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Abstract— Applying quantum computation to solve electro-
magnetic (EM) problems is still at an early age. Recently,
an initial study on applying quantum computation to solve the
finite element method (FEM) equations in the EM domain has
been made. This article makes a further development beyond
the initial study. Specifically, we first develop an approach
to systematically prepare the quantum state to represent the
right-hand side (RHS) vector of the finite element equation in
EM problems. Then, to reduce the number of gates needed in
the quantum state preparation process, we propose a quantum-
gate-reduction method, which explores the fact that the FEM
cells in the input port are a small portion of the total cells in
the 3-D EM structure and that the number of gates needed
for state preparation depends on the RHS vector’s sparsity
pattern. Based on the proposed quantum-gate-reduction method,
we further derive the upper and lower bounds analytically for the
number of gates needed in the quantum state preparation circuit.
Furthermore, to deal with the large condition number of the
finite element matrix in EM, we leverage a matrix preconditioner
to modify the original linear equations, so as to reduce the
number of qubits required in using quantum computation to
solve EM problems. Two EM examples are used to illustrate
how the proposed quantum computing method can be used to
find solutions to EM problems.

Index Terms— Electromagnetic (EM), finite element method
(FEM), Harrow–Hassidim–Lloyd (HHL), quantum computing.

I. INTRODUCTION

BEING one of the most thriving topics for solving
large-scale problems, quantum computing (or quantum

computation) has attracted increasing attention from the com-
putational community in recent years [1], [2], [3]. In certain
cases, quantum algorithms provide exponential speedups over
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their classical counterparts running on classical computers.
Quantum computing opens many new opportunities for sim-
ulating complex physical systems, one of which is electro-
magnetic (EM) structures. Despite the intensive research on
quantum computing in recent years, the study of quantum
simulation of EM structures is sparse in the literature. In [4]
and [5], a quantum computing algorithm based on the trans-
mission line matrix (TLM) method has been presented for
EM simulation. In [1], the possibility of applying quantum
computing to solve the finite element method (FEM) equations
in EM [6] has been investigated. Later on, in [7], quantum
computation has been applied to solve matrix equations arising
from the application of the method of moments (MoM) to
solving EM problems.

The initial study in [1] was conducted based on the Harrow–
Hassidim–Lloyd (HHL) algorithm [8], developed recently in
the quantum computation community for solving the quantum
version of linear equations [9]. In theory, the HHL algorithm
can solve linear equations exponentially faster than classical
computation. In the last decade, HHL has promoted the devel-
opment of a plethora of approaches to solving mathematical
tasks [10], [11], [12], [13], [14]. The study of [1] reformulates
the finite element equation into a new quantum computation
format, which opens the opportunity for solving finite element
equations of EM problems by the HHL algorithm. Recently,
an application of the sparse approximate inverse (SPAI) pre-
conditioner in conjuction with the HHL algorithm to compute
the EM scattering cross section of an arbitrary target has been
investigated in [15]. However, how to efficiently set up the
state preparation quantum circuit for the right-hand side (RHS)
vector in the FEM for EM problems remains unexplored.

Efficient quantum state preparation is an indispensible com-
ponent for applying quantum computation to solving EM
problems. In the last decade, several methods have been
reported to construct the quantum circuit for quantum state
preparation [16], [17]. However, these studies focus on the
preparation of the quantum state for a full vector. In the finite
element linear equations for EM problems, the RHS vector is
evaluated based on the EM excitation in the input port of the
3-D EM structure. Our investigations show that the gate count
will increase proportionally with the vector size if we prepare
the quantum state for the RHS vector (i.e., EM excitation
vector) as a full vector, which means that the exponential
speedup of HHL will vanish in the very first step. To maintain
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HHL’s exponential speedup when being applied to solve EM
problems, it is crucial to develop a quantum circuit in which
the gate count increases (no worse than) logarithmically with
respect to vector size, which remains an open topic in the
literature.

In this article, we make a further development beyond
the work of [1]. In particular, we develop an approach to
systematically prepare the quantum state to represent the
EM excitation vector of the finite element equation in EM.
To improve the quantum state preparation efficiency, we fur-
ther propose a quantum-gate-reduction method to reduce the
number of gates needed in the state preparation of the EM
excitation vector. The proposed method explores the fact that
the EM excitation vector in EM problems is always sparse
and that the number of gates needed for state preparation
depends on the EM excitation vector’s sparsity pattern. Based
on the proposed quantum-gate-reduction method, we derive
the upper and lower bounds analytically for the number of
gates needed in the state preparation process to theoretically
demonstrate that the gate count increases logarithmically with
respect to the EM excitation vector size. Because of this, the
HHL’s exponential speedup is maintained even if the state
preparation procedure for the EM excitation vector is included.
Furthermore, to deal with the high condition number of the
finite element matrix, we leverage the SPAI preconditioner
to modify the linear equation in the FEM formulation of EM
problems. In this way, we reduce the number of qubits required
in applying quantum computation to solving EM problems.
Two EM examples are presented to demonstrate how the
proposed quantum computing method can be applied to find
solutions to EM problems.

II. PRELIMINARIES

A. Qubits and Quantum States

The quantum bit (or qubit for short) is the fundamental unit
of information in quantum computing. A qubit has a state,
called quantum state. In quantum mechanics, we represent
states as vectors. Two possible states for a qubit are |0⟩ and
|1⟩, which are usually identified as column vectors

|0⟩ ≜

[
1
0

]
(1)

and

|1⟩ ≜

[
0
1

]
(2)

respectively, where notation “|⟩” is the standard notation
(called Dirac notation) to describe the state of qubits in
quantum mechanics [2]. For example, a column vector and
a row vector are written in Dirac notation as |u⟩ and ⟨u|,
respectively. The inner and outer products of two vectors |u⟩

and |v⟩ are denoted by ⟨u|v⟩ and |u⟩⟨v|, respectively.
A qubit can be in a state other than |0⟩ and |1⟩, by form-

ing linear combinations of states (called superpositions) as
follows:

|ϕ⟩ = α|0⟩ + β|1⟩ ≜

[
α

β

]
(3)

where α and β are the complex coefficients, with |α|
2

+

|β|
2

= 1. When we examine/observe a qubit, we get the result
0 or 1 with probabilities |α|

2 or |β|
2, respectively. A two-

qubit system has four computational basis states denoted as
|00⟩, |01⟩, |10⟩, and |11⟩. The quantum state of two qubits
can be described by the state vector

|ϕ⟩ = α0|00⟩ + α1|01⟩ + α2|10⟩ + α3|11⟩ (4)

which is sometimes, for notational convenience, written as
follows:

|ϕ⟩ =

3∑
i=0

αi |i⟩ (5)

where |i⟩ is a vector of size 4, i = 0, 1, 2, 3, and
∑

i |αi |
2

= 1.
One may note that the notations in the set of basis vectors
in (4) are the binary representations of the notations in
the set of basis vectors in (5). Let N = 2n; then, an n-
qubit quantum state can be expressed in a similar manner
as follows:

|ψ⟩ =

N−1∑
i=0

αi |i⟩ (6)

where |i⟩ is a vector of size N and i = 0, 1, . . . , N − 1.
Notably, the total number of coefficients to describe an n-qubit
quantum state is N , and the coefficients satisfy

N−1∑
i=0

|αi |
2

= 1. (7)

We can represent the quantum state |ψ⟩ with a vector as
shown below

|ψ⟩ ≜


|α0|eiθ0

|α1|eiθ1

...

|αN−1|eiθN−1

. (8)

It should be noticeable that in quantum computation, it is
the relative difference between the angles (or phases) for
different coefficients that is important. We refer to a phase
eiθg as a global phase if it is applied to the entire state, not
just one term in the superposition. A global phase change
has no impact on quantum measurements, which means that
the measurement statistics obtained by measuring two states
with a global phase difference are exactly identical. In such
cases, we say that the two states are equal, up to global
phase [2].

B. Quantum Operators and Quantum Circuits
In quantum computation, the whole computation process

is described by quantum states evolving under the action of
a series of quantum gates/operators. Each quantum operator
(gate) is mathematically represented by a square unitary matrix
of size N × N , where N = 2n if one applies the operator
to n qubits. Taking the one-qubit Hadamard operator as an
example, the matrix to represent the Hadamard operator is
defined as follows:

H ≜
1

√
2

(
1 1
1 −1

)
. (9)
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Fig. 1. (a) Circuit diagram of a quantum circuit wire with no operator on it.
(b) Circuit diagram of the initial prepared state. (c) General circuit diagram
of binary operators, where the letter U represents the specific operator.
(d) Example of a two-qubit quantum circuit diagram [2].

Another two important operators, which will be used in
Section III and Appendixes B and C, are the elementary
rotation gates Ry(θ) and Rz(θ). Mathematically, the Ry(θ)

gate can be represented by the following 2 × 2 matrix:

Ry(θ) ≜

cos
(
θ

2

)
− sin

(
θ

2

)
sin
(
θ

2

)
cos
(
θ

2

)
 (10)

while the Rz(θ) gate can be mathematically represented by

Rz(θ) ≜

[
e−i θ2 0

0 ei θ2

]
. (11)

Applying a quantum operator to a quantum state is equivalent
to mathematically multiplying the state vector by the matrix
representing the operator.

Quantum circuits are typically depicted by circuit diagrams,
which are constructed and read from left to right. The con-
struction of a quantum circuit diagram begins with the circuit
wire represented by a line, as shown in Fig. 1(a). A line
with no operator means that the qubit remains in the state
in which it was previously prepared. The initial prepared
state is denoted with a ket and label on the left of the wire,
as shown in Fig. 1(b). A commonly used quantum operator
is denoted by a box containing the letter that represents that
operator straddling the line. For example, a binary gate is
denoted as an operator box spanning two quantum wires,
as illustrated in Fig. 1(c). An example of a two-qubit quan-
tum circuit diagram is given by Fig. 1(d), which consists
of a Hadamard operator, a controlled-NOT operator, and a
measurement operator [represented by the “meter” symbol
in Fig. 1(d)] applied to two qubits initially prepared in
the ground state |0⟩. The measurement operator converts a
single qubit state |ϕ⟩ = α|0⟩ + β|1⟩ into a probabilistic
classical bit, which is 0 with probability |α|

2, or 1 with
probability |β|

2 [3].

III. PROPOSED QUANTUM COMPUTING METHOD FOR
SOLVING EM PROBLEMS BASED ON THE FEM

This section presents the proposed quantum computing
method for solving finite element equations in the EM domain
in detail. We first reformulate the EM finite element equation
into a quantum computation format. Then, we incorporate

the SPAI preconditioner into the reformulation to deal with
the large condition number of the EM finite element matrix.
Next, we present a systematic method for efficient quantum
state preparation of the RHS vector, followed by deriv-
ing the number of gates needed in the state preparation
circuit. Finally, we illustrate the procedure of solving the
preconditioned reformulated FEM equation using the HHL
algorithm.

A. Reformulation of the Finite Element Equations in EM
Problems for Quantum Computation

The final result of the finite element formulation for
many problems in EM as well as in other engineering
fields is a set of linear equations that can be written as
follows [6]:

Kφ = c (12)

where c is the known vector describing the specific excitation,
K is the finite element matrix, and φ is the vector containing
all the unknowns [i.e., degrees of freedom (DoFs)] used to
approximate the electric fields in the solution domain.

Let M be the number of rows (or columns) of the matrix K .
The application of HHL to solving linear equations requires
the system matrix to be Hermitian. In addition, the number
of rows of the matrix should be an integer power of 2 to
allow the use of a certain number of qubits to represent the
RHS and the solution vectors. Since the finite element matrix
K is not Hermitian directly and the number of rows of K
is typically not an integer power of 2, we reformulate (12)
into an equivalent equation where the system matrix is in
Hermitian format. Let Ã be the new matrix of the reformulated
equation. In order to allow further formalization of the matrix
in Sections III-B and III-D, we propose to formulate Ã as
follows:

Ã =

0M×M K 0M×m

K † 0M×M 0M×m

0m×M 0m×M 3̃m×m

 (13)

where the symbol † represents complex conjugate transpose,
and m is given by

m = 2⌈log2 M⌉+1
− 2M. (14)

The expression ⌈log2 M⌉ denotes rounding to the smallest
integer that is greater than log2 M . The symbol 3̃ represents
an m × m diagonal matrix, defined as follows:

3̃ =


λ̃min

−λ̃min
. . .

λ̃min

−λ̃min

 (15)

where λ̃min is the smallest positive eigenvalue of the 2M ×

2M Hermitian matrix K̃ , defined as follows:

K̃ =

[
0M×M K

K † 0M×M

]
. (16)
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Note that the matrix 3̃ is a repetition of the smallest eigenvalue
λ̃min for several times across the entire diagonal. In other
words, 3̃ only contains the smallest positive eigenvalue of
matrix K̃ , instead of all its eigenvalues. For a sparse matrix
K̃ , computing its minimum eigenvalue is much easier than
computing all of its eigenvalues. For example, the value of λmin
can be precomputed very efficiently using classical numerical
methods, such as the Arnoldi algorithm [18]. The “eigs”
function in MATLAB is an example of implementation.

Let N be the number of rows (or columns) of Ã. According
to (13), the value of N should be

N = 2⌈log2 M⌉+1. (17)

Notably, the reformulated matrix Ã is Hermitian, and its
number of rows (or columns) is an integer power of 2, which
satisfies the format requirements of the HHL algorithm.

Next, we formulate the RHS vector of the new equation as
follows:

b̃ =

cT 01×M 0 0 . . . 0 0︸ ︷︷ ︸
m zeros

T

. (18)

Let us define x as a vector of N unknown elements. Then, the
original finite element equation (12) can be reformulated into
the following format:

Ãx = b̃ (19)

where the second M elements (out of a total of N elements) of
the N -dimensional vector x represent the electric field solution
vector φ and the N -dimensional vector b̃ contains the EM
excitation vector c.

We intend to propose a quantum computing method based
on the HHL algorithm to solve (19). The performance of the
HHL algorithm highly relies on the condition number of the
reformulated matrix Ã. For HHL to achieve an exponential
speedup, the condition number can scale at most polylogarith-
mically with the size of Ã [15]. However, in most situations,
the matrix K resulting from EM problems, especially that with
a large dimension, is usually relatively ill conditioned [6].
The main reason for this phenomenon can be the existence
of “bad aspect ratio” elements due to mesh refinement [19],
[20]. As a consequence, the reformulated matrix Ã is not well
conditioned, either. This will lead to a large number of qubits
in the use of HHL and reduce the HHL algorithm’s efficiency.
Since Ã usually has a large condition number, we implement
the SPAI preconditioner to the Hermitian matrix to improve
the efficiency of the HHL algorithm according to the existing
literature, as illustrated in Section III-B.

B. Preconditioning of the Reformulated Equation With SPAI

We address the above problem using the matrix precondi-
tioning technique. We aim to find a preconditioning matrix
(i.e., preconditioner) P and solve the preconditioned linear
equation

P Kφ = P c (20)

rather than solving the original linear equation (12)
directly.

Commonly used preconditioners in the EM community
include the diagonal, block diagonal, incomplete lower–upper
(LU), symmetric successive overrelaxation (SSOR), and SPAI
preconditioners [21], [22]. Among these preconditioning tech-
niques, we adopt the SPAI technique [23], [24], [25] as
the basis to develop our preconditioning method. The SPAI
technique guarantees that the condition number of P K is
much lower than that of K , while the preconditioned matrix
P K has good sparsity [15]. In particular, P is found by
minimizing [23]∥∥K T PT

− I
∥∥2

F =

M∑
k=1

∥∥(K T PT
− I

)
ek
∥∥2

2 (21)

where the expressions ∥·∥F and ∥·∥2 denote the Frobenius
norm and the L2 norm, respectively; I represents the identity
matrix; and ek (k = 1, . . . ,M) is the kth column of the identity
matrix.

One can separate (21) into M independent least squares
problems [23]

min
p′

k

∥∥K T p′

k − ek
∥∥

2, k = 1, . . . ,M (22)

where p′

k represents the kth column of PT . The SPAI tech-
nique imposes an initial sparsity constraint on P (e.g., to be
the same as K ) and updates the sparsity pattern iteratively.
Since p′

k is allocated with a fixed sparsity pattern, one can
eliminate many rows in p′

k and the corresponding columns
in K T when solving the least squares problem (22). Since
the finite element matrix K itself is sparse, one can further
eliminate many rows in K T when solving (22). This results
in M least squares problems of a much smaller size than that
of (22) as follows:

min
p̂′

k

∥∥∥K̂ ′ p̂′

k − êk

∥∥∥
2
, k = 1, . . . ,M (23)

where K̂ ′, p̂′

k , and êk represent the K T , p′

k , and ek after
size reduction, respectively. More details of the SPAI tech-
nique are provided in Appendix A. One should notice
that in simple cases where the conditional number of
K is small enough to be handled by the standard HHL
algorithm, the preconditioner can be simply set as the identity
matrix, i.e., P = I M×M .

Once the preconditioner P is found, we formulate a pre-
conditioned Hermitian matrix, A, of size N × N , as follows:

A =

 0M×M P K 0M×m

(P K )† 0M×M 0M×m

0m×M 0m×M 3m×m

 (24)

where 3 represents an m × m diagonal matrix, defined as
follows:

3 =


λmin

−λmin
. . .

λmin
−λmin

 (25)
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where λmin is the smallest positive eigenvalue of the
2M × 2M preconditioned Hermitian matrix K̃ precond, defined
as follows:

K̃ precond =

[
0M×M P K
(P K )† 0M×M

]
. (26)

Define the RHS vector of the preconditioned equation as
follows:

b =

(P c)T 01×M 0 0 . . . 0 0︸ ︷︷ ︸
m zeros

T

. (27)

Now, we have the preconditioned finite element equation for
solving EM problems

Ax = b (28)

where the second M elements (out of a total of N elements)
of the vector x represent the electric field solution vector φ.
In Section III-C, we describe how to prepare the quantum state
for representing the RHS vector b.

C. Proposed Quantum State Preparation for the RHS Vector
b in the Preconditioned Finite Element Equation

One crucial step for applying quantum computation to
solve (28) is to set up the quantum circuit to prepare the
quantum state to represent the RHS vector b. The HHL’s
exponential speedup assumes the availability of an “efficient”
preparation of the quantum state for b [8]. In the quantum
linear systems algorithms literature, “efficient” is taken to be
“polylogarithmic” in the system size N [9]. This section along
with Section III-D propose a systematic method to construct
such a quantum circuit.

Suppose that b is an N -dimensional complex-valued vector,
i.e., b = [b1 b2 · · · bN ]

T. Let n be the number of qubits used
to represent the RHS vector b, i.e., n = log2 N . To facilitate
understanding, we first use the three-qubit case (i.e., n = 3) as
an example to illustrate how to prepare the quantum state for
b. Then, we generalize the formulation for the n-qubit case.
Notice that the magnitude of b is not necessarily 1. Since
quantum states are normalized, we use b̄ = [b̄1, b̄2, . . . , b̄8]

T

to represent the normalized vector of b as follows (in EM
applications, there is always an input port with EM excita-
tion, so the vector b always contains at least one nonzero
entry):

b̄ =
b

∥b∥2
. (29)

Let |b̄⟩ represent the quantum state corresponding to b̄. The
quantum circuit for preparing |b̄⟩ consists of a magnitude
preparation circuit followed by a phase preparation circuit,
illustrated as follows.

1) Magnitude Preparation for Three-Qubit |b̄⟩: First, let us
make the following definitions:

ξ1 = arctan
∣∣∣∣b2

b1

∣∣∣∣ (30)

ξ2 = arctan
∣∣∣∣b4

b3

∣∣∣∣ (31)

ξ3 = arctan
∣∣∣∣b6

b5

∣∣∣∣ (32)

ξ4 = arctan
∣∣∣∣b8

b7

∣∣∣∣ (33)

81 = arctan

√
|b3|

2
+ |b4|

2

|b1|
2
+ |b2|

2 (34)

82 = arctan

√
|b7|

2
+ |b8|

2

|b5|
2
+ |b6|

2 (35)

91 = arctan

∣∣∣∣∣
∑8

k=5|bk |
2∑4

k=1|bk |
2

∣∣∣∣∣. (36)

Then, the quantum circuit to prepare the magnitudes of
|b̄⟩, i.e., |b̄1|, |b̄2|, . . . , |b̄8|, is shown in Fig. 2. Taking the
one-qubit case [as shown in (3)] as an illustration, the rotation
gate Ry(9) reallocates the proportions of the state |ψ⟩ being
|0⟩ and |1⟩ according to the phase parameter 9. In other words,
by applying Ry(9) to the ground state |0⟩, we can get the
correct magnitudes α and β as desired (refer to Appendixes B
and C for more details).

2) Phase Preparation for Three-Qubit |b̄⟩: Let θk be the
phase of bk , i.e., (if bi = 0, we let θi = 0)

θ1 = ̸ b1 (37)
θ2 = ̸ b2 (38)
...

θ8 = ̸ b8. (39)

We make the following definitions:

ξ̄ 1 =
1
2
(θ2 − θ1) (40)

ξ̄ 2 =
1
2
(θ4 − θ3) (41)

ξ̄ 3 =
1
2
(θ6 − θ5) (42)

ξ̄ 4 =
1
2
(θ8 − θ7) (43)

8̄1 =
1
4

[(θ3 + θ4)− (θ1 + θ2)] (44)

8̄2 =
1
4

[(θ7 + θ8)− (θ5 + θ6)] (45)

9̄1 =
1
8

(
8∑

k=5

θk −

4∑
k=1

θk

)
. (46)

Then, the quantum circuit to prepare the phase of |b̄⟩ is
shown in Fig. 3. Taking the one-qubit case [as shown in (3)]
as an illustration, the application of the rotation gate Rz(9̄)

to state |ψ⟩ allows us to change the phase difference between
the two coefficients α and β. In other words, by applying
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Fig. 2. Quantum circuit to implement the magnitude preparation of |b̄⟩: the three-qubit example. The symbol ⊕ represents the NOT operator. The black
dot(s) upon each Ry gate means that the gate is controlled by the corresponding qubit(s). For example, the two black dots above the gate Ry(2ξ1) means that
this Ry gate applied on the third qubit is controlled by the top two qubits, conditional on these two qubits’ states being |00⟩.

Fig. 3. Quantum circuit to implement the phase preparation of |b̄⟩: the three-qubit example. The black dot(s) upon each Rz gate means that the gate is
controlled by the corresponding qubit(s). For example, the two black dots above the gate Rz(2ξ̄2) mean that this Rz gate applied on the third qubit is controlled
by the top two qubits, conditional on these two qubits’ states being |01⟩.

Fig. 4. Overall quantum circuit to prepare a three-qubit |b̄⟩, including magnitude and phase.

Rz(9̄) to the state obtained from the magnitude preparation
circuit, we can get the desired phase difference between the
coefficients. The overall circuit to prepare the quantum state
|b̄⟩, including magnitude and phase, is shown in Fig. 4.
Appendixes B and C illustrate the quantum computation
procedures of preparing |b̄⟩ for the one-qubit and two-qubit
cases, respectively.

Now, we generalize the above formulation to the n-qubit
case. To ease the generalization procedure, we slightly change
the indices of the elements in b and unify the symbols ξ ,
8, and 9 as one symbol 8 with respective superscripts.
Specifically, let b represent an N -dimensional complex-valued
vector, i.e., b = [b0 b1 · · · bN−1], where N = 2n . Let the
phase of b j be denoted by θ j ( j = 0, 1, . . . , N − 1). Then, b
can be represented as follows:

b =


|b0|eiθ0

|b1|eiθ1

...

|bN−1|eiθN−1

. (47)

From here onward in this section, we use the symbols i and
l (i, l ∈ {0, 1, . . . , n − 1}) to denote the indices of qubits and
use the symbols j and k ( j, k ∈ {0, 1, . . . , N −1}) to denote a
decimal integer in the range of from 0 to N − 1. The value of

k can be converted into the binary representation as follows:

k =
[
k0 k1 · · · kl−1

]
2 (48)

where 1 ≤ l ≤ n − 1 and ki (ki ∈ {0, 1}) denotes the i th
element in the binary representation of k. An example of the
relationship between k and ki for l = 3 is shown in Table I.

We define the symbol 8(l)
k as the phase parameter for the

kth rotation gate (i.e., Ry) at the lth qubit, where

k =


0, if l = 0
l−1∑
i=0

ki 2l−1−i , if l = 1, 2, . . . , n − 1.
(49)

Note that (49) simply relates the value of k with its binary
representation [k0 k1 · · · kl−1]2. For a given l, there are,
in total, 2l possible values (i.e., k ∈ {0, 1, . . . , 2l

− 1}) for
k whose binary representation can be written as (48). Then,
we derive the value of 8(l)

k as follows:

8
(l)
k = arctan

√√√√∑I1+I2
j=I1

∣∣b j
∣∣2∑I0+I2

j=I0

∣∣b j
∣∣2 (50)
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Fig. 5. Quantum circuit for preparing the magnitude of an n-qubit |b̄⟩, where the final state |ϕ0ϕ1 . . . ϕn−1⟩ represents |b̄⟩ with correct magnitude and zero
phase. The symbol R(l)y,k inside each block represents the rotation gate Ry(28

(l)
k ).

TABLE I
RELATIONSHIP BETWEEN k AND ki WHEN l = 3: PRESENTED FOR THE

UNDERSTANDING OF (48) AND (49)

where

I0 =


0, if l = 0
l−1∑
i=0

ki 2n−1−i , if l = 1, 2, . . . , n − 1
(51)

I1 = I0 + 2n−1−l (52)

I2 = 2n−1−l
− 1. (53)

We define another symbol 8̄(l)
k as the phase parameter for

the kth rotation gate (i.e., Rz) at the lth qubit, where the
definition of k is the same as that in (49). The value of 8̄(l)

k
is derived as follows:

8̄
(l)
k =

1
2n−l

I1+I2∑
j=I1

θ j −

I0+I2∑
j=I0

θ j

, l = 0, 1, . . . , n − 1

(54)

where I0, I1, and I2 are defined in (51)–(53), respectively.
Similar to the three-qubit case, the quantum circuit for prepar-
ing an n-qubit quantum state |b̄⟩ consists of a magnitude
preparation circuit followed by a phase preparation circuit.
They are constructed as follows.

3) Magnitude Preparation for n-Qubit |b̄⟩: The magnitude
preparation circuit is set up step by step as follows.

Step M1) Initialize the states on all the n qubits as |0⟩.

Step M2) For each l ∈ {0, 1, . . . , n − 1} and k ∈

{0, 1, . . . , 2l
− 1}, find the phase parameter 8(l)

k
according to (50).

Step M3) Apply the kth rotation gate Ry(28
(l)
k ) to the lth

qubit, where l ∈ {0, 1, . . . , n − 1} and k ∈

{0, 1, . . . , 2l
− 1}.

Step M4) If l > 0, then the kth rotation gate Ry(8
(l)
k ) should

be controlled by the qubits l ′ ∈ {0, 1, . . . , l −

1}, conditional on these qubits’ states being
|k0⟩ ⊗ |k1⟩ ⊗ · · · ⊗ |kl−1⟩. Here, the values of
k0, k1, . . . , kl−1 are determined by the binary rep-
resentation of k, as shown in Table I.

Fig. 5 shows the quantum circuit for preparing the magni-
tude of an n-qubit |b̄⟩.

4) Phase Preparation for n-Qubit |b̄⟩: The phase prepara-
tion circuit is set up step by step as follows.
Step P1) Get the states of all the n qubits from the magnitude

preparation circuit.
Step P2) For each l ∈ {0, 1, . . . , n − 1} and k ∈

{0, 1, . . . , 2l
− 1}, find the phase parameter 8̄(l)

k
according to (54).

Step P3) Apply the kth rotation gate Rz(28̄
(l)
k ) to the lth

qubit, where l ∈ {0, 1, . . . , n − 1} and k ∈

{0, 1, . . . , 2l
− 1}.

Step P4) If l > 0, then the kth rotation gate Rz(8̄
(l)
k ) should

be controlled by the qubits l ′ ∈ {0, 1, . . . , l −

1}, conditional on these qubits’ states being
|k0⟩ ⊗ |k1⟩ ⊗ · · · ⊗ |kl−1⟩. Here, the values of
k0, k1, . . . , kl−1 are determined by the binary repre-
sentation of k, as shown in Table I.

Fig. 6 shows the quantum circuit for preparing the phase of
an n-qubit |b̄⟩.

D. Proposed Quantum Gate Reduction for Efficient
State Preparation of the Preconditioned RHS Vector b

This section proposes a quantum-gate-reduction method to
prepare the quantum state |b̄⟩ efficiently, i.e., to have the gate
count in the quantum circuit increase logarithmically in the
vector size N . In EM problems, the RHS vector b is evaluated
based on the EM excitation in the input port of the 3-D EM
structure. In the solution domain of 3-D FEM, typically only a
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Fig. 6. Quantum circuit for preparing the phase of an n-qubit |b̄⟩. The input to the circuit is obtained from the output of the magnitude preparation circuit,
i.e., Fig. 5. The symbol R(l)z,k inside each block represents the rotation gate Rz(28̄

(l)
k ).

few cells (and, therefore, a small portion of DoFs) are located
in the input port of the 3-D EM structure. Thus, the RHS vector
b in EM problems is always sparse. We notice that the number
of gates needed to prepare |b̄⟩ depends on the sparsity of the
vector b. If b is sparse, many 8

(l)
k and 8̄

(l)
k will be zeros.

The Ry or Rz gates can be omitted in the state preparation
circuit for such zero-valued cases. Therefore, it is natural to
conjecture that the number of gates needed to prepare the
quantum state |b̄⟩ is proportional to the number of nonzeros
in b (more details are provided in the next subsection).

However, our investigations show that if we directly prepare
the state |b̄⟩ based on the procedure described in Section III-C,
the number of gates needed for a sparse vector b is fewer
than that needed for a dense b, but still much larger than the
number of nonzeros in b. Our further investigations show that
the number of gates needed to prepare |b̄⟩ is proportional to the
number of nonzeros in b only when the nonzero elements of b
are all located at the top (or the bottom) of vector b. However,
in the default 3-D FEM, the DoFs in the input port are not
arranged in a specific order. Therefore, we propose a method
to renumber the DoFs in the input port with respect to the
DoFs in other cells of the 3-D EM structure, which is achieved
by permutating the finite element matrix in a specific way.
By using the proposed method, the number of gates needed
for the preparation of |b̄⟩ can be reduced to achieve an efficient
state preparation of the RHS vector b.

Let d represent the number of nonzeros in P c. Let
{W 1,W 2, . . . ,W nw } represent the set of permutation matrices
used to swap all the nonzero elements of P c to the top
locations, where nw (0 ≤ nw ≤ d) is the total number of
row permutations that need to be done for such purpose.
At the worst case, nw = d, which means that, in total, d
row permutations need to be done. At the best case, nw = 0,
which means that the nonzero elements are already at the top
locations of vector P c, and thus, no row permutations need
to be done. Then, solving (20) is equivalent to solving

W nw (· · · (W 2(W 1 P K )))φ = W nw (· · · (W 2(W 1 P c))).
(55)

Let 0(·) denote the above series of row permutation operations
on P K and P c, i.e.,

0(·) = W nw (· · · (W 2(W 1(·)))). (56)

Next, we formulate a new Hermitian matrix, Aperm,
as follows:

Aperm =

 0M×M 0(P K ) 0M×m

(0(P K ))† 0M×M 0M×m

0m×M 0m×M 3m×m

. (57)

We further define a new RHS vector bperm as follows:

bperm =

(0(P c))T 01×M 0 0 . . . 0 0︸ ︷︷ ︸
m zeros

T

. (58)

Now, solving (28) is equivalent to solving

Apermx = bperm. (59)

Note that the permutation matrices {W 1,W 2, . . . ,W nw } allow
all the nonzero elements of b to be swapped to the top of
vector b. Such permutations on the rows do not affect the
final solution to EM problems using the proposed quantum
computing method but will greatly reduce the number of gates
needed for preparing the state |b̄⟩, as analyzed in Section III-E,
and demonstrated in Section IV-B.

E. Analytical Upper and Lower Bounds for the Number of
Gates Needed in the RHS State Preparation

In this section, we first empirically show the relation-
ship between the number of gates needed in the RHS state
preparation circuit and the number of nonzeros in the RHS
vector b. Then, inspired by these empirical results, we derive
analytically the upper and lower bounds of the number of gates
needed in preparing |b̄⟩, to theoretically demonstrate that the
gate count increases logarithmically with respect to the EM
excitation vector size N .

Let d denote the number of nonzeros in the sparse vector
b. Let us for now assume that d is an integer power of 2,
i.e., d = 2q , where q is an integer in the range 1 ≤ q ≤ n
and n represents the number of qubits used to prepare |b̄⟩.
Let us further assume that all the nonzero entries in b have
been swapped to the top of b. We perform the following
experiments.

For a given pair of N ∈ {8, 16, . . . , 256} and d ∈

{2, 4, . . . , 256}, we generate a random sparse vector b (whose
nonzero elements are all at its top positions) and find the value
of 8(l)

k according to (50), where n = log2 N . Since b is sparse,
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TABLE II
NUMBER OF GATES REQUIRED IN MAGNITUDE PREPARATION VERSUS

THE MATRIX SIZE N AND THE NUMBER OF NONZEROS d

TABLE III
NUMBER OF GATES REQUIRED IN PHASE PREPARATION VERSUS THE

MATRIX SIZE N AND THE NUMBER OF NONZEROS d

many8(l)
k will be zeros. We refer to an Ry gate with zero phase

parameter (i.e., 8(l)
k = 0) as a redundant gate, which can be

omitted in the magnitude preparation circuit, and refer to an
Ry gate with nonzero phase parameter (i.e., 8(l)

k ̸= 0) as a
required gate, which cannot be omitted. Similarly, we find the
value of 8̄(l)

k according to (54) and refer to an Rz gate with
8̄
(l)
k ̸= 0 and 8̄(l)

k = 0 as a required gate and a redundant
gate, respectively.

Let N mag
req and N phase

req represent the number of required gates
for magnitude preparation and phase preparation, respectively.
Tables II and III show, respectively, the value of N mag

req versus
N and d , and that of N phase

req versus N and d. From Table II, one
can clearly observe that N mag

req is proportional to (approximately
one time) the number of nonzeros d . The insight from Table III
appears to be not as clear as that in Table II. However, as d
increases (e.g., when d ≥ 16), one can still observe a tendency
that N phase

req is proportional to (approximately one time) d.
The above experiments reveal that the number of required

gates is proportional to the number of nonzeros in b. In the
following descriptions, we formally derive the number of gates
required for preparing |b̄⟩ and provide the upper and lower
bounds of the number of required gates for preparing |b̄⟩ when
the number of nonzeros d is not an integer power of 2.

1) Number of Gates Needed for Magnitude Preparation:
First, let us derive the number of required gates in the
magnitude preparation, N mag

req , with respect to the matrix size
N and the number of nonzeros d . It can be found from (49)
and (51) that

I0 = 2n−lk. (60)

Substituting this into (52), we obtain

I1 = 2n−lk + 2n−l−1. (61)

From (50), we can see that whether the value of 8(l)
k is zero

depends on the values of b j , where j ∈ {I1, I1 + 1, . . . , I1
+ I2}. Considering that only the first d elements of b are
nonzeros, while the remaining N − d elements are all zeros,
we conclude that the value of 8(l)

k will not be zero when the
following condition is satisfied:

I1 = 2n−lk + 2n−l−1
≤ d − 1. (62)

This should be natural, since if I1 > d −1, all the values of b j

in the numerator
∑I1+I2

j=I1
|b j |

2 will be zero, and thus, 8(l)
k will

be zero. So, the number of required gates in the magnitude
preparation circuit is the number of combinations of l and k
that satisfy the condition of (62).

The condition of (62) is equivalent to

2n−lk + 2n−l−1
≤ 2q

− 1. (63)

From (63), we obtain the range of k for a given l as follows:

k ≤ 2q+l−n
− 2−1

− 2l−n. (64)

Let the maximum value of k be denoted by kmax. Then, it can
be derived from (64) that (considering that k is an integer and
l − n ≤ −1)

kmax =
⌈

2q+l−n
−
(
2−1

+ 2l−n)⌉
= 2q+l−n

− 1. (65)

On the other hand, the value of l should satisfy the following
condition due to the constraint that k ≥ 0:

2q+l−n
− 2−1

− 2l−n
≥ 0 (66)

which is equivalent to

l ≥ n − 1 − log2

(
2q

− 1
)
. (67)

Let the minimum value of l be lmin, greater than which 8(l)
k ̸=

0 for k = 0, 1, . . . , kmax. Then, from (67), we can derive the
value of lmin as follows:

lmin =
⌊

n − 1 − log2

(
2q

− 1
)⌋

= n − 1 −
⌈

log2

(
2q

− 1
)⌉

= n − q. (68)

The insight from (65) and (68) is that for a given l ∈ {n −

q, n − q + 1, . . . , n − 1}, there are 2q+l−n required gates (i.e.,
k = 0, 1, . . . , 2q+l−n

−1) for the lth qubit. Accordingly, we can
show the value of N mag

req for given n and q as follows:

N mag
req =

n−1∑
l=n−q

2q+l−n

= 20
+ 21

+ 22
+ · · · + 2q−1

= 2q
− 1. (69)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

2) Number of Gates Needed for Phase Preparation: Next,
we derive the number of required gates in the phase prepara-
tion, N phase

req , with respect to the matrix size N and the number
of nonzeros d. From (54), one can find that whether the value
of 8̄(l)

k is zero depends on the values of b j , where j ∈ {I1, I1
+ 1, . . . , I1 + I2}∪{I0, I0 + 1, . . . , I0 + I2}. Since l ≤ n −1,
we have I1 = I0+2n−l−1 > I0. Consequently, we can conclude
that the value of 8̄(l)

k will not be zero if the following condition
is satisfied:

I0 = 2n−lk ≤ 2q
− 1. (70)

This should be natural, since if I0 > 2q
−1, all the values of b j ,

where j ∈ {I1, I1 + 1, . . . , I1 + I2}∪{I0, I0 + 1, . . . , I0 + I2},
will be zero, and thus, 8̄(l)

k will be zero. So, the total number
of required gates in the phase preparation circuit is the number
of combinations of l and k that satisfy the condition of (70).

From (70), we can obtain the range of k for a given l as
follows:

k ≤ 2q+l−n
− 2l−n. (71)

Note that the value of l can be any integer in the set
{0, 1, . . . , n − 1}, since 2q+l−n

− 2l−n > 0 always holds. Let
the maximum value of k be denoted by kmax. Based on (71),
we derive the value of kmax in two cases.

Case 1: When q + l − n ≤ −1, i.e., l ≤ n − q − 1, we have
2−n

≤ 2l−n < 2q+l−n
≤ 1. In this case, we can derive the

value of kmax as follows:

kmax =
⌈

2q+l−n
− 2l−n⌉

= 0. (72)

Therefore, there is only one required gate (i.e., k = 0) for the
lth qubit when 0 ≤ l ≤ n − q − 1.

Case 2: When q + l − n ≥ 0, i.e., l ≥ n − q , we have
2q+l−n

≥ 1 and 0 < 2l−n < 1. In this case, we can derive the
value of kmax as follows:

kmax =
⌈

2q+l−n
− 2l−n⌉

= 2q+l−n
− 1. (73)

Therefore, there are 2q+l−n required gates (i.e., k =

0, 1, . . . , 2q+l−n
− 1) for the lth qubit when n−q ≤ l ≤ n − 1.

Now, combining both cases, for given n and q, we can show
the total number of combinations of l and k that satisfy (70),
i.e., the value of N phase

req , as follows:

N phase
req = 1 ×

[
(n − q − 1)+ 1

]
+

n−1∑
l=n−q

2q+l−n

= 1 ×
[
(n − q−1)+1

]
+
(
20

+ 21
+ 22

+ · · · + 2q−1)
= n−q + 2q

− 1. (74)

3) Total Number of Gates Needed for Preparing |b̄⟩:
Combining (69) and (74), we can find the total number of
required gates for the preparation of |b̄⟩ as follows:

N total
req = N mag

req + N phase
req

= n−q + 2
(
2q

− 1
)

= 2d − log2 d + log2 N − 2. (75)

Note that the above equation reveals the analytical relation
between the number of gates needed to prepare the state |b̄⟩

and the sparsity (and size) of the EM excitation vector b.

By using our proposed method, the gate count can be
minimized, and we have theoretically demonstrated that the
gate count increases logarithmically in N and proportionally
with d. When using the FEM to solve EM problems, the
sparsity of b only depends on the number of FEM cells in
the input port and does not depend on the meshes between
the input and output ports. That said, as the 3-D structure
in the middle becomes more complex, denser meshes are
typically required to accurately approximate the electric fields
in the middle part of the solution domain, resulting in bigger
matrix A and bigger vector b in the FEM. Even under this
situation, the number of cells on the input port remains
constant, and therefore, the sparsity of b remains constant.
Because of this, our proposed method guarantees that even if
this state preparation procedure for the EM excitation vector
b is included, the HHL is still exponentially faster than its
classical counterpart.

4) Upper and Lower Bounds for N total
req : In most practical

cases, the number of nonzero elements in b (i.e., the value
of d) is not necessarily an integer power of 2. In such cases,
our formula (75) provides the upper and lower bounds for
the total number of required gates in the preparation circuit
for |b̄⟩. Formally, for an N -dimensional RHS vector b with
d nonzero elements on its top locations, where N = 2n and
0 ≤ d ≤ N , the total number of required gates to prepare the
corresponding quantum state |b̄⟩, N total

req , is upper bounded by
N up

req and lower bounded by N low
req , i.e.,

N low
req ≤ N total

req ≤ N up
req

where

N up
req = 2⌈log2 d⌉+1

−
⌈

log2 d
⌉

+ log2 N − 2 (76)

and

N low
req = 2⌊log2 d⌋+1

−
⌊

log2 d
⌋

+ log2 N − 2. (77)

F. Solving the Preconditioned Reformulated FEM Equations
Using Quantum Computation

In this section, we solve the reformulated finite element
equation after preconditioning and permutation [i.e., (59)] with
the HHL algorithm. In order to perform quantum computation,
we define three sets of qubits, as illustrated in Fig. 7: an ancilla
qubit (also called the ancilla register), a set of L qubits (also
called the work register), and a set of n qubits (also called the
I/O register).

The quantum computation procedure begins with preparing
the n-qubit state |b̄perm⟩ through a magnitude preparation
circuit (denoted by P1 in Fig. 7) and a phase preparation circuit
(denoted by P2 in Fig. 7) on the I/O register to represent the
EM excitation vector bperm. At the same time, we initialize
both the ancilla and the work registers in the |0⟩ state.

Next, we apply the quantum operator ei Apermt2r
to the I/O

register [2], [3], [26] for different values of r , where t is a
user-defined hyperparameter and r = 0, 1, . . . , L − 1. These
operations, together with a set of Hadamard gates [2] and
quantum Fourier transform operator on the work register,
form the quantum phase estimation (QPE) operation, which
produces the eigenvalues of Aperm in binary format in the work
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Fig. 7. Schematic of the HHL algorithm with the proposed quantum state preparation circuit. Each square block represents a specific quantum operator/circuit.
The symbols H , U , QFT , and Ry represent the Hadamard operator, the Hamiltonian operator, the quantum Fourier transform operator, and the rotation operator,
respectively. The symbols P1 and P2 denote the magnitude preparation circuit (i.e., Fig. 5) and the phase preparation circuit (i.e., Fig. 6), respectively.

register. For explanation purpose, let λ j and |u j ⟩ represent the
j th eigenvalue and the corresponding eigenvector of Aperm,
respectively. Let λ̃ j be the estimated value of λ j on the work
register.

Following the phase estimation, we perform a controlled
rotation on the ancilla register to rotate the ancilla qubit
from |0⟩ to sin(θ̃)|0⟩ + cos(θ̃)|1⟩, where θ̃ is found from
θ̃ = arccos(C/λ̃ j ) and C is a user-defined hyperparameter.
Note that the phase parameter of the controlled rotation gate,
θ̃ , depends on the estimated eigenvalue λ̃ j on the work register.

Finally, the work register is uncomputed by the algorithm
back to |0⟩, while the ancilla and the I/O registers combined
will have the following state [8]:

N∑
j=1

γ j

[√
1 −

C2

λ̃2
j
|0⟩ancilla +

C
λ̃ j

|1⟩ancilla

]
⊗ |u j ⟩IO (78)

where the symbol ⊗ denotes tensor product and γ j =

⟨u j |b̄perm⟩.
Let |ϕ⟩ represent the final state of the I/O register. According

to (78), when we examine the ancilla register and post-selects
on the |1⟩ outcome, the state of the I/O register will be
proportional to an estimation of the EM solution vector |x⟩

|ϕ⟩ =

∑
j

γ j C
λ̃ j

|u j ⟩IO ≈ C |x⟩. (79)

The above computation procedure produces a
quantum-mechanical representation |x⟩ of the solution
of the unknown vector x. When we examine |x⟩, we obtain
the result |i⟩ with probability |xi |

2. In order to evaluate |xi |,
the quantum computation process of HHL is repeated many
times as the Monte Carlo analysis.

G. Discussions

The quantum solution provided by (79) is accurate except
for the binary quantization of the eigenvalues λ j . However, the
solution obtained by retrieving the values in (79) from quan-
tum computer into classical computer will not be as perfect as
the theoretical solution. The reasons for such imperfectness are

as follows. First, the QPE subroutine in HHL finds the approx-
imated eigenvalues of the system matrix through quantization.
In doing this, the precise eigenvalues are approximated by its
binary representations, which inherently lead to the loss of
accuracy to a certain extent. The accuracy level depends on
the number of qubits in the work register (denoted by L).
Increasing the value of L improves the eigenvalues’ accuracy
but leads to more quantum computing resources. Second, the
quantum state |x⟩ obtained from HHL encodes the entries of
x in its amplitudes precisely. However, due to the probabilistic
nature of quantum computing, to obtain the values of the
entries in x, one needs to perform Monte Carlo analysis to
obtain statistics and do approximations. In doing this, HHL
algorithm is repeated for a large number of times, and the
probabilities obtained from the statistics are taken as good
approximations to (the magnitude square of) the entries in
x. In general, the accuracy of the solution obtained from
the HHL circuit tends to increase, as the number of circuit
repetitions increases, until a certain point where the solution
converges and further repetitions do not significantly improve
the accuracy [2]. Moreover, as the number of circuit repetitions
increases, the simulation time will also increase [27]. Finding
the optimal number of circuit repetitions to balance solution
accuracy and compute time is an important aspect of using
the HHL algorithm to solve practical EM problems, which
remains an open subject in the literature. In many cases, the
optimal number of circuit repetitions needs to be found by a
trial-and-error process [2], [27].

Next, we discuss the robustness of the proposed algorithm
against noise. The proposed algorithm is implemented through
the Google’s Cirq library [28], which serves as a noiseless
quantum computing simulator. That is to say, the state prepa-
rations of the RHS vector, unitary operations, and output
state measurements are all implemented by the noiseless gates
provided by Cirq. However, practical quantum computers are
vulnerable to noise, thereby affecting the solutions’ quality
obtained by the proposed method. We leave the evaluation of
the proposed algorithm’s robustness against noise as an impor-
tant future work. Moreover, we leave it an open research topic
to take advantages of the error mitigation techniques [29], [30],
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[31], [32], [33] to mitigate the effects of noise on the proposed
method when performed on real quantum hardware.

Although the proposed method was developed in the context
of EMs, it is applicable to finite element problems in other
fields as long as the final format of the problem to be solved
is a set of linear equations. If the system matrix is well condi-
tioned, the preconditioner P can be simply set as the identity
matrix. If the RHS vector b is a full vector, the proposed
quantum-gate-reduction method described in Section III-D can
be omitted.

Current noisy intermediate-scale quantum (NISQ) devices
have a limited number of qubits and limited circuit depth. The
variational quantum algorithms (VQAs) are a class of quantum
algorithms that aim to achieve a practical quantum advantage
over classical algorithms on NISQ devices [35], [36], [37].
Despite its great potential of handling the constraints of
near-term quantum computers, VQAs’ performance relies on
the availability of an efficient ansatz. Each computational
problem has a problem-specific ansatz, and there is no generic
ansatz for all the computational problems. The development of
a new ansatz for a new computational task is typically nontriv-
ial and requires a lot of human experience. To the best of the
authors’ knowledge, there is no ansatz reported in the literature
for solving FEM linear equations in 3-D EM problems. Future
noiseless large-scale quantum computers are foreseen to have
a much larger number of available qubits and much higher
circuit depths than today’s NISQ devices. However, how to
leverage the power of such much matured quantum computers
to accelerate the process of solving large-scale EM problems
remains an open subject in the literature. Our work builds a
theoretical basis for achieving quantum advantages on much
matured quantum computers in the future.

Specifically, for solving a linear system Ax = b arising
from the FEM in EM problems, the comparison of runtime
complexity between the best classical algorithm, i.e., conjugate
gradient (CG), and the HHL algorithm is O(Nsκ log(1/ϵ))
versus O(log(N )s2κ2/ϵ), where N is the dimension of A, s
is the sparsity (i.e., the maximum number of nonzero entries
per row) of A, κ is the condition number of A, and ϵ is the
desired precision [2], [8], [9]. In other words, HHL solves
the quantum linear system problem exponentially faster than
CG with respect to N . However, there are several critical
requirements for the HHL to achieve this exponential speedup,
e.g., the following hold: 1) a well-conditioned system matrix
with constant sparsity; 2) an “efficient” preparation of |b̄⟩; and
3) an “efficient” readout of the solution |x⟩ [34]. This study
tackles with the aforementioned important caveats associated
with HHL in the following three aspects. First, we propose
to apply the SPAI preconditioner to the EM system matrix
to meet the first requirement of HHL. The application of the
SPAI preconditioner makes the EM-based system matrix better
conditioned, while not increasing too much the sparsity of
the EM-based system matrix. Second, we propose an “effi-
cient” quantum state preparation method to meet the second
requirement of HHL. Our proposed method guarantees that
even if this state preparation procedure for the EM excitation
vector b is included, the HHL is still exponentially faster

than its classical counterpart. Third, although, in this study,
we read out all the entries of x for illustrative purposes, the
solution of interest to many EM problems (e.g., calculating the
S-parameters) is in a linear combination format well suited to
the solution format of the HHL algorithm [38].

Finally, we discuss how the finite element matrix (referred
to as global matrix hereafter) in EM fits the constant sparsity
requirement of the HHL algorithm. The global matrix in EM
problems is obtained by assembling the local matrices over all
the FEM cells. Suppose that tetrahedron elements [39] are used
in the discretization process, each DoF on a local edge/face
in a tetrahedron corresponds to one row of the global matrix.
For a given edge in a tetrahedron under consideration, the
number of nonzeros in the row corresponding to this edge is
not directly related to the number of tetrahedrons/cells in the
whole solution space but related to the number of neighbor
tetrahedrons of the tetrahedron under consideration. As the
number of cells increases (which means that N increases), the
number of neighbor tetrahedrons typically does not increase.
Therefore, the maximum number of nonzeros in each row
(i.e., sparsity s) does not increase. In other words, the sparsity
of our EM-based matrix A does not increase, as the matrix
size N increases. Because of this, finite element matrices in
EM problems fit the HHL’s requirement of constant sparsity,
so that the HHL’s computational benefits can be achieved when
it is being applied to solve EM problems including the new
gate-reduction algorithm in preparing the quantum state for b.

IV. EXAMPLES

A. 2-D Electrostatic Problem

We first consider a 2-D electrostatic problem [40], with the
aim of solving the Poisson’s equation

−1φ(x, y) =
ρ

ε
(80)

with boundary condition

φ(x, y) = 0 (81)

where the symbol 1 denotes the Laplace operator, while the
symbols φ, ε, and ρ represent the electric scalar potential,
permittivity, and electric charge density, respectively.

We consider a simple case by setting ρ/ε = 1. The solution
domain of this 2-D problem is [−1, 1]

2, and we divide the
whole solution domain into 200 cells, as depicted in Fig. 8.
This division results in a total of M = 121 DoFs in the finite
element equation. Consequently, we have the matrix Ã of size
N × N = 256 × 256 and an eight-qubit quantum state |b̄⟩,
i.e., n = 8. The condition number of Ã is 58.48, which is small
enough to be handled by the standard HHL algorithm. Thus,
we simply set the preconditioner P as P = I121×121. In this
study, we prepare the eight-qubit RHS state |b̄⟩ based on the
quantum state preparation method described in Section III-C.
We should note that the RHS vector b in this example is real-
valued. Therefore, we only have the magnitude preparation
circuit, and the phase preparation circuit can be omitted. For
the magnitude preparation circuit, we have l ∈ {0, 1, . . . , 7}

and k ∈ {0, 1, . . . , 2l
− 1}. Had the vector b been dense, the
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Fig. 8. FEM mesh generated for the 2-D electrostatic problem with 121 DoFs.
This results in a 256 × 256 matrix A and an eight-qubit quantum state |b̄⟩

as inputs to the proposed quantum computing method.

Fig. 9. Relative errors of the 121 DoFs: a comparison between the quantum
solution and the classical solution for the 2-D electrostatic problem.

number of gates needed for preparing the state |b̄⟩ would have
been 255. In this example, the number of nonzero elements in
b is 81, i.e., d = 81. With the existing state preparation method
in the quantum literature [16], the number of gates needed
to prepare the state |b̄⟩ is 88. By swapping the 81 nonzero
elements to the top locations of vector b using the proposed
gate-reduction method, the number of gates needed to prepare
the quantum state |b̄perm⟩ is reduced to 80.

We program the reformulation of the finite element equation
and the codes for preparing the quantum state |b̄perm⟩ and
combine this program with HHL based on the codes provided
in [2]. We write the program in Python utilizing the Cirq
library developed by Google [28]. In order to evaluate |xi |,
HHL has to be performed many times as the Monte Carlo
analysis. In typical cases, x is read out in a linear combination
format, which requires us to run HHL about 40 000 times.
In this study, we read out all the individual components of x
for illustrative purposes.

Fig. 10. Structure and mesh for the 3-D example. (a) Structure of the
waveguide bend defined for finite element simulation, where a = 8.636 (mm),
b = 4.318 (mm), and L = 4.318 (mm). (b) FEM mesh generated to perform
the EM simulation.

We do a comparison between the quantum solution and the
classical solution with respect to the relative error of each DoF
of interest, ei , which is defined as follows:

ei =

∣∣∣(∣∣∣xQC
i

∣∣∣− ∣∣xCC
i

∣∣)∣∣∣√
1

|Iin|

∑
i∈Iin

∣∣xCC
i

∣∣2 ∀i ∈ Iin (82)

where |xQC
i | and |xCC

i | represent the magnitude of the i th
component in the quantum solution and that in the classi-
cal solution, respectively. The symbol Iin represents the set
containing all the indices for the DoFs of interest, while |Iin|

denotes the number of elements in Iin. The relative error of
each DoF of interest is shown in Fig. 9. It is observed that the
relative errors for all the DoFs of interest are quite small.

B. 3-D EM Wave Propagation Problem

Next, we consider a 3-D EM problem, i.e., the EM wave
propagation in a waveguide bend, as shown in Fig. 10(a).
The cross section of the bend is 8.636 × 4.318 mm. We are
interested in calculating the reflection coefficient (i.e., S11)
at a frequency of 27.5 GHz using the 3-D FEM. The mesh
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Fig. 11. Relative errors of the 72 DoFs of interest: a comparison between
the quantum solution and the classical solution for the 3-D EM problem.

for the FEM is obtained from the HFSS simulator, as shown
in Fig. 10(b). We mesh the whole solution domain into
53 cells, which results in a total of M = 496 DoFs in
the finite element equation. The condition number of K is
2.2528 × 108. Without performing the proposed precon-
ditioning technique, the standard HHL algorithm requires
29 qubits (i.e., L = 29) in the work register to perform QPE.
This makes it memory-intensive to simulate the HHL circuit.
We apply the proposed SPAI-based preconditioning technique
and solve the resultant preconditioned FEM equations with
HHL. For the SPAI technique, we set ε = 0.4 and s = 6. After
preconditioning, we have the preconditioned matrix A of size
N × N = 1024 × 1024 and a ten-qubit quantum state |b̄⟩, i.e.,
n = 10. The condition number of the preconditioned system
matrix A is 343.96, which requires only seven qubits (i.e.,
L = 7) in the work register to perform QPE. This demonstrates
the effectiveness of the proposed preconditioning method in
reducing the number of qubits needed in applying HHL to
solve EM problems.

We next apply the proposed quantum-gate-reduction method
to move all the nonzeros in b to the top of vector b, forming
the permuted RHS vector bperm. The row indices of A are
swapped accordingly to obtain the permuted system matrix
Aperm. The quantum circuit for preparing the quantum state
|b̄perm⟩ is based on Figs. 5 and 6. For this example, the number
of qubits in the I/O register is 10. The RHS vector b in this
example is complex-valued. Therefore, in the magnitude and
phase preparation circuits, we have l ∈ {0, 1, . . . , 9} and k ∈

{0, 1, . . . , 2l
−1}. Had the vector b been dense, the number of

gates needed for preparing the state |b̄⟩ would have been 2046.
In this example, the number of nonzero elements in b is 149,
i.e., d = 149. With the existing state preparation method in the
quantum literature [16], the number of gates needed to prepare
the state |b̄⟩ is 513. By swapping the 149 nonzero elements to
the top locations of vector b using the proposed quantum-gate-
reduction method, the number of gates needed to prepare the
quantum state |b̄perm⟩ is reduced to 303. Note that this number
is inside the range between the upper bound N up

req = 512 and

the lower bound N low
req = 257 as given by our derived formulas

(76) and (77). Moreover, the proposed gate-reduction method
guarantees that even if the state preparation procedure for the
EM excitation vector b is included, the HHL algorithm is still
exponentially faster than its classical counterpart.

For illustrative purposes, we read out all the individual
components of x by running the HHL algorithm five million
times. The evaluation of the reflection coefficient only relies
on the DoFs on the input port. For the considered mesh, there
are 72 DoFs on the input port. Therefore, among all the second
496 components of x, we are interested in the 72 components
corresponding to the DoFs on the input port, i.e., |Iin| = 72.
In Fig. 11, we compare the quantum and classical solutions
for these 72 DoFs of interest with the metric of relative error
defined in (82). We can see that the relative errors for all the
DoFs of interest are small.

V. CONCLUSION

In this article, we have described a quantum computing
method for solving EM problems through finite element equa-
tions. We have provided a systematic approach to construct the
quantum circuit for the state preparation of the RHS vector
in applying the FEM to solving EM problems. Moreover,
to achieve an efficient quantum state preparation, we have
proposed a specific method to reduce the number of gates
needed in the quantum state preparation process, by exploring
the fact that in EM problems, the RHS vector is always
sparse. The upper and lower bounds for the number of gates
needed in state preparation have also been derived. To tackle
with the poorly conditioned finite element matrix in EM,
a matrix preconditioner has been adopted to precondition the
finite element linear equation, reducing the number of qubits
required in using quantum computation to solve EM problems.
The performance of the proposed method has been verified by
two EM examples.

Considering that the hardware development of quantum
computers is at an early stage, we have used small-scale
EM examples to demonstrate the formulation in this article.
Due to the limited number of qubits and circuit depth of
current quantum computers, applying quantum computing
(e.g., the HHL method) to solve small-scale EM problems
offers no benefits compared with classical computing today.
However, the significant ongoing progress in quantum hard-
ware development will allow the future quantum computers to
be capable of solving large-scale EM problems. For large-scale
EM problems, the HHL method will (in theory) achieve an
exponential speedup over the best-known classical computing
method [2], [8], [9]. The main scope of this article is to explore
how to formulate EM problems into a quantum computation
format, which can be leveraged in the future to achieve a
quantum speedup over classical solvers. From this perspective,
we consider our study as an initial but important step toward
achieving quantum advantages over classical EM solvers in
the future when much matured quantum computing hardware
becomes available. Applying the proposed quantum method to
more practical EM problems demands continuous development
in quantum computing technology and its integration into EM
simulations.
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Algorithm 1 SPAI Algorithm [23]
Input: K ′, initial sparsity pattern Sini, ε, s

1 for k = 1, . . . ,M do
2 Determine the initial sparsity pattern J for p′

k
based on Sini;

3 Find the row indices I of the corresponding
nonzero entries in K ′;

4 Compute the solution p′

k to the least squares
problem (87) and its residual r given by (91);

5 while ∥r∥2 > ε do
6 Set L to be the set of indices l for which

r(l) ̸= 0;
7 Set J̃ equal to the set of all new column

indices of K ′ that appear in all L rows but
not in J ;

8 For each j ∈ J̃ compute ρ2
j according to (93);

9 Reduce J̃ to only contain the s column indices
j with the smallest ρ j ;

10 Augment J as J = J ∪ J̃ ;
11 Determine the new row indices I and solve the

new least squares problem (87);
12 Compute the new residual r = K ′ p′

k − ek .

Output: The SPAI preconditioner P

APPENDIX A
COMPUTATION OF THE SPAI PRECONDITIONER

Let us first consider computing a sparse approximate left
inverse P for a given initial sparsity structure (denoted by Sini),
which is described by the nonzero entries of Sini. To align with
the vector and matrix notations used in this article, we compute
the transpose of P instead of computing P itself directly. Let
K ′ denote the transpose of K , i.e.,

K ′
= K T . (83)

Let P ′ denote the transpose of the unknown preconditioner P .
The SPAI technique minimizes ∥K T P ′

− I∥ in the Frobenius
norm to obtain an explicit approximate inverse P ′ of K ′.
In particular, P ′ is found by minimizing [23]

∥∥K T P ′
− I

∥∥2
F =

M∑
k=1

∥∥(K T P ′
− I

)
ek
∥∥2

2 (84)

where the expressions ∥·∥F and ∥·∥2 denote the Frobenius
norm and the L2 norm, respectively; I represents the identity
matrix; and ek (k = 1, . . . ,M) is the kth column of the identity
matrix.

One can separate (84) into M independent least squares
problems [23]

min
p′

k

∥K T p′

k − ek∥2, k = 1, . . . ,M (85)

where p′

k represents the kth column of P ′. Thus, we can solve
(85) in parallel to obtain an approximate inverse P ′ of K ′.

Let p′

k( j) be the j th element of p′

k , where j = 1, . . . ,M .
Let J be the set containing the indices of the nonzeros in
p′

k , i.e., J = { j | j = 1, . . . ,M, p′

k( j) ̸= 0}. Let I be the

set containing the row indices i , such that K ′(i,J ) is not
identically zero. These definitions allow us to eliminate all
zero rows in the submatrix K ′(·,J ), resulting in the following
submatrix of a very small size:

K̂ ′
= K ′(I,J ). (86)

If we further define êk = ek(I), then we have the following
reduced-sized least squares problem equivalent to (22) [23]:

min
p̂′

k

∥∥∥K̂ ′ p̂′

k − êk

∥∥∥
2
. (87)

The size of this least squares problem is |I| × |J |, which
is much smaller than that of (22), since K ′ and P ′ are both
highly sparse. We can find the solution to (87) as follows [23]:

p̂′

k = R̂−1
η̂(1 : |J |) (88)

where R̂ = R(1 : |J |, ·), η̂ = QT êk , Q and R are obtained
from executing the QR decomposition of K̂ ′, i.e.,

K̂ ′
= Q R. (89)

Once p̂′

k is obtained from (88) for each k = 1, . . . ,M , we let
p′

k(J ) = p̂k and obtain the approximate inverse P for the
given initial sparsity structure as follows:

P =
[

p′

1 p′

2 · · · p′

M

]T
. (90)

Now, we elaborate on the improvement of P by augmenting
its sparsity structure. Define the residual for the kth column
of P ′ as follows:

r = K ′ p′

k − ek . (91)

Assume that ∥r∥2 is not equal to zero, we will augment the
set of indices contained in J to reduce ∥r∥2. Let ε be the
prescribed tolerance for r . Denote by L the set containing
the indices l for which r(l) ̸= 0. For each l ∈ L, define Nl

as the corresponding index set, which consists of the column
indices of nonzero entries in the lth row of K ′ that are not yet
contained in J . Let J̃ be the set containing all the potential
new candidate indices that can be added to J ; then

J̃ = ∪
l∈L
Nl . (92)

To find the new indices j ∈ J̃ that lead to the most
profitable reduction in ∥r∥2, we compute an auxiliary quantity
ρ2

j for each j ∈ J̃ as follows [23]:

ρ2
j = ∥r∥2

2 −

(
rT K ′e j

)2∥∥K ′e j
∥∥2

2

(93)

where e j is the j th column of identity matrix. Let s be the
number of nonzero entries added to p′

k each time we update
its sparsity pattern. Next, we select from J̃ the s indices with
the smallest ρ j and add them to J . With the augmented set
of indices J , we solve the reduced-size least squares problem
(87) again. This improves the kth row of the preconditioner
P . We repeat this procedure for p′

k (k = 1, . . . ,M) until the
norm of the residual is lower than the prescribed tolerance ε.
The overall SPAI algorithm is shown in Algorithm 1.
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Fig. 12. Quantum circuit for preparing |b̄⟩: one-qubit case.

APPENDIX B
ILLUSTRATION OF THE QUANTUM COMPUTATION

PROCEDURE FOR PREPARING |b̄⟩: ONE-QUBIT CASE

In this section, we illustrate the quantum computation
procedure for preparing the state |b̄⟩ in the one-qubit case.
In this case, we have

b =

[
|b1|eiθ1

|b2|eiθ2

]
. (94)

The corresponding quantum state for the normalized vector b̄
is mathematically represented as follows:

∣∣b̄〉 ≜ [∣∣b̄1
∣∣eiθ1∣∣b̄2
∣∣eiθ2

]
. (95)

The quantum circuit for preparing the one-qubit state |b̄⟩

includes an Ry gate followed by an Rz gate, as shown in
Fig. 12. In Fig. 12, we can find the values of 91 and
9̄1 according to (50)–(54) as follows:

91 = arctan
|b2|

|b1|
(96)

9̄1 =
1
2
(θ2 − θ1). (97)

Let the state after applying the operator Ry(291) to the
ground state |0⟩ be denoted by |ϕ1⟩. Substituting (96) into
(10) allows us to derive the state |ϕ1⟩ as follows:

|ϕ1⟩ ≜

[
cos91 − sin91
sin91 cos91

][
1
0

]
=

[
cos91
sin91

]
=

[∣∣b̄1
∣∣∣∣b̄2
∣∣
]

(98)

which is the state |b̄⟩ with correct magnitude and zero phase.
Now, let the state after applying the operator Rz(29̄1) to

the state |ϕ1⟩ be denoted by |ϕ2⟩. Substituting (97) into (11)
allows us to derive the state |ϕ2⟩ as follows:

|ϕ2⟩ ≜

[
e−i θ2−θ1

2 0
0 ei θ2−θ1

2

][∣∣b̄1
∣∣∣∣b̄2
∣∣
]

=

[∣∣b̄1
∣∣ei θ1−θ2

2∣∣b̄2
∣∣ei θ2−θ1

2

]
. (99)

In quantum computation, it is the relative difference between
the phases for different coefficients that is important. A com-
mon phase eiθ0 applied to the entire state will be ignored by the
quantum computer. This common phase is called the global
phase in the quantum computation literature [2]. Based on this,
we define a global phase, θ0, as follows:

θ0 =
θ1 + θ2

2
. (100)

Fig. 13. Quantum circuit for preparing the magnitude of |b̄⟩: two-qubit case.

Fig. 14. Quantum circuit for preparing the phase of |b̄⟩: two-qubit case.

Recall that a global phase change has no impact on quantum
measurements, and the state |ϕ2⟩ in (99) is equal to the desired
state |b̄⟩ up to θ0, i.e.,

|ϕ2⟩ ∼

∣∣b̄1
∣∣ei

(
θ1−θ2

2 +θ0

)
∣∣b̄2
∣∣ei

(
θ2−θ1

2 +θ0

)
 =

[∣∣b̄1
∣∣eiθ1∣∣b̄2
∣∣eiθ2

]
. (101)

APPENDIX C
ILLUSTRATION OF THE QUANTUM COMPUTATION

PROCEDURE FOR PREPARING |b̄⟩: TWO-QUBIT CASE

In this section, we illustrate the quantum computation
procedure of for preparing the state |b̄⟩ in the two-qubit case.
In this case, we have

b =


|b1|eiθ1

|b2|eiθ2

|b3|eiθ3

|b4|eiθ4

. (102)

The corresponding quantum state for the normalized vector b̄
is mathematically represented as follows:

|b̄⟩ ≜


∣∣b̄1
∣∣eiθ1∣∣b̄2
∣∣eiθ2∣∣b̄3
∣∣eiθ3∣∣b̄4
∣∣eiθ4

. (103)

We first focus on the magnitude preparation circuit,
as shown in Fig. 13. According to (50)–(54), we can find the
values of the phase parameters, 91, 81, and 82, as follows:

91 = arctan

√
|b3|

2 + |b4|
2

|b1|
2 + |b2|

2 (104)

81 = arctan
|b2|

|b1|
(105)

82 = arctan
|b4|

|b3|
. (106)

Taking 91, 81, and 82 as the phase parameter θ and
substituting (104)–(106) into (10) allow us to derive the states
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|ϕ2⟩ and |ϕ3⟩ as follows:

|ϕ2⟩ ≜


cos91 cos81
cos91 sin81

sin91
0

 (107)

|ϕ3⟩ ≜


cos91 cos81
cos91 sin81
sin91 cos82
sin91 sin82

. (108)

Applying the sine and cosine laws based on (104)–(106)
and substituting the results into (108), we can find that the
state |ϕ3⟩ is equivalent to the state |b̄⟩ with correct magnitude
and zero phase, i.e.,

|ϕ3⟩ ≜


∣∣b̄1
∣∣∣∣b̄2
∣∣∣∣b̄3
∣∣∣∣b̄4
∣∣

. (109)

Now, let us move on to the phase preparation circuit,
as shown in Fig. 14, where the phase parameters, 9̄1, 8̄1,
and 8̄2, are given by

9̄1 =
1
4

[(θ3 + θ4)− (θ1 + θ2)] (110)

8̄1 =
1
2
(θ2 − θ1) (111)

8̄2 =
1
2
(θ4 − θ3). (112)

Taking 9̄1, 8̄1, and 8̄2 as the phase parameter θ and
substituting (110)–(112) into (11) allow us to derive the states
|ϕ4⟩, |ϕ5⟩, and |ϕ6⟩ as follows:

|ϕ4⟩ ≜


∣∣b̄1
∣∣e−i9̄1∣∣b̄2
∣∣e−i9̄1∣∣b̄3
∣∣ei9̄1∣∣b̄4
∣∣ei9̄1

 (113)

|ϕ5⟩ ≜


∣∣b̄1
∣∣e−i(9̄1+8̄1)∣∣b̄2
∣∣e−i(9̄1−8̄1)∣∣b̄3
∣∣ei9̄1∣∣b̄4
∣∣ei9̄1

 (114)

|ϕ6⟩ ≜


∣∣b̄1
∣∣e−i(9̄1+8̄1)∣∣b̄2
∣∣e−i(9̄1−8̄1)∣∣b̄3
∣∣ei(9̄1−8̄2)∣∣b̄4
∣∣ei(9̄1+8̄2)

. (115)

We define a global phase θ0 as follows:

θ0 =
1
4
(θ1 + θ2 + θ3 + θ4). (116)

Given this definition, the state |ϕ6⟩ in (115) is equivalent to

|ϕ6⟩ ∼


∣∣b̄1
∣∣ei(θ0−9̄1−8̄1)∣∣b̄2
∣∣ei(θ0−9̄1+8̄1)∣∣b̄3
∣∣ei(θ0+9̄1−8̄2)∣∣b̄4
∣∣ei(θ0+9̄1+8̄2)

. (117)

Substituting (110)–(112) and (116) into (117), we can find that
|ϕ6⟩ is equal to our desired state |b̄⟩ up to θ0

|ϕ6⟩ ∼


∣∣b̄1
∣∣eiθ1∣∣b̄2
∣∣eiθ2∣∣b̄3
∣∣eiθ3∣∣b̄4
∣∣eiθ4

. (118)

REFERENCES

[1] J. Zhang, F. Feng, and Q. J. Zhang, “Quantum method for finite element
simulation of electromagnetic problems,” in IEEE MTT-S Int. Microw.
Symp. Dig., Atlanta, GA, Jun. 2021, pp. 120–123.

[2] J. D. Hidary, Quantum Computing: An Applied Approach. Berlin,
Germany: Springer, 2019.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[4] S. Sinha and P. Russer, “Quantum computing algorithm for electromag-
netic field simulation,” Quantum Inf. Process., vol. 9, no. 3, pp. 385–404,
Jun. 2010.

[5] J. A. Russer, M. Haider, C. Jirauschek, and P. Russer, “On the possibility
of quantum simulation of electromagnetic structures,” in IEEE MTT-S
Int. Microw. Symp. Dig., Boston, MA, USA, Jun. 2019, pp. 267–270.

[6] J. M. Jin, The Finite Element Method in Electromagnetics. New York,
NY, USA: Wiley, 2002.

[7] C. Phillips and V. I. Okhmatovski, “Quantum algorithms for the solution
of matrix equations in electromagnetics,” in Proc. Int. Appl. Comput.
Electromagn. Soc. Symp. (ACES), Aug. 2021, pp. 1–3.

[8] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Phys. Rev. Lett., vol. 103, no. 15, Oct. 2009,
Art. no. 150502.

[9] D. Dervovic, M. Herbster, P. Mountney, S. Severini, N. Usher, and
L. Wossnig, “Quantum linear systems algorithms: A primer,” 2018,
arXiv:1802.08227.

[10] B. Duan, J. Yuan, C. H. Yu, J. Huang, and C. Y. Hsieh, “A survey
on HHL algorithm: From theory to application in quantum machine
learning,” Phys. Lett. A, vol. 384, no. 24, May 2020, Art. no. 126595.

[11] D. W. Berry, “High-order quantum algorithm for solving linear differ-
ential equations,” J. Phys. A, Math. Gen., vol. 47, no. 10, Feb. 2014,
Art. no. 105301.

[12] N. Wiebe, D. Braun, and S. Lloyd, “Quantum algorithm for data fitting,”
Phys. Rev. Lett., vol. 109, no. 5, Aug. 2012, Art. no. 050505.

[13] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector
machine for big data classification,” Phys. Rev. Lett., vol. 113, no. 13,
Sep. 2014, Art. no. 130503.

[14] I. Kerenidis and A. Prakash, “Quantum recommendation systems,” 2016,
arXiv:1603.08675.

[15] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, “Preconditioned quantum
linear system algorithm,” Phys. Rev. Lett., vol. 110, no. 25, Jun. 2013,
Art. no. 250504.

[16] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa,
“Transformation of quantum states using uniformly controlled rotations,”
Quantum Inf. Comput., vol. 5, no. 6, pp. 467–473, Sep. 2005.

[17] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum-
logic circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 25, no. 6, pp. 1000–1010, Jun. 2006.

[18] G. W. Stewart, “A Krylov–Schur algorithm for large eigenproblems,”
SIAM J. Matrix Anal. Appl., vol. 23, no. 3, pp. 601–614, Jan. 2002.

[19] J. Trommler, S. Koch, and T. Weiland, “A finite-element approach
in order to avoid ill-conditioning in thin-sheet problems in frequency
domain—Application to magneto-quasistatics,” J. Comput. Appl. Math.,
vol. 236, no. 18, pp. 4671–4680, Dec. 2012.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



18 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

[20] S. Xinqing and P. Zhen, “Novel high-performance element in the
electromagnetic finite-element method—Node-edge element,” J. Syst.
Eng. Electron., vol. 19, no. 5, pp. 878–881, Oct. 2008.

[21] M. Benzi, “Preconditioning techniques for large linear systems: A sur-
vey,” J. Comput. Phys., vol. 182, no. 2, pp. 418–477, Nov. 2002.

[22] J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method
for Electromagnetics: Antennas, Microwave Circuits, and Scattering
Applications. New York, NY, USA: IEEE Press, 1998.

[23] M. J. Grote and T. Huckle, “Parallel preconditioning with sparse approx-
imate inverses,” SIAM J. Sci. Comput., vol. 18, no. 3, pp. 838–853,
May 1997.

[24] E. Chow and Y. Saad, “Approximate inverse preconditioners via sparse-
sparse iterations,” SIAM J. Sci. Comput., vol. 19, no. 3, pp. 995–1023,
May 1998.

[25] E. Chow, “A priori sparsity patterns for parallel sparse approxi-
mate inverse preconditioners,” SIAM J. Sci. Comput., vol. 21, no. 5,
pp. 1804–1822, Jan. 2000.

[26] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, “Efficient quantum
algorithms for simulating sparse Hamiltonians,” Commun. Math. Phys.,
vol. 270, no. 2, pp. 359–371, Mar. 2007.

[27] K. J. Sung et al., “Using models to improve optimizers for variational
quantum algorithms,” 2020, arXiv:2005.11011.

[28] Cirq Developers. (2018). Cirq Documentation. [Online]. Available:
https://cirq.readthedocs.io/en/latest/tutorial.html

[29] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, “Hybrid quantum-
classical algorithms and quantum error mitigation,” J. Phys. Soc. Jpn.,
vol. 90, no. 3, Mar. 2021, Art. no. 032001.

[30] A. Mari, N. Shammah, and W. J. Zeng, “Extending quantum proba-
bilistic error cancellation by noise scaling,” Phys. Rev. A, Gen. Phys.,
vol. 104, no. 5, Nov. 2021, Art. no. 052607.

[31] R. Takagi, “Optimal resource cost for error mitigation,” Phys. Rev. Res.,
vol. 3, no. 3, Aug. 2021, Art. no. 033178.

[32] Z. Cai et al., “Quantum error mitigation,” 2022, arXiv:2210.00921.
[33] R. Takagi, H. Tajima, and M. Gu, “Universal sampling lower bounds

for quantum error mitigation,” 2022, arXiv:2208.09178.
[34] S. Aaronson, “Read the fine print,” Nature Phys., vol. 11, no. 4,

pp. 291–293, Apr. 2015.
[35] K. Bharti et al., “Noisy intermediate-scale quantum algorithms,” Rev.

Mod. Phys., vol. 94, Feb. 2022, Art. no. 015004.
[36] M. Cerezo et al., “Variational quantum algorithms,” Nature Rev. Phys.,

vol. 3, no. 9, pp. 625–644, 2021.
[37] W.-B. Ewe, D. E. Koh, S. T. Goh, H.-S. Chu, and C. E. Png, “Variational

quantum-based simulation of waveguide modes,” IEEE Trans. Microw.
Theory Techn., vol. 70, no. 5, pp. 2517–2525, May 2022.

[38] L. Zhang and Q. J. Zhang, “Quantum method for scaling the finite
element-based quantum solutions of electromagnetic problems,” in IEEE
MTT-S Int. Microw. Symp. Dig., Denver, CO, Jun. 2022, pp. 321–324.

[39] J. S. Savage and A. F. Peterson, “Higher-order vector finite elements for
tetrahedral cells,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 6,
pp. 874–879, Jun. 1996.

[40] A. J. Otto, N. Marais, E. Lezar, and D. B. Davidson, “Using the FEniCS
package for FEM solutions in electromagnetics,” IEEE Antennas Propag.
Mag., vol. 54, no. 4, pp. 206–223, Aug. 2012.

Jianan Zhang (Member, IEEE) received the B.Eng.
degree from Tianjin University, Tianjin, China,
in 2013, and the Ph.D. degree from the School of
Microelectronics, Tianjin University, and the Depart-
ment of Electronics, Carleton University, Ottawa,
ON, Canada, in 2020.

From 2020 to 2022, he was a Post-Doctoral
Research Associate with the Department of Elec-
tronics, Carleton University. He is currently an
Associate Professor with the State Key Laboratory
of Millimeter Waves, Southeast University, Nanjing,

China. His research interests include machine-learning approaches to meta-
surface design, surrogate modeling and surrogate-assisted optimization, finite
element analysis in electromagnetic (EM), and quantum computing with
applications to EM problems.

Feng Feng (Senior Member, IEEE) received the
B.Eng. degree from Tianjin University, Tianjin,
China, in 2012, and the Ph.D. degree from the
School of Microelectronics, Tianjin University, and
the Department of Electronics, Carleton University,
Ottawa, ON, Canada, in 2017.

From 2017 to 2020, he was a Post-Doctoral Fel-
low with the Department of Electronics, Carleton
University. In 2020, he joined the School of Micro-
electronics, Tianjin University, where he is currently
a Full Professor. He has authored or coauthored

over 100 publications. His research interests include artificial intelligence
(AI) and machine learning-based electromagnetic parametric modeling and
optimization methods for high-speed/high-frequency circuit design.

Dr. Feng is a member of the Technical Committee on Design Automation
(TC-2) of the IEEE Microwave Theory and Techniques (MTT) Society.

Qi-Jun Zhang (Fellow, IEEE) received the B.Eng.
degree from the Nanjing University of Science and
Technology, Nanjing, China, in 1982, and the Ph.D.
degree in electrical engineering from McMaster Uni-
versity, Hamilton, ON, Canada, in 1987.

From 1988 to 1990, he was a Research Engineer
with Optimization Systems Associates Inc., Dundas,
ON, Canada, developing advanced optimization soft-
ware for microwave modeling and design. In 1990,
he joined the Department of Electronics, Carleton
University, Ottawa, ON, Canada, where he is cur-

rently a Chancellor’s Professor. He has authored the book Neural Networks
for RF and Microwave Design (Boston, MA, USA: Artech House, 2000) and
is a Coeditor of the book Modeling and Simulation of High-Speed VLSI Inter-
connects (Boston: Kluwer, 1994) and Simulation-Driven Design Optimization
and Modeling for Microwave Engineering (London, U.K.: Imperial College
Press, 2013). He has more than 360 publications in his research area. His
research interests include modeling, optimization, and machine learning for
high-speed/high-frequency electronic design.

Dr. Zhang is a Fellow of the Canadian Academy of Engineering and the
Engineering Institute of Canada. He is the Co-Chair of the Working Group
on Artificial Intelligence (AI) and Machine Learning-Based Technologies for
Microwaves in the Future Directions Committee of the IEEE Microwave
Theory and Techniques (MTT) Society. He was twice a Guest Editor of
the Special Issues on Applications of Artificial Neural Network (ANN)
for RF/Microwave Design for the International Journal of RF/Microwave
Computer-Aided Engineering in 1999 and 2002, and a Guest Coeditor of the
Special Issue on Machine Learning in Microwave Engineering for the IEEE
Microwave Magazine in 2021. He is a Topic Editor of the IEEE JOURNAL
OF MICROWAVES.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


