
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 72, NO. 10, OCTOBER 2024 5709

Efficient Integral Equation Analysis of
3-D Rectangular Waveguide Microwave

Circuits by Using Green’s Functions
Accelerated With the Ewald Method

Antonio Manuel Huéscar de la Cruz , Student Member, IEEE, Celia Gómez Molina ,
Fernando Daniel Quesada Pereira , Member, IEEE,
Alejandro Álvarez Melcón , Senior Member, IEEE,

and Vicente E. Boria Esbert , Fellow, IEEE

Abstract— In this contribution, an electric field integral
equation (EFIE) formulation is proposed, for the analysis of
microwave circuits based on rectangular waveguides with an
unlimited number of arbitrarily 3-D-shaped conducting elements.
For this purpose, the Lorenz gauge rectangular waveguide
Green’s functions are used. Moreover, the Ewald method has
been employed to significantly speed up the evaluation of these
rectangular waveguide Green’s functions. Strategies are also
proposed to switch between different ways of calculating the
Green’s functions depending on the source-observation distance
along the propagation direction. In addition, the method of
moments (MoM) has been applied to solve the EFIE. Following
the application of this technique, the impedance matrix resulting
from the MoM has been divided into dynamic and static parts,
thus reducing the computational time required to obtain the
frequency response of practical 3-D microwave circuits by up
to a factor of 3 compared with the traditional formulation.
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On the other hand, a generic expression is derived to evaluate
the multimode scattering parameters of rectangular waveguide
circuits, independently on the mode used to excite the structure.
The evaluation of the electromagnetic fields inside the rectangular
waveguides has also been carried out. The proposed technique
has been validated by comparison with results provided by
commercial full-wave software, such as ANSYS HFSS and CST
Studio Suite, showing good agreement and good numerical
efficiency.

Index Terms— Electric field integral equation (EFIE), elec-
tromagnetic field evaluation, Ewald method, Green’s function,
method of moments (MoM), rectangular waveguide circuits,
scattering parameters.

I. INTRODUCTION

IN RECENT decades, microwave devices in waveguide
technology [1] have increasingly been used as an alternative

to microwave circuits in planar technologies, as they have
considerably low losses and are capable of handling high-
power levels in applications, such as space communications
systems [2], [3]. In addition, these circuits can be composed of
a high number of arbitrarily shaped metallic and/or dielectric
elements within them [4], [5], [6] in order to achieve the
desired performance. The popularization of this type of devices
has favored the research of different numerical techniques,
such as those based on finite difference in time domain
(FDTD), finite elements, or integral equations (IEs) solved
by the method of moments (MoM) [7], [8], [9], [10]. These
techniques allow the evaluation of the electromagnetic fields
inside the structures and also the calculation of their circuit
responses, i.e., their scattering parameters. The FDTD and
finite element method (FEM) [7], [8] are suitable for the
analysis of very complex geometries, since they apply a full
discretization of arbitrarily shaped structures by means of
adaptive meshes. The main problem with such numerical
methods is the need of a large memory storage and their
associated computational cost. On the other hand, the use of
modal techniques should also be highlighted. These techniques
are very fast, but have the disadvantage that they are limited
to the analysis of a certain type of canonical geometries [11],
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Fig. 1. Sketch of a generic rectangular waveguide, with dimensions a × b
in the XY plane and with a length l along the z-axis, including two arbitrarily
shaped conducting elements inside it.

[12], [13]. In addition, there exist other strategies, such as
those shown in [14] and [15], where numerical techniques
based on mode matching (MM) are proposed. In [14], a hybrid
strategy between the FEM and MM together with the use of
a modified transverse resonance (MTR) technique is shown,
which provides accurate results but requires dense meshing.

On the other hand, IE [9] methods can also analyze complex
structures, with the advantage that they can be formulated to
require only the mesh of discrete objects acting as disconti-
nuities in a given reference geometry. In fact, the boundary
conditions of the reference structure containing these objects
are included in especially tailored Green’s functions. Other
IE techniques, such as those shown in [16], [17], and [18],
are based on the boundary integral-resonant mode expansion
(BI-RME) method. This numerical technique, after solving
an eigenvalue problem, provides an efficient procedure to
obtain the wideband response of guided circuits under analysis.
As disadvantages, the analysis of structures in the presence of
dielectric objects, electrically large structures with step discon-
tinuities between different rectangular waveguides, becomes
complex as well as computationally expensive. At this point,
where there exist electrically large structures, segmentation
techniques could be applied to split the main problem into
smaller, more manageable problems, but this increases com-
plexity. Another complex task for this type of formulation
is the evaluation of the electromagnetic field inside these
structures for a specific frequency. Therefore, it may not be
an optimal technique to study phenomena, such as corona or
multipactor [2], [3].

In this contribution, we propose an efficient electric field
IE (EFIE) [9] formulation for the analysis of 3-D rectangular
waveguide circuits with arbitrarily shaped perfect electric
conducting (PEC) objects, as shown in Fig. 1. In this formu-
lation, the boundary conditions on the walls of the rectangular
waveguide are modeled by the corresponding Green’s func-
tions introduced in the IE kernel. Subsequently, the EFIE
is solved only on the arbitrarily shaped metallic objects by
the MoM [10], using a given combination of rooftop and/or

Rao–Wilton–Glisson (RWG) basis and test functions (Galerkin
approach), defined, respectively, on rectangular and triangular
mesh elements [19], [20], [21]. Moreover, as previously men-
tioned for IE techniques, an important advantage of this type
of formulation is that it does not require a complete mesh of
the whole volume to be analyzed, as it is the case for FEM
or FDTD techniques, which greatly reduces the number of
unknowns to be solved. Although the focus in this article will
be on EFIE, this IE formulation could also be extended to a
magnetic field IE (MFIE) or a combined field IE (CFIE).

A difficulty of the proposed IE technique is that its effi-
ciency is limited by the slow convergence of spectral or spatial
images series, associated with the evaluation of the rectan-
gular waveguide Green’s functions [22]. To reduce as much
as possible this computational cost, the Ewald method will
be used, which properly combines both spectral and spatial
images series in a convenient formulation [23]. In [24], this
method is extended to the efficient computation of rectangular
waveguide Green’s functions derivatives, which will be used in
this article for the evaluation of electromagnetic fields inside
the structures.

Even though the computational cost in the evaluation of the
Green’s functions of the rectangular waveguide is reduced, the
bottleneck of this EFIE technique is still in the calculation of
the moment matrix elements. Therefore, to further improve
the efficiency, we propose, in this article, to split the original
moment matrix into two parts, one dynamic and one static.
This technique is focused on evaluating the dynamic part
of the moment matrix, which is nonsingular and frequency-
dependent, as fast as possible. On the other hand, the static
part, which has singular elements, is slower, but since it
is frequency-independent, it is computed only once during
the frequency analysis of a given device. In this article,
we introduce, as a novelty different options to compute the
dynamic part of the matrix, by substracting different image
distributions to the total Green’s functions evaluated with
the improved technique based on the Ewald method reported
in [24].

The first challenge to apply this method is the calculation
of the singular elements of the static moment matrix, resulting
from the self-interaction between basis and test functions
defined on the same mesh cell. To increase the efficiency
for these interactions, the contribution of the singular (1/R)
term of the potential Green’s functions is separated, and the
corresponding integral with the basis and test functions is
analytically evaluated [25], [26].

The second challenge is how to compute efficiently the
dynamic part of the moment method. Even though this part
has no singularities, the self-interactions between basis and
test functions are still nondifferentiable, and a direct numerical
integration only converges with a large number of points.
To reduce the numerical effort needed to compute these non-
differentiable elements, in this article, we propose a division
of the self-interaction cells into subtriangles, taking each
observation point as the subdivision vertex.

The rest of the MoM elements, both static and dynamic,
are evaluated numerically using cubature rules defined in
canonical integration domains, as explained in [27]. For these
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interactions, we also introduce a new strategy to increase the
efficiency. The strategy is based on switching between differ-
ent techniques to evaluate the Green’s functions of the base
rectangular waveguide, depending on the electrical source-
observation distance.

This article is organized as follows. First, Section II has been
divided into four different sections. Section II-A will give a
brief overview of the EFIE to facilitate the understanding of
the aspects to be improved in this formulation. After that,
Section II-B will show how to carry out the procedure of
separating the EFIE moment matrix into static and dynamic
parts. Furthermore, this section will discuss the different
ways to evaluate the dynamic part by substracting different
arrangements of spatial images. This section also covers the
strategy used to calculate the nondifferentiable elements of
the resulting dynamic moment matrix corresponding to the
self-interactions of the dynamic part. The strategy proposed
to increase efficiency in the calculation of the rest of the
elements (both static and dynamic) is covered in Section II-C.
The technique is based on switching between several different
ways to evaluate the Green’s functions of the rectangular
waveguide, depending on the electrical source-observation
distance. To conclude the theoretical part of this work,
it will be shown how to evaluate the multimode scattering
parameters of a given microwave component, once the IE is
solved.

Next, in Section III, some results obtained with the
theory developed throughout Section II will be shown.
In Section III-A, the effects of using the different options
discussed in Section II-B to extract the singularity from the
dynamic MoM matrix are discussed in terms of computa-
tional cost and accuracy. This study will be very important
to improve the efficiency of the numerical implementation
without compromising the accuracy. Then, in Section III-B,
the proposed technique will be applied to the computation
of the scattering parameters of different practical devices in
rectangular waveguides. These results will be compared with
those provided by commercial full-wave software packages,
such as ANSYS HFSS [28] and CST Studio Suite [29].
To conclude this section, in Section III-C, a comparison of the
electromagnetic fields inside a filter in rectangular waveguide
technology between the IE method employed in this work
and ANSYS HFSS will be shown. Finally, in Section IV, the
conclusions of this work and some future research lines will
be discussed.

II. THEORY

A. Electric Field Integral Equation in Rectangular
Waveguides

In this section, we begin by briefly outlining the EFIE
formulation used in this work, whose implementation is well
known for studying radiation from both open and closed con-
ducting structures. This formulation is based on the solution
of an IE where the unknown is the surface electric current
density induced on the perfect conducting structure, whereas
the enforced boundary condition is the nullity of the total
electric field tangent to its external surface (Sc), as shown in
Fig. 1.

In this IE formulation, in order to alleviate the mathematical
singularities resulting from working directly with Maxwell’s
electromagnetic field expressions [30], we resort to make use
of auxiliary potential functions, such as those used in [31].
Thus, the electric field scattered by a perfect conductor can be
written as follows:

E⃗ s(r⃗) = − jω A⃗(r⃗) − ∇φe(r⃗) (1)

where A⃗(r⃗) is the magnetic vector potential, φe(r⃗) is the
electric scalar potential, and r⃗ is the observation point where
the electromagnetic field is evaluated.

It should be noted that the potential functions, in addition
to being dependent on the position of the source (r⃗ ′) and of
the observer (r⃗ ), are also dependent on the frequency.

The electric field of the structure will be the sum of the
electric field scattered by the structure E⃗ s(r⃗), as shown in (1),
and the electric field produced by the excitation sources E⃗ i (r⃗).
Thus, the EFIE can be written as follows:

n̂ × (E⃗ i
+ E⃗ s)

∣∣
Sc

= 0 (2)

where Sc is the conductor surface, where the boundary con-
dition is imposed, and n̂ is the unit vector normal to the
conducting surface (see Fig. 1).

Next, to solve the EFIE, the MoM [10] is applied,
in which the unknown electric current surface density [ J⃗ c(r⃗)]
is expanded as the sum of weights (an), whose values have to
be determined, multiplied by a finite set of basis functions,
which, in our case, will be rooftop for rectangular mesh
cells [20] or RWG for triangular mesh cells [19], [21].

The next step is to transform the EFIE into a system of linear
equations. First, the generalized impedance moment matrix
is obtained, which relates the voltage and current induced in
every element used in the discretization of the structure under
study. To obtain this impedance matrix (Zmn), a test procedure
must be applied, obtaining

Zmn = jω
∫

Sm

f⃗ m(r⃗) ·

(∫
Sn

G A(r⃗ , r⃗ f⃗ n(r⃗ ′) d S′

)
d S

−
j
ω

∫
Sm

∇ · f⃗ m(r⃗)

(∫
Sn

GV (r⃗ , r⃗∇
′
· f⃗ n(r⃗ ′) d S′

)
d S

(3)

where Sn and Sm are the mesh cells where the basis f⃗ n(r⃗ ′)

and test functions f⃗ m(r⃗) are defined. In the case of this article,
the set of test and basis functions will be the same (Galerkin
approach). It should be noted that in (3), it has been possible
to apply the divergence operator to the test function, because
the selected test functions are “divergence conforming” with
continuity on the common edge. As shown, the divergence
finally affects to the test functions, instead of affecting to the
electric scalar potential GV (r⃗ , r⃗ ′), thus avoiding higher order
singularities in the Green’s functions.

Next, the vector of independent terms of the problem that
is related to the excitation of the structure is constructed. Its
elements are calculated by solving the following test integral:

em =

∫
Sm

f⃗ m(r⃗) · E⃗ i (r⃗) d S (4)
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Fig. 2. Static discrete image distribution for the evaluation of the auxiliary
function Gstat. The different configurations to be considered in this work are
as follows: considering only the source term (red square), the first quartet of
images corresponding to the source (red square plus green stars), and up to
the first layer of images (red square, green stars, and blue circles).

where E⃗ i is the excitation field (usually the TE10 fundamental
mode of the rectangular waveguide).

B. Efficient Filling of the Generalized Impedance
Moment Matrix

In this section, it will be shown how to reduce the computa-
tional time required for the calculation of the impedance MoM
matrix presented in Section II-A. To do so, we remark that the
bottleneck of this formulation is located in the evaluation of
the Green’s functions present in the calculation of this matrix.

To overcome this problem, on the one hand, an efficient
evaluation of the Green’s functions will be carried out by
using the Ewald method acceleration technique. The strategies
shown in [23] and [24] have been employed to make a more
efficient use of the Ewald method. On the second hand, the
Green’s functions of the rectangular waveguide will be divided
into static and dynamic parts, giving rise in the IE algorithm
to the static and dynamic moment matrices ([Z stat

mn ], [Zdyn
mn ]), as

follows:

Z stat
mn = jω

∫
Sm

f⃗ m(r⃗) ·

(∫
Sn

P stat(r⃗ , r⃗ ′) f⃗ n(r⃗ ′) d S′

)
d S

−
j
ω

∫
Sm

∇ · f⃗ m(r⃗)

(∫
Sn

Gstat(r⃗ , r⃗ ′)∇ ′
· f⃗ n(r⃗ ′) d S′

)
d S

(5)

Zdyn
mn = jω

∫
Sm

f⃗ m(r⃗) ·

(∫
Sn

(
G A(r⃗ , r⃗ ′) − P stat(r⃗ , r⃗ ′)

)
· f⃗ n(r⃗ ′) d S′

)
d S −

j
ω

∫
Sm

∇ · f⃗ m(r⃗)

·

(∫
Sn

(
GV (r⃗ , r⃗ ′) − Gstat(r⃗ , r⃗ ′)

)
∇

′
· f⃗ n(r⃗ ′) d S′

)
d S.

(6)

As shown, the dynamic moment matrix is obtained by
substracting a singularity term also called static part (P stat or
Gstat) to the total Green’s functions (G A and GV ) evaluated

with the Ewald technique. Since the dynamic moment matrix
has no singularities, the integration of these elements can
be evaluated by means of optimal numerical cubature rules
defined in triangles or rectangles [27], with a reduced number
of integration points.

In this work, we have assessed the efficiency of defining the
singularity term (static part) using different options, as follows.

1) Define the static part (P stat or Gstat) with the whole
static Green’s functions of the rectangular waveguide
accelerated with the Ewald method.

2) Define the static part, using the spatial images repre-
sentation, only as the source term (see the red square
in Fig. 2), which can then be integrated analytically as
in [25] and [26].

3) Define the static part using the spatial images representa-
tion. However, in this case, we include, in the static part,
the source term and the first quartet of spatial images
(red square and green stars in Fig. 2).

4) Define the static part again using the spatial images
representation. In this case, we include, in the static
term, the source term and up to the first layer of images
(red square, green stars, and blue circles in Fig. 2).

A study of the different options for defining the static part
of the Green’s functions is necessary, in order to know which
one leads to more accurate results and to a more efficient
evaluation. For this analysis, a standard WR-90 rectangular
waveguide of dimensions (a = 22.86 mm × b = 10.16 mm),
as shown in Fig. 3(a), has been taken as an example. A source
point has been placed at (x ′, y′) = (2 mm, 2 mm), and
500 observation points along the x-axis, at a height y =

2.64 mm and at a distance along the propagation axis of
|z − z′

| = 1 mm, were taken. For the first option, based
on the application of the Ewald method to the total static
summation, the number of modes used in the summation of the
spectral part was 12, while for the spatial part series, a single
layer of images (the red square, the green stars, and the blue
circles in Fig. 2) was taken. With these parameters, the result
converges rapidly. On the other hand, the working frequency is
f = 10 GHz.

As can be seen in Fig. 3(b), when subtracting the static
part from the total Green’s functions, the dynamic part is
smooth with practically all the proposed methods (except
when extracting only the source). However, in another study
performed with the source coordinates centered with respect to
the walls of the rectangular waveguide (source coordinates (x ′,
y′) = (11.43 mm, 5.08 mm) and the 500 observation points
distributed along the x-axis located at a height y = 9.14 mm
and a distance along the propagation axis of |z − z′

| = 1 mm),
it can be seen that taking only the first quartet of images leads
to nonoptimal results, as shown in Fig. 4. Following these
results, it is concluded that only the static Ewald method and
the static discrete image distribution up to the first layer will
be valid options for evaluating P stat and Gstat.

Following this strategy, an efficient evaluation of the
dynamic moment matrix is possible. This is due to the
fact that by extracting the static part of the Green’s func-
tions, a very smooth behavior remains for the dynamic term,
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Fig. 3. (a) Sketch of a standard WR-90 rectangular waveguide, with
dimensions a = 22.86 mm × b = 10.16 mm in the XY plane. This includes
the location of a source point at coordinates (x ′, y′) = (2 mm, 2 mm)
and a distribution of observation points along the x-axis, at a height y =

2.64 mm from the bottom wall of the rectangular waveguide and at a distance
from the source point in the propagation direction of |z − z′

| = 1 mm.
(b) Representation of a x-axis cut of the magnitude of the magnetic vector
potential Green’s function dyadic component Gzz

A using the Ewald method,
as shown in Fig. 3(a). The rest of the curves shows at the same cut, the
difference between the Gzz

A component and the different choices used to
evaluate the P zz

aux. GV has a very similar behavior to Gzz
A .

as demonstrated in Fig. 3(b). Therefore, the elements of the
dynamic moment matrix (6) can accurately be evaluated with
low-order quadrature rules.

Still, the evaluation of the dynamic moment matrix involves
nondifferentiable elements for the interaction between basis
and test functions defined on the same mesh cells. We have
verified that a direct integration of these elements needs a
large number of integration points. Therefore, to evaluate these
nondifferentiable elements of the dynamic matrix efficiently,
a technique based on dividing the cells into subtriangles for
each observation point is employed, as illustrated in Fig. 5.
In this technique, for each of the original observation points
[see Fig. 5(a)], it is divided into subtriangles, and at each
of these subtriangles, the new source integration points are
calculated, as can be seen in Fig. 5(b). Therefore, for the
specific example in Fig. 5, three source integrals (one for each
subtriangle) would be performed for each original observation

Fig. 4. Representation of a x-axis cut of the magnitude of the magnetic
vector potential Green’s function dyadic component Gzz

A using the Ewald
method, as shown in Fig. 3(a). The rest of the curves shows at the same
cut, the difference between the Gzz

A component and the different choices
used to evaluate the P zz

aux. The source coordinates are (x ′, y′) = (11.43 mm,
5.08 mm), and the 500 observation points distributed along the x-axis are
located at a height y = 9.14 mm and a distance along the propagation axis of
|z − z′

| = 1 mm.

Fig. 5. Process of subdividing mesh cells into subtriangles, when
self-interaction of test and basis functions occurs in the same mesh cell.
(a) Observation points in the original mesh cell can be seen (black circles).
(b) Subtriangles with the new source points (red stars), for an original
observation point (blue circle). In (b), it should be noted that the new source
points appearing in each subtriangle are only for one original observation
point. In this example, the process of division into subtriangles would have
to be repeated for the other original observation points (gray circles).

point. Subsequently, the integral for each observation point
would be the sum of the three subtriangles.

On the other hand, the efficiency of the evaluation of the
static moment matrix (5) will be closely related to the way
in which the auxiliary functions P stat and Gstat are evaluated.
As the singular part of the Green’s functions is present in these
auxiliary functions, the number of integration points needed
for (5) will be higher than in (6).

Finally, the form of the total moment matrix would be the
sum of the static moment matrix (5) and of the dynamic
moment matrix (6) at each frequency point, written as follows:

Zmn = Z stat
mn + Zdyn

mn . (7)

In Section III-A, the computational cost of the different eval-
uation methods for an efficient filling of the moment matrix
is studied.
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C. Switching Between Different Green’s
Function Evaluation Methods

Throughout this work, it has been discussed that the filling
of the moment matrix is the most computationally expensive
step in the numerical modeling of practical devices. This
high-computational cost is mainly due to the large number of
Green’s function evaluations that have to be performed. For
this reason, it is necessary to choose the most efficient way to
evaluate the Green’s function in each case.

In order to make the proposed EFIE solution more efficient,
it will be studied how to switch between the Ewald method and
the modal summation method in the spectral domain, since it is
very fast and accurate for relatively large electrical distances.
The aim is to estimate a distance, in terms of the wavelength of
the rectangular waveguide for the TE10 mode (λg), from which
it is appropriate to use the series of Green’s functions in the
spectral domain. To determine when it is appropriate to switch
between the two ways of evaluating the Green’s functions, the
time to evaluate them Green’s functions is measured as the
distance along the direction of propagation increases (|z − z′

|),
as shown in Fig. 6(a).

The specific details of the analysis are represented in the
drawing of Fig. 6(a), where the working frequency is 10 GHz,
the position of the source in the XY plane is x ′

= 11.43 mm
and y′

= 5.08 mm, and the observation point is located at
x = 11.43 mm and y = 5.082 mm. The different Green’s
functions have been calculated for varying distance |z − z′

|,
at 200 points between 0 and 1.3λg . The number of modes
in both the Ewald method and the modal summation in the
spectral domain varies dynamically with the distance along
the direction of propagation to ensure a relative error in the
Green’s functions of less than 10−4. In fact, this will cause the
analysis time to change with distance, since as seen in [23]
and [24], the number of modes needed in each case varies
with the distance |z − z′

|.
In Fig. 6(b), it can be seen that the analysis time of evaluat-

ing Gzz
A by means of modal summation in the spectral domain

is very high for very small electrical distances. At these
distances, it is necessary to take into account a high number of
modes in the summation in order to ensure the desired relative
error. Another aspect to note, and the reason why the abscissa
axis starts at |z − z′

|/λg = 0.1, is that this method does not
converge to an optimal solution when the electrical distance
is very close to 0, as explained in [23] and [24]. On the
other hand, when the electrical distance is very large, it is
sufficient to take into account only the propagative modes for
the result to be accurate. It is for this reason that the analysis
time converges to very small values when this electrical
distance increases significantly. In the case of using the Ewald
method to evaluate the Green’s functions, the analysis time
does not show such a strong dependence on the distance as
the modal summation. However, in this method, there are
complementary error functions that cause some inaccuracies
in the results of the Green’s functions when the electrical
distances along the direction of propagation are very large.
Therefore, as shown in Fig. 6(b), for distances larger than |z−

z′
|/λg = 0.33, it is more efficient and accurate to use the modal

Fig. 6. (a) Sketch of a standard WR-90 rectangular waveguide, with
cross-sectional dimensions a = 22.86 mm × b = 10.16 mm. This includes the
location of a source point at coordinates (x ′, y′) = (11.43 mm, 5.08 mm) and a
distribution of observation points along the z-axis, at a height y = 5.082 mm
from the bottom wall of the rectangular waveguide. (b) Analysis time of
the Gzz

A component of the dyadic magnetic vector potential Green’s function
of the rectangular waveguide, when the distance along the propagation axis
increases.

summation in the spectral domain to evaluate the Green’s
functions.

III. RESULTS

This section will show some practical results of the theo-
retical concepts outlined in Section II. In Section III-A, the
advantage of separating the moment matrix into static and
dynamic parts will be studied. On the other hand, Section III-B
will validate the complete formulation by calculating the
scattering parameters of different conducting structures within
a rectangular waveguide. Finally, in Section III-C, the different
components of the electric and magnetic fields will be evalu-
ated, and the results will be compared with those provided by
the commercial ANSYS HFSS software.

A. Computational Cost of Different Options for
Filling the Moment Matrix

In Section III-A, a study will be carried out with two
different strategies to evaluate the elements of the static and
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dynamic moment matrices. The challenge is to make the filling
of the total impedance moment matrix as efficient as possible,
but without compromising the accuracy of the results.

These two different strategies for evaluating the total
impedance moment matrix are given as follows.

1) Option 1: No distinction is made between static and
dynamic moment matrices. The elements of the matrix in
which the Green’s function becomes singular are solved
by a transformation from rectangular to polar coordi-
nates, able to cancel out the singular (1/R) behavior
of Green’s functions. The computation of the Green’s
functions is accelerated by the Ewald method.

2) Option 2: A distinction is made between static (5)
and dynamic (6) moment matrices. A discrete auxiliary
static image distribution is used in the definition of
the elements of the static moment matrix (see Fig. 2).
The auxiliary distribution is composed up to the first
layer of images, as shown in Fig. 2 (red, green, and
blue dots). However, the source contribution (1/R) is
integrated analytically, and the remaining terms up to the
first image layer are integrated numerically. On the other
hand, in the dynamic moment matrix, the elements for
which the dynamic Green’s function is nondifferentiable
are evaluated with the technique described in Fig. 5.

Note that in Option 2, the technique of dividing into sub-
triangles could be avoided by extracting one more term of the
Taylor polynomial from the Green’s function of the rectangular
waveguide and integrating it also analytically, as in [32]. Even
so, these cases only occur in the interaction between test and
basis functions overlapping in the same mesh cell, as well as
making the implementation a bit more complex.

The next step is to assess which of the above options is
the most efficient one. For this, an example will be taken,
in which we will have a rectangular waveguide with a metallic
object inside. The objective will be to evaluate all the elements
of the moment matrix for a frequency point. Note that in
the case where a difference is made between static and
dynamic moment matrix, the time of each matrix will be
evaluated separately. Specifically, for this test, a standard WR-
90 rectangular waveguide (with dimensions a = 22.86 mm ×

b = 10.16 mm), including a metallic cylinder centered with
respect to the side walls, as shown in Fig. 7, is proposed. The
working frequency for these examples is f = 8 GHz, and the
number of basis and test functions of the structure shown in
Fig. 7 is 366. The computer used has a 12-core Apple Silicon
M2 Pro processor and 32 GB of RAM Memory.

Table I shows a comparison of the computational times
using the two different options described previously for the
evaluation of the static and dynamic moment matrices.

Results indicate that the most efficient method is the one
corresponding to Option 2. Therefore, this will be the option
to be used in the examples in Section III-B.

To conclude this section, it is also important to choose
an optimal value for the number of integration points of the
generalized impedance moment matrices. After a convergence
study, it has been found that a maximum of nine integration
points is sufficient to obtain accurate results.

Fig. 7. Mesh of a circular cylinder provided by the GMSH software [33],
whose radius is r = 1.5 mm and height h = 6 mm. The number of mesh
cells is 236, and the number of basis and test functions is 366.

TABLE I
COMPUTATIONAL COST OF THE EVALUATION METHODS DESCRIBED IN

SECTION III-A. IN THESE ANALYSES, A STANDARD WR-90 RECT-
ANGULAR WAVEGUIDE OF DIMENSIONS a = 22.86 mm × b =

10.16 mm, WITH A CONDUCTING CIRCULAR POST INSIDE
AND AN OPERATING FREQUENCY OF f = 8 GHz, HAS

BEEN USED AS AN EXAMPLE. FOR THE ACCELERATED
GREEN’S FUNCTIONS USING THE EWALD METHOD,

TEN MODES AND AN IMAGE LAYER HAVE
BEEN USED. THE SIZE OF THE MATRICES IS

Nc × Nc (Nc = 366, NUMBER OF BASIS
AND TEST FUNCTIONS). THE CHOSEN

RELATIVE ERROR THRESHOLD IS
LESS THAN 0.01

B. Evaluation of the Scattering Parameters for Arbitrarily
Shaped Conducting Structures in Rectangular Waveguide

In this section, all the theory outlined in Section II
is applied, from filling the moment matrix efficiently (see
Sections II-A–II-C), to the evaluation of the S-parameters
(see Section II-D). Furthermore, Option 4 described in
Section III-A will be used, as it was proved to be the most
computationally efficient of all explored options.

The examples to be shown below consist of a rectangu-
lar waveguide perturbed by a number of arbitrarily shaped
metallic elements. Furthermore, the examples will be vali-
dated with the help of the commercial ANSYS HFSS [28]
and CST Studio Suite [29] full-wave software packages. For
these analyses, the computer used is based on an Intel Core
i7-6700K processor @4.00 GHz and 40 GB of RAM.

It should also be noted that for optimal performance, both
in terms of accuracy and analysis time in our IE software,
an appropriate mesh density must be chosen. In these exam-
ples, the mesh will have a maximum edge length of 0.1λ
(where lambda is the wavelength of the medium filling the
waveguide). Although, in some cases, a larger maximum edge
length can be used, not in all configurations, this is enough
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Fig. 8. Scattering parameters of a standard WR-90 rectangular waveguide
of dimensions (a = 22.86 mm × b = 10.16 mm) with a metallic mushroom
shaped inset. The mushroom is located at a distance lx = 9 mm from the right
wall and is centered with respect to the ports, the diameters are d1 = 2.6 mm
and d2 = 4.8 mm, and the heights are h1 = 3.5 mm and h2 = 2.5 mm. The
results provided by the proposed IE technique have been compared with those
retrieved from the full-wave software ANSYS HFSS.

to achieve sufficiently accurate results, especially for rounded
structures. Another alternative would be the use of basis
functions defined on curvilinear elements [34], which would
allow the mesh density to be reduced for rounded geometries.
However, in this work, only test and basis functions of type
RWG have been used for triangular mesh cells, and rooftop
for rectangular mesh cells.

The first of the examples is a standard WR-90 rectangular
waveguide with a mushroom-shaped metallic inset placed
inside, as depicted in Fig. 8. In this example, to validate the
expressions developed in Section II-D, the structure will be
analyzed both in the monomode and in the multimode regions.

In this example, the number of basis functions needed in our
IE software was 246, whereas in the worst case, the number of
terms needed to achieve a reasonable convergence computing
the Green’s functions accelerated by the Ewald method was
ten modes for the spectral part and one layer of images for the
spatial contribution [23], [24]. This analysis has been carried
out at 201 frequency points, resulting in an analysis time for
the IE technique of 36 s. On the other hand, ANSYS HFSS
took 20 min and 19 s. In Fig. 8, it is possible to observe a very
good agreement between the results obtained by the proposed
IE technique and those provided by the commercial software
ANSYS HFSS.

The next validation example is a holed cylinder with a
reentrant post, both metallic, inside a rectangular waveguide.
The proposed topology (with geometrical dimensions) and the
simulated scattering parameters can be seen in Fig. 9.

In this example, the number of basis functions needed in our
IE software was 649, whereas the number of terms needed to
accurately compute the Green’s functions accelerated by the
Ewald method was ten modes for the spectral part and only
one image layer for the spatial contribution. This analysis has
been carried out at 101 discrete frequency points, resulting in
a computation time for the IE technique of 2 min and 24 s.
In contrast, ANSYS HFSS took 16 min and 42 s for the same

Fig. 9. Scattering parameters of a rectangular waveguide of dimensions
(a = 30 mm × b = 15 mm) with a metallic reentrant post in a holed
cylinder. Both the reentrant post and the cylinder are centered with respect to
the input and output ports and the waveguide walls. The dimensions of the
metallic cylinder are as follows: he = 10 mm, hi = 7 mm, di = 8 mm, and
de = 12 mm. The dimensions of the metallic re-entrant post are as follows:
ht = 10 mm and dt = 4 mm. The results provided by the proposed IE
technique have been compared with those obtained by the full-wave software
ANSYS HFSS.

evaluation. As in the first example, the IE method proposed in
this work yields a very good agreement when compared with
ANSYS HFSS.

Finally, in Fig. 10, a first-order bandpass filter built in
an evanescent mode rectangular waveguide can be observed.
In this particular case, the filter is of the first order, being
the resonator a metallic screw inserted in an evanescent field
region, that allows mechanically tuning the resonant frequency.
The purpose of this example is to show how this kind of
structure should be meshed for optimum performance. The
idea is to define, as the metallic obstacle, the evanescent
waveguide region, including the tuning screw, inside a base
waveguide of dimensions (a × b). As expected, it would also
be possible to analyze higher order filters, which would be
meshed in a similar way as the bandpass filter sketched in
Fig. 10. In this example, the filter will be analyzed for two
different screw depths, with all other geometrical parameters
remaining constant. This will allow the resonant cavity to be
tuned at two different frequencies. In the caption of Fig. 10,
we show all the dimensions of the structure, including the two
screw depths.

In this case, the results have been compared with the com-
mercial software CST, to further validate the results provided
by our IE technique. In these analyses, the number of basis
functions in the IE technique was 566 and 530 for the cases
h = 5.82 mm and h = 5.1 mm, respectively. These analyses
have been carried out at 101 frequency points. For the case
with h = 5.82 mm, the analysis time took 1 min and 32 s for
the IE technique and 12 min for CST. On the other hand, for
h = 5.1 mm, the analysis time took 1 min and 22 s for the IE
technique and 8 min and 27 s for CST. In Fig. 11, the results
of these two analysis are shown. As can be seen, these results
present a very good agreement between those obtained by the
proposed IE technique and the commercial CST software.
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Fig. 10. Sketch of a standard WR-90 rectangular waveguide of dimensions
(a = 22.86 mm × b = 10.16 mm), including an evenecesnt section whose
width is W = 9 mm, and a resonator screw centered with respect to these
walls. The length of the evanescent section is l = 8 mm, whereas the depth
of the resonator screw will be h = 5.82 mm for a resonant frequency of
f0 = 9.5 GHz and h = 5.1 mm for a resonant frequency of f0 = 10.5 GHz.

Fig. 11. Scattering parameters of an evanescent first-order bandpass filter
built in a standard WR-90 rectangular waveguide of dimensions (a =

22.86 mm × b = 10.16 mm), as shown in Fig. 10. Results are shown for two
different depths of the tuning screw. The metallic obstacle to be meshed is
defined as the evanescent section of dimensions (W × b × l) together with
the tuning screw.

C. Evaluation of Electromagnetic Fields Inside Rectangular
Waveguides With Conducting Elements

As mentioned in this article, the derived formulation allows
the electromagnetic fields to be evaluated in a relatively
simple way inside the structures under analysis. This type of
evaluation is very important in order to carry out studies on
high-power phenomena, such as RF breakdown due to corona
and multipactor [2], [3]. The expressions for the total electric
and magnetic fields inside our structure are

E⃗ total
= E⃗ i

+ E⃗ s (8)

H⃗ total
= H⃗ i

+ H⃗ s (9)

where E⃗ i and H⃗ i are the incident electric and magnetic fields.
On the other hand, E⃗ s and H⃗ s are the scattered electric and

Fig. 12. Resonant cavity first depicted in Fig. 10, with the cut planes where
the different components of the electric and magnetic fields will be evaluated.
The X Z plane (with red borders) is located at a height y = 3 mm from the
bottom wall of the filter. The electric field will be evaluated in this plane.
The ZY plane (bordered in green) is located at x = a/2. In this plane, the
magnetic field will be evaluated.

magnetic fields. In (1), the scattered electric field is written in
the form of auxiliary potential functions, while the scattered
magnetic field has the following form:

H⃗ s
=

1
µ

[
∇ × A⃗

(
J⃗ c(r⃗ ′)

)]
. (10)

In this work, in order to validate the calculation of the elec-
tromagnetic fields inside guided structures, all the components
of the electric and magnetic fields, produced by the TE10 mode
excitation, will be evaluated inside the resonant cavity shown
in Fig. 10. A schematic of the cut planes where the electric
and magnetic fields will be evaluated can be seen in Fig. 12.

For the calculations, the same filter configuration, as shown
in Fig. 12, will be used, where the screw depth will have
a length of h1 = 5.82 mm. The working frequency is
9.5 GHz, the number of basis functions used in this analysis
is 566, the number of modes in the spectral contribution when
using the Ewald method to evaluate the Green’s functions is
10, and, in the spatial contribution, only one image layer has
been taken into account [23], [24]. The number of points in
each plane, where the different components of the electric
and magnetic fields are evaluated, is 2500. The results are
compared with those provided by ANSYS HFSS. On the other
hand, it should be noted that a normalization process has
been made in the formulation of the proposed IE technique,
to assess the accuracy of the different components of the
electric and magnetic fields. This is because ANSYS HFSS
waveport excitation has a default power of 1 W. For this
purpose, average power is calculated at the input port, for the
TE10 mode and a given frequency, making use of the Poynting
vector. After this evaluation, it is equated to the default power
in ANSYS HFSS, and a relation between both methods is
obtained to allow a correct comparison of the results.

This first calculation shows the magnitude of the y compo-
nent of the electric field |Ey | for the X Z oriented plane shown
in Fig. 12. In Fig. 13, the objects that are traversing the plane
in which the electric field is evaluated are shown in red solid
line, while the object that is not being traversed by the plane is
shown in dashed line. In this case, the plane where the electric
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Fig. 13. |Ey | component in an X Z plane within the structure shown in
Fig. 12. The top image shows the results provided by ANSYS HFSS, while
the bottom image shows the results obtained by the proposed IE method.

Fig. 14. |Hx | component in an Y Z plane within the filter in Fig. 12. The top
image shows the results provided by ANSYS HFSS, while the bottom image
shows the results obtained by the proposed IE method.

field is evaluated is below the metal screw. On the other hand,
at the level of comparison of results, it can be seen that the
IE technique proposed to evaluate the electric field presents a
good agreement with the results provided by ANSYS HFSS.

As depicted in Fig. 14, in the second example, you can
see the evaluation of the magnitude of the x component of the
magnetic field |Hx | in the plane with Y Z orientation shown in
Fig. 12. In this case, the plane where the different components
of the magnetic field are evaluated passes through the metal
screw, but not through the walls of the evanescent rectangular
waveguide section. As in the previous example, the results
obtained with the IE technique and the results provided by
ANSYS HFSS are in good agreement.

To conclude this section, it can be seen that this is a simple
option to obtain the different components of the electric and
magnetic fields from the incident electric or magnetic field
(which will have a known analytical form for the desired
excitation mode) and the scattered electric or magnetic field.

The latter ones are to evaluate once the unknowns of the EFIE
technique proposed in this work have been solved.

IV. CONCLUSION

In this work, an EFIE formulation for the analysis of rect-
angular waveguide problems, including 3-D arbitrarily shaped
conducting elements, has been implemented. Moreover, the
filling of the moment matrix for solving the EFIE by the
MoM has been optimized by separating the dynamic and static
counterparts, improving the computational cost by a factor of
3 with respect to evaluating the moment matrix directly. The
dynamic part, after subtracting the static part of the Green’s
functions and thus obtaining a smooth behavior, has been
evaluated with a reduced number of integration quadrature
points, in addition to evaluating the Green’s functions by
applying the Ewald method to speed up the calculations.
On the other hand, in the static moment matrix, the optimal
solution found in this work to efficiently evaluate the self
interaction between base and test functions defined on the
same mesh cell is based on the analytical integration of the
source contribution (1/R) that models the singular behavior of
the Green’s functions. Another aspect to highlight is the study
carried out to evaluate the Green’s functions, present in the
moment matrix, in the most efficient possible way as a function
of the electrical distance. Also, a generic expression has been
outlined for the evaluation of the multimode scattering param-
eters, so that it is possible to measure the coupling of different
modes at the input/output ports of the rectangular waveguide
circuits. Finally, with these advances, it is possible to carry
out the analysis of 3-D complex microwave circuits in guided
technology, with a reduced computational cost compared with
other alternatives, such as ANSYS HFSS, which has been
the software used to estimate the accuracy of the proposed
technique. In addition, electromagnetic fields inside guided
structures can also be evaluated in a simple way. As a future
line of research, the extension of this IE formulation to the
analysis of step discontinuities between rectangular waveg-
uides, to the presence of dielectric objects inside rectangular
waveguides, or even to the concatenation of different structures
in guided technology, such as the concatenation of rectangular
waveguides with rectangular cavities, can be considered.
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