices, i.e., fmax ≃ f max

osc . On the other
hand, the potentially unstable region of the LT p-plane can
be practically limited to the range of damping factors 0 ≤

σD ≤ σD,max, σD,max being a value corresponding to the
incrementally passive behavior of any IED PD model over
the whole frequency axis (thus leading to a necessarily stable
PDC). It is worth noting that, from a practical point of view,
σD,max can be searched for as a value large enough to make
any IED PD model capable of providing available power gain
less than one for any choice of source and load terminations
at any frequency. In cases where the S-matrix of the IED does
exist (i.e., if the device is stable on 50 �), σD,max could also
be searched for as a σD value large enough to make the PD
IED model unconditionally stable for any source and load
termination at any frequency. To this aim, known necessary
and sufficient conditions for unconditional stability could be
practically used (e.g., [5], [8]).

All these boundary values can be sought at the beginning
of the stability analysis process, by exploiting well-known for-
mulas based on small-signal S-parameters of electron devices
(well-known equations to determine f max

osc and/or to check the
unconditional stability of transistors can be found for instance
in [1]).

Since stability constraints must be necessarily satisfied by
also considering nonnegligible technological uncertainties in
circuit implementation and inaccuracies in component models,
an adequate margin is introduced. In addition, a normalization
term is conveniently adopted to choose a unique stability
margin ϵlim > 0 shared by all the stability constraints (e.g.,
ϵlim = 0.01 in this work). On this basis, (7) and (13) can be
practically replaced by∣∣Wm,n

(
jω, σD,max

)∣∣2∣∣Wm,n( jω, σD)
∣∣2 > ϵlim ∀σD > 0, ω > 0 (LTI)

(18)∣∣Wm,n,k
(

jω, σD,max
)∣∣2∣∣Wm,n,k( jω, σD)
∣∣2 > ϵlim ∀σD > 0, ω > 0 (LTV)

(19)

with m, n = 1, . . . , NP and k = 0, ±1, . . . ,±K .
For a simpler and more compact circuit stability analysis,

an overall SCF can be introduced. In the LTI case, this can be
defined as

SC( f, σD) = min
m,n

(∣∣Wm,n
(

j2π f, σD,max
)∣∣2∣∣Wm,n( j2π f, σD)
∣∣2

)
(20)

where the min (·) operator selects the minimum value of its
argument across the m, n index space.2 According to the set
of constraints (18) and the SCF definition (20), it is concluded
that the quiescent condition V Q of the circuit under test is LTI
stable if, and only if

SC( f, σD) > ϵlim ∀σD > 0, f > 0. (21)

Similarly, in the LTV case and for any given source ampli-
tude aS , the SCF can be defined as

SC( f, σD) = min
m,n,k

∣∣Wm,n,k
(

j2π f, σD,max
)∣∣2∣∣Wm,n,k( j2π f, σD)
∣∣2 (22)

where the min (·) operator is here applied across the m, n, k
index space. According to the set of constraints (19) and
the SCF definition (22), it is concluded that the circuit is
LTV stable under large-signal operation around the quiescent
condition V Q if, and only if, SC( f, σD) > ϵlim for any
σD > 0 and f > 0, which is a condition formally identical
to (21). Practically, (22) will be checked for a discrete set of
source available powers associated with aS .

Constraint (21) can be considered a necessary and sufficient
condition for BIBO stability. In fact, if (21) is violated then
at least one element of the NSP matrix will be unbounded for
some positive values of f , σD and the circuit will be BIBO

2By using the normalization adopted, the values of SC less than 1 with
σD < σD,max should be typically expected, although values greater than 1,
yet not relevant to stability analysis, cannot be excluded a priori.
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unstable (necessary condition). Conversely, if (21) is satisfied
then all the elements of the NSP matrix will be bounded over
the entire f > 0, σD > 0 domain and the circuit will be BIBO
stable (sufficient condition).

On this basis, circuit stability/instability can be simply
verified by directly examining the SCF plots, drawn over an
adequately dense and wide sampling grid of the variables f
and σD . In both LTI and LTV cases, when stability constraint
(21) is not met, the location of the rightmost pole in the
LT-plane causing unstable behavior (i.e., violating the stability
margin) is identified by the values of f and σD , which
minimize the SCF. This can also be directly seen by visual
inspection of SCF plots shown for the application examples
provided in Section V.

Depending on the actual application context, algorithms
for function minimization could be alternatively exploited for
the verification of the SCF-based constraint (21), by avoiding
the more computationally expensive function evaluation over
dense grids in the f , σD domain.

IV. STABILITY ANALYSIS

A. PD Circuit

The original circuit under test is modified in order to satisfy
FT-domain to LT-domain equivalence conditions, leading to
verification (14) (LTI case) and (16) for any choice of k
indexes and signal amplitude aS (LTV case).

The PDC of the Thevenin-equivalent linear network in
Fig. 2 is considered first. Original port voltages ṽ(t), cur-
rents i(t), and state variables xLIN(t) are replaced by cor-
responding modified PDC variables ṽ(t, σD), i(t, σD), and
xLIN(t, σD), which are dependent on a damping parameter
σD . The model of the PDC in the FT domain must equal the
Laplace-transformed set of equations (1), (2) for any σ = σD

within the RoC of the LT functions. To this aim, it is sufficient
to modify the original circuit so that a term σDxLIN(t, σD) is
added to all the time derivatives in (2), leading to the following
PDC linear model, i.e.,

ṽ(t, σD) = A i(t, σD) + B xLIN(t, σD) (23)

dxLIN(t, σD)

dt
+ σDxLIN(t, σD)

= C i(t, σD) + D xLIN(t, σD).
(24)

Examples of how linear lumped and distributed circuit
components can be practically modified to achieve this result
and proof of FT-domain to LT-domain equivalence are given
in Appendix A.

By proceeding in a similar way, the model of the PD
nonlinear IED network is obtained in terms of the intrinsic
transistor port voltages v(t, σD), currents i(t, σD), and charges
Q(v(t, σD)). To achieve FT-domain to LT-domain correspon-
dence a term σDQ needs to be added in (3) to all the charge
derivatives, i.e.,

i(t, σD) = F
(
v(t, σD)

)
+

dQ
(
v(t, σD)

)
dt

+ σDQ(v(t, σD)

(25)

with dQ(v(t, σD)) = C(v(t, σD))v(t, σD). See Appendix B
for major details on the PD nonlinear IED network model
IV-B and the proof of FT-domain to LT-domain equivalence
under linearized conditions.

It is worth observing that the quantities σDxLIN(t, σD)

in (24) and σDQ(t, σD) in IV-B are damping terms since,
as observed in (15) and (17), they shorten the duration of the
circuit pulse responses. For very large positive values of σD ,
the time derivatives in (24) and IV-B become negligible with
respect to the algebraic damping terms, leading to a stable,
almost memoryless PDC due to the very short duration of
pulse responses. Parametrical damping with increasing positive
values of σD modifies pole locations so that unstable poles are
moved from the right to the left half-plane of the LT domain
and any unstable circuit is transformed into a stable one. For
this reason, the damping parameter σD can be also considered
as a circuit stabilizing parameter. Thanks to this behavior, the
PDC can be used for stability analysis in the FT domain,
by detecting the unstable pole crossing the imaginary axis of
the LT plane for some value of σD .

For practical implementation, in the framework of existing
CAD tools, the PDC can be directly obtained by replacing
all the circuit component models with the corresponding
PD ones, with unmodified circuit topology, as shown in
Appendix A.

The full equivalence of the nonlinear IED network PDC
model IV-B to the aim of LTI and LTV stability analysis is
mathematically proved in Appendix B.

B. NSP Matrix Computation With FT-Based
Analysis of PDCs

The circuit schematic for the computation of the NSP matrix
W( jω, σD) (LTI case), or set of matrices Wk( jω, σD) (LTV
case), by using FT-domain-based periodic steady-state analysis
algorithms (ac in the LTI case or HB in the LTV one),
is shown in Fig. 3. This circuit is made up of three parts,
to be conveniently placed on the same schematic page of the
commercial CAD tool adopted. The circuit for performance
analysis is represented in Fig. 3(c), whereas the associated
PDC for stability analysis is shown in Fig. 3(a). Small-
signal ac generators 1e at angular frequency ω are used as
perturbation sources of the current steady-state solution in
the PDC [Fig. 3(a)]. This circuit is connected to Fig. 3(c)
and the associated auxiliary PDC is represented by Fig. 3(b).
In fact, circuits [Fig. 3(b) and (c)] are both needed for the
calculation of the Thevenin-equivalent sources e appearing in
the PDC [Fig. 3(a)]. The functions of the three circuit parts
are described in more detail in the following.

The steady-state voltages v̂ at the IED ports are computed by
means of the unperturbed original circuit shown in Fig. 3(c).
When an ac analysis is executed (with signal generators aS
off), the steady-state voltages will be the time-invariant quies-
cent values v̂ = V Q (LTI case), whereas, when a power-swept
multitone HB analysis is carried out (for instance, two-tone
mixer-mode HB with one large-signal tone at an angular
frequency �S and a small-signal tone at ω), the steady-state
voltages v̂(t) will represent time varying LSOPs depending on
the current levels aS of large-signal generators (LTV case).
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Fig. 3. Circuit used for both performance and stability analysis using frequency-domain CAD tools. This is made of three parts on the same schematic page,
namely, (a) PDC with perturbation sources, (b) auxiliary PDC, and (c) unperturbed original circuit. (c) Computes the unperturbed steady-state solution v̂.
(b) evaluates voltages ṽ. (a) Allows for computation of the NSP matrix (14) (LTI case) or set of matrices (16) (LTV case).

Thevenin-equivalent voltage sources e are applied in the
PDC [Fig. 3(a)] by means of voltage-controlled voltage
sources (VCVSs). According to the Thevenin-equivalent cir-
cuit representation shown in Fig. 2 and by imposing the
conservation of the steady-state voltages v̂ at the ports of
the PD nonlinear IED network, the appropriate e values
are: e = v̂ + ṽ. The v̂ contribution is copied from circuit
[Fig. 3(c)], whereas ṽ is evaluated by means of the aux-
iliary PDC [Fig. 3(b)] and copied to Fig. 3(a). In circuit
[Fig. 3(b)], the steady-state solution v̂ is considered as an
input. By using VCVSs, the voltages v̂ in Fig. 3(c) are
copied to the PD-IED ports in Fig. 3(b) leading to the
computation of the corresponding σD-dependent currents i

flowing into the PD-IED network. These are in turn copied
with current-controlled current sources (CCCSs) and forced to
flow into the Thevenin-equivalent PD linear passive network in
Fig. 3(b), leading to the evaluation of the corresponding port
voltages ṽ. Finally, the Thevenin-equivalent sources e = v̂+ṽ

are inserted into Fig. 3(a) by using VCVSs, which copy
voltages v̂ from (c) and ṽ from Fig. 3(b).

It is worth noting that, apart from the preliminary cre-
ation of a PD component model library as described in
Section IV-A, the implementation and analysis of schematics
shown in Fig. 3 only require standard components and ac/HB
simulation methods commonly available in commercial CAD
tools (e.g., [2], [3]).

C. Procedure for Stability Analysis

Stability analysis is carried out by simulation of the circuit
in Fig. 3 with parametric sweeps over the damping parameter
σD , the perturbation frequency f and, in the case of LTV
analysis, over the large-signal levels aS . The NP ac sources
1e provide small-signal sinusoidal perturbations that can be
switched on one at a time, by repeating the parametric sweeps
for the evaluation of different columns of the NSP matrix
(14) (LTI case) or set of matrices (16) (LTV case). Simple ac
simulations are sufficient in the case of small-signal stability
analysis (LTI case), whereas multitone HB analysis is used
for the large-signal case. Standard mixer-like HB simulation
engines provided by commercial CAD tools (e.g., [2], [3]) can
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be used for this aim and HB power sources adopted for both
the large-signal tone(s) as(t) and the small-signal perturbations
1e (for instance, with amplitudes as low as −30 dBm).

After completing the NSP matrix(es) computation, neces-
sary and sufficient BIBO stability conditions (21) are easily
evaluated in terms of the SCFs (20), or (22).

It is worth noting that, although the schematics related
to the application examples provided in this work were
created manually, dedicated software-based procedures could
be implemented for an automatic netlist generation of the
auxiliary PDC and PDC in Fig. 3.

V. EXPERIMENT VALIDATION

All the stability test cases provided are based on BFR92A
medium-power silicon bipolar transistors from Infineon. The
nonlinear Gummel–Poon model provided by the foundry was
modified into a quasi-static version with parametrical damping.

It is worth noting that the PDC, based on components
described in Section IV-A and Appendix A might involve
some approximations. Although the PD models might not be
fully adequate for accurate performance prediction, especially
at high operating frequencies,3 they can be conveniently used
for stability analysis, where accuracy requirements are weaker
when considering adequately large stability margins, espe-
cially when the corresponding inaccuracies are of a pessimistic
type (e.g., losses in passive components act as additional
damping and quasi-static IED models tend to overestimate
gain).

In the following validation examples, stability analysis was
carried out by using a commercial CAD tool [3], by adopt-
ing an adequately dense grid of damping factors σD (e.g.,
10 points/◦) and frequencies (e.g., 1 f = 2 MHz) to detect
the minima of the SCFs (20), or (22). As far as the stability
margin is concerned, the chosen value of ϵlim should be
neither too small nor too large. An excessively large stability
margin might involve practical limitations on the possibility
of achieving near-optimal circuit performance in the circuit
design phase. On the other hand, too small values of ϵlim could
lead to insufficient margins in consideration of technology
process dispersion and possible inaccuracies in component
models. Too small values of ϵlim could as well lead to using
unnecessarily dense grids in the f , σD domain for detecting
instabilities. Since ϵlim is based on a normalized definition
[see (20) or (22)] of SCF, which reaches near unity in stable
situations, values in the range 10−2

÷ 10−1 can be considered
reasonable. A stability margin ϵlim = 10−2 was chosen in (21)
for the following examples. This relatively small value, chosen
for stability analysis method validation purposes, is coherent
with a hypothesis of amplitude variations and uncertainties
of the SCF (due to pseudorandom variations of technologi-
cal parameters or other error sources) not greater than 1%,

3The experiment results presented in this section were obtained by leaving
line transitions (e.g., bends and T-junctions) unmodified in the PDC and
Auxiliary PDC, whereas lines were damped in terms of attenuation blocks (see
Fig. 8, bottom-right case, in Appendix A) after estimation of the corresponding
delays. Accuracy in the estimation of starting frequencies of oscillations in all
cases was presented to prove that the performance predictions were negligibly
affected by these approximations.

Fig. 4. Single-transistor hybrid oscillator ( f0 = 430 MHz). (a) Mea-
surement of the output spectrum and inset photograph from [34]. (b) SCF
SC ( f, σD) (20) determined through the PDC-based method for LTI stability
analysis. (c) ISO-level contour plot. Self-starting oscillation is predicted at
about 428 MHz.

corresponding to very accurate implementation technology
and component models. This choice allows the achieving of
reliable prediction of both stable and unstable circuit behavior
when using an adequately dense discretization grid in the f ,
σD domain. Instead, larger values of ϵlim (e.g., 0.05 or 0.1)
could be considered as more appropriate when stability must
be guaranteed for design purposes, by assuming larger margins
for tolerances of implementation technologies and component
models.

Three validation examples with increasing order of com-
plexity in the required instability detection capabilities are
presented. Despite the nominal frequency of operation of the
examples being in the RF range, significant reactive effects
interact in all cases with nonlinearity to determine the overall
circuit behavior.

A. Single-Transistor Oscillator

The self-starting capability (i.e., instability) of a
single-transistor hybrid oscillator designed at 430 MHz
was verified by means of an LTI stability analysis. See the
measured output spectrum and a photograph of the circuit
implementation in Fig. 4(a) [34].
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The SCF (20) was computed over a dense grid of values of
the damping factor σD and frequency f , with σD,max = 1ns−1.
Fig. 4(b) shows the SC -plot in the relevant frequency range
of 420 MHz ÷ 440 MHz, while a contour plot displaying
iso-level lines of SC in the same region is shown in Fig. 4(c).
As expected, the presence of a local minimum, whose value
(3.11 · 10−3) is less than ϵlim = 10−2 (corresponding to
the smallest iso-level line shown in the plot), points out the
presence of an unstable pole at about σ = σrmp,LTI = 0.5 ns−1

and f = frmp,LTI = 428 MHz in the grid of values considered.
The measured output spectrum of the circuit confirms the
steady-state oscillation at nearly the same frequency.

B. Single-Transistor PA

The stability analysis of a single-transistor hybrid large-
signal amplifier, designed at the nominal frequency of
560 MHz, was considered [33]. The output spectrum mea-
surement (Pin = 10 dBm) and a photograph of the circuit
implementation is shown in Fig. 5(a). This circuit is LTI
stable, but it shows LTV instability arising at half of the
nominal frequency for larger input power levels [22], [35],
[36]. The three SCF graphs in Fig. 5(b)–(d) correspond to the
three different input power levels: −35(small-signal), −4, and
7 dBm, respectively.

Fig. 5(d) shows that at 7 dBm input power, the SCF has
a local minimum, whose value (0.12 · 10−3) is smaller than
ϵlim at the zero gradient point σD = σrmp,LTI = 0.1 ns−1

and f = frmp,LTI = 288 MHz, i.e., nearly half of the
operational frequency. This is coherent with the experiment
results in Fig. 5(a). On the other hand, Fig. 5(c) shows a
constrained minimum greater than ϵlim at σD nearly equal
to zero, suggesting that the LSOP corresponding to the input
power level −4 dBm is stable.

According to Fig. 5(b) and (c) no local minimum can
be found in the same region of the LT plane at reduced
input power (−4 dBm) and under small-signal operation
(−35 dBm), which implies that, by lowering input power,
the potentially unstable pole is shifted into the negative σ

region. This suggests stable circuit operation, coherently with
the experiment results.

C. Balanced Amplifier

As a final validation example, stability analysis was carried
out for a hybrid paralleled-transistor balanced amplifier, the-
oretically designed for large-signal operation at the nominal
frequency of 590 MHz. See the measured output spectrum at
Pin = 10 dBm and a photograph of the circuit implementation
in Fig. 6(a) [26], which shows large-signal (LTV) instability
at nearly half the nominal frequency [22], [35], [36]. The
stability analysis approach in [26] revealed the presence of
an odd-mode kind of large-signal instability, involving signals
flowing into the internal circuit loop. To demonstrate the
ability of the SCF-based stability analysis to detect this sort
of event, the SCF (22) (K = 8) was computed by PDC
analysis based on two-tone mixer-mode HB simulation in the
presence of a large-signal input tone at 590 MHz with the

Fig. 5. PDC-based stability analysis of a single-transistor hybrid PA ( f0 =

560 MHz). (a) Measurement of the output spectrum (Pin = 10 dBm) and inset
photograph from [33]. SCF (b) under small-signal excitation (stable LTI-case);
(c) at input power level −4 dBm (stable LTV case), and (d) at input power
level 7 dBm (unstable LTV case) with detail of the constant-level contour
plot (e).
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Fig. 6. PDC-based stability analysis of a paralleled-transistor hybrid
balanced amplifier ( f0 = 590 MHz). (a) Measurement of the output spectrum
(Pin = 10 dBm) and inset photograph from [26]. SCF S of the balanced
amplifier at input power levels b) −35 dBm and (c) 5 dBm with detail of the
iso-level contour plot (d). Analysis confirms that the circuit is LTI stable but
shows LTV instability at large-signal input power levels and 288 MHz.

power level of 5 dBm. Fig. 6(c) and (d) shows the presence
of a local minimum, whose value (0.46 · 10−3) is smaller than
ϵlim at the zero gradients at σD = σrmp,LTI = 0.16 ns−1 and
f = frmp,LTI = 288 MHz, coherently with the experiment
evidence. This corresponds to a pole with a positive real part,
thus leading to LTV unstable circuit behavior.

A new set of SCFs (22) was evaluated at the input power
level of −35 dBm (small-signal operation). The total absence
of local minima in the σD ≥ 0 plane [see Fig. 6(b)] confirms
that, by lowering the signal amplitude, the unstable pole has

Fig. 7. Flowchart describing the proposed stability analysis method as part
of a general circuit design flow. According to the outlined procedure, the
stability check could be treated run-time and together with other performance
goals. If the method is used for a one-shot stability check of a given circuit,
as in the present work, the feedback loop must be neglected.

been shifted into the left-hand side of the LT plane (LTI stable
circuit). Similar conclusions were drawn in [26] for the same
amplifier both experimentally and by means of an alternative
stability analysis method, whose validity is however limited to
symmetrical circuit topologies.

Coherently with the theoretical outcome outlined in
Section III-C, the three experiment validation examples pre-
sented confirm that (21) is a necessary and sufficient constraint
for circuit stability. In fact, in all the situations where (21)
was not satisfied [as in Figs. 4(b) and (c), 5(d) and (e), and
6(c) and (d)] experiment validation confirmed the presence
of instability [Figs. 4(a), 5(a), and 6(a)], coherently with
(21) being necessary. On the other hand, whenever (21) was
satisfied [Figs. 5(b) and (c) and 6(b)] the circuit was found to
be experimentally stable, coherently with (21) being sufficient.

VI. INTEGRATION WITH CIRCUIT DESIGN PROCEDURES

The proposed method paves the way for the direct integra-
tion of stability constraints in the framework of iterative circuit
design procedures carried out with commercially available
CAD tools (e.g., [2], [3]). In fact, the evaluation of stability
constraints (21), either based on SCFs (20) or (22), can be
executed in the framework of commercial CAD tools together
with the estimation of circuit performance goals and the
verification of other constraints like reliability and physical
feasibility.

According to the flowchart shown in Fig. 7, the library of
PD component models for the chosen technology process is
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Fig. 8. PD component models of linear capacitors, inductors, and TLINs (distributed model and compact approximated version).

initially built and the design procedure gets started with an
initial circuit design using unmodified component models.

As shown in Fig. 3, besides the circuit with unmodified
component models, the perturbed PDC and auxiliary PDC
need to be built for SCF-based stability checking. As outlined
above, the netlist generation of these PD circuits could be
automatically executed by a special-purpose software routine,
based on the original layout with unmodified component
models. Performance figures of merit and SCF evaluation over
a dense grid in the f , σD domain can now be evaluated through
standard ac- and HB-analysis-based methods, as outlined in
Section IV. In case performance goals and stability constraints
were not satisfied, circuit variants could be checked iteratively
after any manual topology change and/or optimization-driven
automatic parameter value update.

For the validation examples presented in this work, PDC
and Auxiliary PDC were manually built, and the flowchart
was followed all the way down to the stability check without
implementing the feedback loop, i.e., without the objective of
further proceeding to any circuit modification.

VII. CONCLUSION

BIBO stability constraints for small and large-signal circuit
analysis and design have been proposed. The method is
compatible with circuits described by nonlinear time-domain
differential equations, possibly including linear distributed
components modeled by delay or convolution integral opera-
tors. The approach is compatible with commercial CAD tools
used for circuit performance analysis.

Provided that a library of PD component models is
preliminarily built for the adopted process technology,
any steady-state solution of circuits, either single- or
multitransistor-based, can be checked for stability by visual
inspection of a single 2-D graph of the proposed scalar SCF
SC( f, σD). The latter can be obtained with the same analysis
techniques adopted for circuit performance evaluation, i.e.,
either through frequency-domain ac (small-signal) or multitone
quasi-periodic HB (large-signal) simulations with parametric
sweeps of the perturbation source frequency f and of the
damping parameter σD .

The SCF expression consists of a normalized equation based
on the elements of an NSP matrix, which links small-signal
perturbations connected in series to all the intrinsic transistor
ports with the corresponding port voltages. The BIBO stability

constraints are evaluated in a systematic way and stability is
checked by verifying that the function minimum is greater than
a specified stability margin. This makes the method potentially
compatible with automatic iterative circuit design procedures,
a feature not easily shared by other methods in the literature.
In fact, the creation of PD versions of the original circuit,
needed for the method execution, could be made automatic
through dedicated software routines embedded into CAD tools.

Single and multitransistor experiment validation examples
confirm the validity of the approach under both small- and
large-signal conditions.

APPENDIX A
PDC BUILDING RULES AND PD MODELS OF LINEAR

COMPONENTS

The PDC is built according to the following guidelines to
guarantee coherence with the original problem.

1) The PDC has the same topology as the original circuit
(in such a way that the Kirchhoff voltage and current
laws are the same).

2) energy-storage (i.e., frequency-dependent) circuit ele-
ments are replaced by associated PD components, whose
behavior depends on the damping factor σD . In partic-
ular, the PDC response is damped by acting on all the
components that store energy either in the form of an
electric field (like capacitors), magnetic field (inductors),
or both (TLIN-based components, active devices).

3) Memory-less component models remain unmodified.
4) The steady-state solution v̂ at the NP ports of the IEDs

keep unmodified for each damping factor σD value.
For each component type, an associated PD component is now
defined along with the corresponding model.

A. PD Linear Capacitor Model

A linear capacitor C is described in the Laplace domain by

I (p) = pCV (p) = σCV (p) + jωCV (p) (26)

with Q(p) = CV (p). According to the parametric damping
criteria defined in Section IV-A, the associated PD capacitor
model is defined as

I( jω, σD) = σDCV( jω, σD) + jωCV( jω, σD) (27)
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where V( jω, σD) and I( jω, σD) are σD-dependent voltage and
current phasors and Q( jω, σD) = CV( jω, σD). Since (27)
corresponds in the time domain to

i(t, σD) = σDCv(t, σD) + C
dv(t, σD)

dt
(28)

with q = Cv, the PD capacitor is described by the model
shown in Fig. 8, where an additional resistor with conductance
σDC is connected in parallel to the standard capacitor. The
current flowing through the resistor can be considered a
damping current iDMP(t, σD) given by

iDMP(t, σD) = σDq(t, σD) = σDCv(t, σD). (29)

The FT-domain PD capacitor model (27) is clearly equiva-
lent to the LT-domain model (26) when considering V (p) =

V( jω, σD), I (p) = I( jω, σD) for σ = σD .

B. PD Linear Inductor Model

A linear inductor L is described in the Laplace domain by

V (p) = pL I (p) = σ L I (p) + jωL I (p) (30)

with 8(p) = L I (p). According to the parametric damping
criteria defined in Section IV-A, the associated PD inductor
model is defined as

V( jω, σD) = σD LI( jω, σD) + jωLI( jω, σD) (31)

or in the time domain

v(t, σD) = σD Li(t, σD) + L
di(t, σD)

dt
. (32)

According to (32), the PD inductor model is obtained by
connecting a resistor with a value σD L in series to the standard
inductor, as shown in Fig. 8. The voltage across the resistor
can be considered as a damping voltage vDMP(t, σD) given by

vDMP(t, σD) = σ8(t, σD) = σ Li(t, σD). (33)

LT/FT-domain equivalence conditions are clearly satisfied
by (30) and (31) for σ = σD .

C. PD Transmission Line (TLIN) and Other Linear
Distributed Component Models

Based on the PD models associated with linear capacitors
and inductors, the σD-dependent PD TLIN model can be easily
obtained by adding series and parallel damping resistors to the
inductor and capacitor per unit length in the standard LC model
of the lossy line, as shown in Fig. 8. The same procedure
can be followed for any lumped-component-based equivalent
circuit of common lossy line transitions (e.g., bends and
T-junctions).

More in general, model parametric damping can be also
applied to linear component models whose dynamic behavior
is described not only by state-space derivative operators, but
also by delay operators, like pulse response functions with
associated time-domain convolution integrals and, coherently,
also PD transfer functions.

A general-purpose procedure is outlined here for the σD-
dependent PD-model construction of any linear distributed

component described by the S-parameter matrix. Sβ( jω). The
frequency-domain S-matrix model may derive from direct
measurements or, alternatively, by S-parameter simulation of
black-box linear models provided by the component foundry.

By using numerically efficient inverse-FFT algorithms,
or equivalently time-domain simulations of the single com-
ponent, the scattering-wave pulse responses sβ,i j (t) =

F −1
{Sβ,i j ( jω)} for each i, j = 1, 2 can be calculated. As is

well-known, these time-domain functions relate reflected and
incident waves (typically defined by adopting 50 � normal-
ization) through causal convolution integrals, i.e.,

bβ.i (t) =

∫
∞

0
sβ,i j (τ )aβ, j (t − τ)dτ . (34)

The PD elements of the lossy distributed component S-
parameter matrix Sβ( jω, σD) are then obtained, through
DFT-based numerical methods, according to

Sβ,i j ( jω, σD) = F
{
sβ,i j (t)e−σD t}. (35)

It is straightforwardly verified that Sβ(p) = Sβ( jω, σD)

when σ = σD . In fact, for each element of the matrix, it holds

Sβ,i j (p) =

∫
∞

0
sβ,i j (t)e−pt dt

=

∫
∞

0

(
sβ,i j (t)e−σD t)e− jωt dt = Sβ,i j ( jω, σD). (36)

An ideal lossless TLIN, which introduces a pure signal
delay τ , is a special case of the previous theory. For instance,
considering a 50 � characteristic impedance lossless TLIN
(S21( jω) = e− jωτ ), the PD S21( jω, σD) parameter becomes

S21( jω, σD) = e−σDτ S21( jω) (37)

which corresponds to S21(p) = e−pτ when σ = σD . In this
simple case, parametric damping is simply obtained by cas-
cading an attenuation block with the TLIN as shown in Fig. 8.
Here, the attenuation has been equivalently split into two equal
factors (e−σDτ/2) at the beginning and at the end of the TLIN,
so preserving the line symmetry.

D. PD Model of the Linear Passive Network

According to the rules given, the associated PD pas-
sive linear network is created by replacing each elementary
energy-storage component in the original linear passive net-
work with its PD counterpart. Since the original network
and the PD one share the same topology, the respective state
space models (1) and (2) and (23) and (24) necessarily entail
the same matrices A , B , C , D . Thanks to this feature, the
Laplace-transformed model of (1) and (2), i.e.,

Ṽ (p) = A I (p) + B XLIN(p) (38)
pXLIN(p) = C I (p) + D XLIN(p) (39)

and the Fourier-transformed model of (23) and (24), i.e.,

Ṽ( jω, σD)

= A I( jω, σD) + B XLIN( jω, σD) (40)
jωXLIN( jω, σD) + σDXLIN( jω, σD)

= C I( jω, σD) + D XLIN( jω, σD) (41)
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provide the same electrical solution for any σ = σD within the
RoC of the LT-domain functions, when used in conjunction
with the PD nonlinear IED network model. By adopting
the PD models into the circuit schematic aimed at stability
analysis in Fig. 3, the LT-domain-equivalent solution of the
original circuit can be checked against stability, just relying
on standard ac (LTI case) or HB (LTV case) FT-domain-based
simulations. This also guarantees to satisfy conditions (14)
(LTI) and (16) (LTV) on NSP matrices, which are fundamental
for the definition of BIBO stability constraints outlined in
Section III-C.

APPENDIX B
PD MODEL OF THE NONLINEAR IED NETWORK

The σD-dependent PD nonlinear IED network model must
be defined to provide, FT-domain to LT-domain equivalence
under linearized conditions around either the quiescent point
(LTI analysis) or any given LSOP (LTV analysis). To this aim,
a set of modified PD conduction current-voltage characteristics
F(v(t, σD), σD) is first introduced as

F(v(t, σD), σD)
.
= F(v(t, σD)) + σDQ(v(t, σD)) (42)

with Q(v(t, σD)) = Q(v(t, σD)) − Q(0). According to (42)
the F(v(t, σD), σD) characteristics satisfy F(0, σD) = 0 and
avoid nonphysical damping conduction current, associated
with charge storage phenomena, at v(t, σD) = 0.

Thus, the PD model associated with the nonlinear IED
network is finally defined as

i(t, σD) = F(v(t, σD), σD) +
dQ(v(t, σD))

dt
(43)

which is fully equivalent to IV-B.

A. LTI Case

Let us name Ŷ NL(p) the admittance matrix that describes
the linearized behavior of the original IED network model (3)
around a quiescent condition v = v̂ = V Q (stationary solution
of the LTI stability problem). The PD IED model must provide
an associated ŶNL( jω, σD) matrix that satisfies

ŶNL( jω, σD) = Ŷ NL(p) (44)

when σ = σD . It is now proven how the σD-dependent PD
IED model (43) leads to satisfying (44) when used in the
framework of a linear ac (LTI case) simulation.

The linearized response of the original IED model (3)
around the quiescent point V Q is described in the LT-domain
by

Ŷ NL(p) = ĝ + pĈ = ĝ + σ Ĉ + jωĈ (45)

where ĝ = (∂ F(v)/∂v)v=v̂=v̂Q
and Ĉ = (C(v))v=v̂=V Q

. On the
other hand, the linearization of the PD IED model (43) around
the stationary solution v̂ = V Q leads, after F -transforming to

ŶNL( jω, σD) = ĝ(σD) + jωĈ (46)

where a quasi-static displacement charge dQ = C(v)dv has
been assumed, ĝ(σD) = (∂F[v, σD]/∂v)

v(t,σD)=v̂=V Q
and Ĉ =

(C(v))
v(t,σD)=v̂=V Q

for any choice of the damping factor σD .

The linearized PD IED model frequency response (46) and
the linearized IED model in the Laplace domain (45) coincide
for σ = σD since

ĝ(σD) = ĝ + σDĈ . (47)

B. LTV Case

In the LTV case, linearization of the IED model (3) around
any generic LSOP v̂(t) (stationary solution) leads to the
time-variant linear relationship

1i(t) = ĝ(t)1v(t) + Ĉ(t)
d1v(t)

dt
(48)

where 1v(t) are small-amplitude deviations of instantaneous
voltages with respect to v̂(t), with ĝ(t) = (∂ F(v)/∂v)v(t)=v̂(t)
and Ĉ(t) = C(v̂(t)). By assuming a periodic regime with
period Ts (�s = 2π/Ts) the time-variant conductance ĝ(t)
and capacitance Ĉ(t) can be expanded in the Fourier series as

ĝ(t) =

+K∑
k=−K

ĝk · e jk�s t

Ĉ(t) =

+K∑
k=−K

Ĉk · e jk�s t

(49)

where sums are limited to the maximum order K , were ĝk and
Ĉk are complex Fourier coefficient matrices. By replacing (49)
in (48) and L-transforming it is obtained

1I (p) =

+K∑
k=−K

Ŷ NL,k(p) · 1V (p − jk�s). (50)

with

Ŷ NL,k(p) = ĝk + (p − jk�s)Ĉk . (51)

On the other hand, analogous linearization of the σD-
dependent PD IED model (43) around the same LSOP, leads
to

1i(t, σD) = ĝ(t, σD)1v(t, σD) + Ĉ(t)
d1v(t, σD)

dt
(52)

where ĝ(t, σD) = (∂F[v, σD]/∂v)
v(t,σD)=v̂(t) and Ĉ(t) =

(C(v(t, σD)))
v(t,σD)=v̂(t) for any choice of the damping factor

σD . Thanks to (42) and (49)

ĝ(t, σD) = ĝ(t) + σDĈ(t) =

+K∑
k=−K

ĝk(σD) · e jk�s t (53)

where ĝk(σD) = ĝk + σDĈk . Thus, after replacing (53) with
(52), after a few mathematical steps, the current deviation
predicted by the PD IED model in the frequency domain is
obtained

1I( jω, σD) =

+K∑
k=−K

ŶNL,k( jω, σD) · 1V( jω − jk�s, σD)

(54)

with

ŶNL,k( jω, σD) = ĝk + σDĈk + j(ω − k�s)Ĉk . (55)

As expected, the current versus voltage conversion matrix
coefficients YNL,k( jω, σD) in (55) coincide with the corre-
sponding Y NL,k(p) terms in (51) when σ = σD .
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