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Abstract— We present a novel real-time image reconstruction
method processing linear frequency modulated (LFM) signals.
The method exploits the principles of the Fourier-space scattered
power mapping (F-SPM). We show that F-SPM, originally
developed for frequency-domain signals, can be easily modified
to process time-domain data with the same reconstruction speed
and image quality. To facilitate validation, we have developed an
in-house time-domain radar simulator, which generates synthetic
LFM data much faster than full-wave time-domain simulations,
which are prohibitively slow. The new image-reconstruction
method is validated through synthetic data generated by the
radar simulator as well as experimental data acquired with
off-the-shelf millimeter-wave (77 to 81 GHz) LFM radar. Com-
parisons in terms of reconstruction speed and accuracy are
carried out with the method of microwave holography, which is
deemed the fastest image-reconstruction method for LFM radar.

Index Terms— Electromagnetic scattering, inverse scattering,
linear frequency modulated (LFM) radar, millimeter-wave imag-
ing, millimeter-wave radar, quantitative imaging, scattered power
mapping (SPM), synthetic aperture radar.

I. INTRODUCTION

THE emerging applications of radar imaging are mani-
fold [1], [2], [3], [4], [5], [6], including search and rescue,

through-wall imaging [7], [8], [9], [10], nondestructive testing
(NDT) [11], [12], [13], [14], [15], [16], concealed object
detection [17], [18], [19], [20], and medical diagnostics [21],
[22], [23], [24], [25], [26]. Most radars currently used for
imaging and sensing operate in the microwave regime. How-
ever, the pursuit of better image quality drives the interest in
the emerging millimeter-wave (mm-wave) and terahertz (THz)
radars. Although the mm-wave/THz radiation suffers from
significant attenuation compared to the microwave signals,
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it offers advantages such as improvement in the image spatial
resolution (due to wider bandwidths and shorter wavelengths)
and a smaller size of the antennas. Therefore, mm-wave/THz
radars offer a promising technology for short-range imaging
and sensing.

Imaging radars produce a 2-D or a 3-D image of a target (or
scene). Qualitative images depict the target’s reflectivity, i.e.,
the intensity of the scattering within its volume, whereas quan-
titative images depict the target’s permittivity composition.
The image-reconstruction algorithms depend on the type of
data the radars provide. The frequency-modulated continuous-
wave [27], [28], [29] and the ultrawide-band (UWB) pulsed
radars [30] provide time-domain data, and both are common in
the microwave (low-GHz) frequency ranges. Their advantage
is faster measurement compared to the wide-band frequency-
sweep (or stepped-frequency) systems. However, at mm-wave
frequencies, pulsed radar is currently impractical due to the
limitations of the direct time-sampling technology and its
excessive cost. On the other hand, the linear frequency mod-
ulated (LFM) radar down-converts the received signal to the
beat-frequency (kHz to MHz) range [31], where real-time sam-
pling is performed by low-cost analog-to-digital converters.
For this reason, LFM radars are currently the most common
low-cost option in the mm-wave frequency range.

Most of the image-reconstruction algorithms developed
for microwave imaging rely on coherent stepped-frequency
continuous wave (SFCW) measurements, which can be
time-consuming when taking many frequency samples across
a wide frequency range. Also, at mm-wave frequencies, the
equipment is costly. Since LFM radars offer faster and more
cost-effective option [32], there is great interest in developing
fast image-reconstruction methods to process the LFM data.

Back-projection is a classic synthetic aperture radar
image-reconstruction approach, and back-projection algo-
rithms (BPAs) have been developed for LFM mm-wave
imaging [33], [34], [35], [36], [37], where they operate directly
on the time-domain data. They compute the round-trip delays
in the background medium between each imaged pixel and
the receiving/transmitting antenna pairs in order to obtain
a coherent sum of all measured signals specific to a pixel.
The image depicts the energy of these pixel-specific sums,
indicating the scattering intensity (or reflectivity) within the
imaged scene.
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Fourier-based imaging is a computationally efficient alter-
native to back-projection. The approach is often referred to as
microwave holography [19], [38].1 The hallmark of microwave
holography algorithms (MHAs) is the image reconstruction in
the spatial-frequency domain (k-space). This requires the 2-D
FT of the data. The MHAs, originally developed for frequency-
domain data, are also applicable to LFM data. However, the
latter application requires an approximation of the down-
converted (de-chirped) signal that neglects the second-order
time-delay term [41].

To achieve 3-D image reconstruction in k-space, most
MHAs (see, e.g., [20], [41], [42]) rely on an analytical
range-migration model, which provides the link between the
frequency (ω) dependence of the data and the range (or depth)
dependence of the image, along with Stolt’s interpolation. The
k-space result is then cast back to 3-D real space via the
3-D inverse Fourier transform (IFT). This approach is known
as the range-migration algorithm (RMA). Stolt’s interpolation
is by far the most computationally intensive task but this
drawback has been overcome by recent MHAs, which avoid
this interpolation, e.g., the range-stacking algorithms [43],
[44] and the near-field MHAs [21], [40], [45], [46]. They
perform the inversion in the mixed (kx , ky, z) space, where kx
and ky are the Fourier variables corresponding to the lateral
coordinates x and y, whereas z is the range.

Stolt’s interpolation and the FTs introduce numerical errors,
which may lead to image artifacts in MHA reconstructions
unless filtering is applied [46]. BPAs do not suffer from such
artifacts. It is shown in [47] that the RMA yields 2-D images
with better cross-range resolution compared to the BPA, but
offset errors due to Stolt’s interpolation may occur. In 3-D
imaging, however, the BPA seems to offer better resolution.
Overall, the BPAs are significantly slower than the MHAs [44],
[47] but they are less prone to image artifacts [9], [48], [49],
[50].

To improve the image accuracy and to enable quantitative
reconstruction in near-field imaging, the measured system (or
data) point-spread function (PSF) is used [40], [45], [51],
[52], [53] in place of the analytical PSFs used in far-field
imaging. The measured PSF provides the system-specific
quantitatively accurate resolvent kernel of the linearized scat-
tering model. Using measured PSFs, quantitative imaging of
dielectric objects has been demonstrated by algorithms such as
quantitative microwave holography (QMH) [21], [54], [55] and
Fourier-space scattered power mapping (F-SPM) [56], [57].

Here, we propose a novel image-reconstruction method
for processing LFM signals, which we refer to as Fourier-
space scattered power mapping in the time domain responses
(FSPM-TD). It is based on the F-SPM method, originally
developed for SFCW data [56], [57], and it operates directly
on time-domain data. The data spatial dependence is treated
in k-space, leading to superior computational speed, shown to
be better than that of the existing k-space algorithms. At the

1In instrumentation, holography is defined as an interferometric technique
for recording the amplitude and the phase of monochromatic waves [39].
In imaging, holography refers to a class of image-reconstruction methods,
which process amplitude and phase data using 2-D and/or 3-D direct and
IFTs s to produce 3-D images, i.e., images with depth [40].

same time, unlike these algorithms, the FSPM-TD algorithm
does not neglect the second-order time-delay term in the LFM
signal. The algorithm is validated through simulated data (gen-
erated by an in-house radar simulator) as well as measured data
obtained with an off-the-shelf LFM platform [58]. Its speed
and accuracy are compared with the fast QMH algorithm [21],
[54], which does not employ Stolt’s interpolation.

Next, Section II introduces the FSPM-TD method and its
implementation with LFM data. Sections III and IV present
validation examples with synthetic and measured data, respec-
tively. Conclusion is drawn in Section V.

II. THEORY

A. Fourier-Space Scattered Power Mapping With
Time-Domain Responses

Scattered power mapping (SPM) is a well-established
method for fast (real-time) microwave imaging [56], [57],
[59]. It is a direct reconstruction method since it relies on
a linearized model of scattering. With quantitatively accurate
(measured) system PSFs, it can also reconstruct images of the
real and imaginary parts of the object’s complex permittivity
(quantitative images). The method operates on frequency-
domain signals. The most computationally efficient SPM
algorithm is F-SPM [57], which performs the inversion in
k-space. Since this algorithm serves as the basis for the current
development, it is summarized in Appendix.

The SPM is a two-stage inversion procedure. To understand
its new implementation with time-domain signals, we start
with its formulation in real (x, y, z) space.

With frequency-domain responses, the first SPM stage con-
structs a complex-valued qualitative image Mω(r′) (scattered-
power map, or simply, map) of an object as [51], [56]

Mω(r′) =

NT∑
ζ=1

∫
ω

∫ ∫
Sa

Ssc
ζ (r, ω)

[
H sc

ζ (r, ω, r′)
]∗dr dω (1)

where ω is frequency, ζ indicates an antenna pair associated
with a response, NT is the number of responses acquired at
each observation (receiver) position r on the aperture Sa , r′

is a position in the imaged domain, Ssc
ζ (r, ω) is the scattered

portion of the response measured with the object in place,
H sc

ζ (r, ω, r′) is the scattering response measured with a point
scatterer at r′ in the background medium (the system PSF),
and ∗ indicates conjugation. It is clear from (1) that the object’s
map Mω(r′) is an inner product of the measured responses and
the system PSFs in the data space spanned by r, ω, and ζ .

In the time domain, (1) can be written as

Mω(r′) =

NT∑
ζ=1

∫
ω

∫ ∫
Sa

Fτ

{
Ssc
ζ (r, t) ⊗ H sc

ζ (r, t, r′)
}︸ ︷︷ ︸

cross correlation Xζ (r,τ,r′)

dr dω

(2)

where Xζ (r, τ, r′) is the temporal cross correlation of Ssc
ζ (r, t)

and H sc
ζ (r, t, r′) with the time shift τ , and Fτ is the FT

with respect to time. We next consider the integral over ω

in conjunction with the FT of Xζ (r, τ, r′). Assuming infinite
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frequency bandwidth, at any r and r′, we obtain∫
∞

−∞

∫
τ

Xζ (τ )e−iωτ dτdω =

∫
τ

X (τ )

(∫
∞

−∞

e−iωτ dω

)
dτ

(3)

where i =
√

−1. The improper integral in the brackets equals
2πδ(τ), where δ denotes Dirac’s delta function. Therefore∫

∞

−∞

∫
τ

Xζ (τ )e−iωτ dτdω = 2π X (0). (4)

The substitution of (4) into (2) results in the map of the object
expressed in terms of time-domain responses

M(r′) =

NT∑
ζ=1

∫ ∫
Sa

∫
t

Ssc
ζ (r, t)

[
H sc

ζ (r, t, r′)
]∗dtdr. (5)

Here, the scaling factor 2π has been omitted since it has
no impact on the final image. In conclusion, the first stage
of the SPM image reconstruction can employ time-domain
instead of frequency-domain data to obtain the object under
test (OUT) map. The comparison of (5) and (1) shows that
the integration over ω is replaced by that over time t . Note
that with UWB radar, the temporal sequences are real, but
with LFM radar systems, they are complex, i.e., at each r,
Ssc
ζ (t) = I (t) + i Q(t), where I and Q denote the in-phase

and quadrature receiver outputs. With complex time-domain
signals, the conjugation in (5) matters.

The direct computation of the OUT map M(r′) with (5)
is slow. It can be carried out much faster in the 2-D k-space
under the assumption of a homogeneous background, where
the dependence of the PSF on r and r′ reduces to a subtraction,
H sc

ζ (r−r′, t). Note that the time variable t is also a function of
(r − r′) through its dependence on the distance RRx = |r − r′

|

between the imaged point r′ and the measurement (receiver)
point r. Thus, the integration over r ∈ Sa in (5) becomes a 2-D
cross correlation of the OUT response and the system PSF in
the lateral (cross-range) coordinates. In 2-D k-space, this cross
correlation is a point-wise multiplication of the respective 2-D
FTs. The computation is most efficient in the case of uniform
sampling on canonical surfaces (planar, cylindrical) since this
allows for the use of the 2-D fast Fourier transform (FFT).

Fig. 1 illustrates a single-sided multistatic measurement
setup, where the scan is over a planar surface. This
setup reflects all examples presented later. The measurement
LFM-radar platform features 3 transmitting (Tx) and four
receiving (Rx) antennas, all moving together over the acqui-
sition plane Sa at regular intervals along x and y.

Appendix describes the process of casting the OUT
scattered-power map (1) for frequency-dependent data into
2-D k-space in the case of planar scanning, where the
cross-range variables are x and y. The same process can
be applied to the time-domain formulation of the OUT
scattered-power map in (5), leading to its 2-D FT form

M̃(κκκ, z′) =

NT∑
ζ=1

Nt∑
k=0

S̃sc
ζ (κκκ, tk)

[
H̃ sc

ζ

(
κκκ, tk, z′

)]∗

(6)

where κκκ = (kx , ky) is a point in k-space with kx and
ky being the Fourier variables corresponding to x and y,

Fig. 1. Illustration of the single-sided multistatic measurement setup with a
planar aperture denoted as Sa . The red triangles and the blue points represent
Tx and Rx positions, respectively. The response acquired with the j th Tx
antenna ( j = 1, 2, 3) and the i th Rx antenna (i = 1, . . . , 4) is denoted by
ζ ≡ (i, j). The array of 3 Tx and 4 Rx antennas moves along a raster-scan
path indicated by the gray dashed line. Thus, the positions of the Tx antennas,
rTx, j , and the Rx antennas, ri , are all incremented with a common sampling
step along x and y during the scan. The imaged position is denoted as r′.

respectively, z′ is the range position of an imaged slice,
tk = k1t is the kth time sample as determined by the
time-sampling step 1t , and Nt is the number of time samples.
S̃sc
ζ (κκκ, t) and H̃ sc

ζ (κκκ, t, z′) are the 2-D FTs of Ssc
ζ (x, y, t) and

H sc
ζ (x, y, t, z′), respectively, where H sc

ζ is the system response
acquired with a scattering probe (point scatterer) at position
(x ′, y′, z′) = (0, 0, z′). It should also be pointed out that the
range variable z′ belongs to a discrete set of range slices,
z′

n = n1z, n = 1, 2, . . . , Nz , where 1z is the range step size.
The implementation of (6) in the case of LFM radar is detailed
later in Section II-B.

Once the 2-D FT of the OUT map is computed with (6),
it can be cast back in real space using 2-D inverse FT

M(x ′, y′, z′) = F−1
2D {M̃(κκκ, z′)}. (7)

The absolute value of the so obtained OUT map |M(x ′, y′, z′)|

(usually normalized) provides a qualitative image of the
object’s reflectivity. However, a significant image improvement
is achieved with the second SPM stage. As explained next, this
stage operates directly on the k-space OUT map M̃(κκκ, z′), thus
bypassing the inverse FT operation in (7).

It is shown in [56], [57], [59] (for the case of frequency-
domain responses) that the second SPM step provides an
image with significantly improved spatial resolution compared
to the OUT qualitative image (the map) obtained with (1)
(real-space processing) or with the IFT of (28) (Fourier-space
processing; see Appendix). It also enables the quantitative
estimate of the complex permittivity of dielectric objects,
provided the system PSFs are quantitatively accurate.2 Similar
to the first stage, for best computational efficiency, the second
SPM stage is performed in k-space. Since the processing is
essentially the same as in the second stage of the F-SPM

2A quantitatively accurate PSF predicts accurately the measured response
to a scattering probe of known volume and contrast. Such PSFs are usually
acquired through calibration measurements [45], [46], [51] since they depend
on specific system parameters such as transmitted power, antenna gain or
near-field patterns, the background medium, etc.



5182 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 72, NO. 9, SEPTEMBER 2024

Fig. 2. Flowchart of the FSPM-TD algorithm.

algorithm for frequency-domain data (see Appendix), only the
computations relevant to time-domain responses are presented
below, followed by a summary of the algorithm.

The second SPM stage operates on the OUT k-space map
M̃(κκκ, z′

n), n = 1, . . . , Nz , computed with (6). It also requires
the computation of Nz k-space maps, M̃(κκκ, z′

n; z′′
m), n, m =

1, . . . , Nz , of the scattering probe (SP), when this probe resides
at r′′

m = (0, 0, z′′
m), m = 1, . . . , Nz . This computation mirrors

that of the OUT map; see (6). Specifically

M̃(κκκ, z′
n; z′′

m) =

NT∑
ζ=1

Nt∑
k=0

H̃ sc
ζ

(
κκκ, tk, z′′

m
) [

H̃ sc
ζ

(
κκκ, tk, z′

n
)]∗

n, m = 1, . . . , Nz . (8)

Note that the real-space maps of the point scatterers,
M(x ′, y′, z′

n; z′′
m), corresponding to the k-space maps com-

puted with (8), are the image PSFs (IPSFs) resulting from the
first SPM stage.3 The SP maps in (8) are independent of the
imaged object and can be precomputed for faster execution of
the image reconstruction.

As shown in Appendix, with the OUT and scattering-probe
maps available in k-space, the second SPM stage solves
a small Nz × Nz system of equations at each point κκκ to
obtain the 2-D FT of the reflectivity function ρ̃(κκκ, z′

n), n =

1, . . . , Nz . The real-space reflectivity function ρ(x ′, y′, z′
n)

is then recovered via 2-D IFT of ρ̃(κ, zn); see (35). The
plot of |ρ(x ′, y′, z′

n)| provides a qualitative image of the
object’s reflectivity. A quantitative estimate of the OUT
complex permittivity is possible, provided the system PSFs,
H sc

ζ (x, y, t; z′
n), scale properly with the probe’s volume �sp

and relative-permittivity contrast 1εr,sp. Then, the object’s
relative-permittivity contrast is computed with (36).

The proposed FSPM-TD algorithm is summarized in Fig. 2.
It takes as inputs the measured OUT responses Ssc

ζ (x, y, t),
ζ = 1, . . . , NT , and the system PSFs, H sc

ζ (x, y, t, z′
n), n =

1, . . . , Nz , the latter being obtained either through measure-
ments, or simulations, or analytical models. Note that, in a
multistatic system, each Tx/Rx antenna pair, indicated by
ζ ≡ (i, j), has a dedicated system PSF H sc

ζ .

3The IPSF is the image a reconstruction algorithm produces from the
data acquired with a point scatterer. The IPSF is not to be confused with
the system PSF, which is the dataset acquired with a point scatterer. The
IPSF characterizes the image-reconstruction algorithm whereas the system
PSF characterizes the measurement system.

B. Forward Model of Scattering With LFM Signals

The LFM radar signal is a “chirp” waveform – a sine wave
of frequency that increases or decreases linearly with time.
A transmitted LFM chirp is expressed as [60], [61]

sTx(t) = ATx P
(
t/Tp

)
cos[2π( fct + 0.5γ t2)] (9)

where ATx is amplitude, fc is the center frequency, t is the fast
time (the time within a single chirp), Tp is the chirp duration
(pulsewidth), γ = (B/Tp) is the frequency-modulation slope
(chirp rate), B is the chirp’s frequency bandwidth, and

P(x) =

{
1, |x | ≤ 0.5
0, otherwise.

(10)

The spatial impulse response hsc(r, t, r′) of the LFM radar
describes the scattered signal from a differential scatterer
(SP), dhsc(r, t, r′) = ρd�hsc(r, t, r′), where ρ and d�

are the reflectivity and volume of the probe, respectively.
For static objects in a homogeneous unbounded background,
the LFM-radar impulse response (i.e., its analytical PSF) is
modeled as a scaled and time-delayed version of sTx(t)

hsc(r, t, r′) = ATx(RTx RRx)
−1 P

(
(t − τd)/Tp

)
· cos

[
2π( fc(t − τd) + 0.5γ (t − τd)2)

]
(11)

where r is the Rx position, r′ is the probe’s position, and

τd = (RTx + RRx)/c (12)

is the time delay corresponding to the distance traveled by the
signal. Here, c is the speed of light whereas RTx = |r − rTx|

and RRx = |r − r′
| are the distances from the Tx antenna

at rTx to the probe and from the probe to the Rx antenna,
respectively. The model in (11) accounts for the signal decay
due to the spherical spread of the transmitted and scattered
waves through the factor (RTx RRx)

−1. On the other hand,
it is a greatly simplified approximation of reality since it
ignores the vector nature of the electromagnetic waves, the
depolarization that may occur upon scattering, the gain and
dispersion of the employed antennas, etc. Note that, at each
scan position, RRx and RTx differ, depending on which antenna
pair ζ ≡ (i. j) in the multistatic system the PSF describes.

Upon reception, the scattered signal is dechirped by quadra-
ture down-conversion to produce the beat or baseband signal,
which is used for the image reconstruction. The baseband
output corresponding to hsc(r, t, r′) in (11) is the analytical
system PSF [41], [60]

H sc(r, t, r′) =
ATx

RTx RRx
P

(
t − τd

Tp

)
· exp

[
− i2π

(
fcτd + γ tτd − 0.5γ τ 2

d
)]

. (13)

Note that the signal in (13) is complex, where its real and
imaginary parts represent the I and Q Rx outputs, respectively.

The investigation of the LFM forward model in [41] points
out that the spatial resolution of the images obtained with
MHAs is negatively affected if the third term of the exponent
in (13) is not negligible. This is due to the MHAs treating
the LFM time-domain signals as frequency-domain signals
of equivalent frequency f ′

= fc + γ t and wavenumber
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k′
= 2π f ′/c [41]. The proposed FSPM-TD algorithm does

not suffer from this limitation since it takes the system PSFs
in any form and it does not need an equivalent frequency.
Nonetheless, if the phase contribution of the term πγ τ 2

d is
kept below 2.5◦, as suggested in [41], then the LFM system
PSF can be approximated as

H sc(r, t, r′) ≈ H sc
a (r, t, r′) =

ATx

RTx RRx
P

(
t − τd

Tp

)
· exp

[
−i2π( fc + γ t)τd

]
. (14)

Note that the phase of H sc
a is now proportional to τd , leading

to an exponential term of the form e−ik′(RTx+RRx), which
matches that in a frequency-domain response. The PSF H sc

a is
employed by the QMH algorithm in the examples presented
later, where the FSPM-TD algorithm is compared with QMH.

The linearized forward model of scattering views the signal
from an object as a superposition of the scattering emanating
from all differential scatterers that make up this object. Thus,
using (13), the cumulative OUT signal is modeled as

S(r, t) = ATx

∫∫∫
V ′

ρ(r′)H sc(r, t, r′)dr′ (15)

where ρ(r′) is reflectivity, and

−0.5 Tp + τd ≤ t ≤ 0.5 Tp + τd . (16)

The forward model in (15) is the basis of the LFM radar
simulator used in the synthetic experiments presented next.
The FSPM-TD image reconstruction employs the analytical
system PSF (13) with both synthetic and measured data.

III. VALIDATION WITH SYNTHETIC DATA

An LFM simulator is implemented in MATLAB [62] using
the scalar scattering model (15) for the case of planar scanning
with multistatic measurements. The PSF employs (13). Note
that this PSF, along with (15), inherently assume scattering
in an unbounded medium. The multistatic scenario allows
for using any number of Rx and Tx antennas, which remain
in a fixed configuration during the scan. Thus, at each scan
position r, the number of acquired responses is NT = NTx NRx,
where NTx and NRx are the number of Tx and Rx antennas,
respectively. To match our experimental setup employing a
single LFM board [58], the scans are single-sided.

In each synthetic experiment, the LFM imaging-system
parameters are first set. For a list of these parameters, refer to
Table I. Then the system-calibration simulations are performed
using (13). These emulate the PSF measurements with an
SP located at the center of each imaged slice (0, 0, z′

n),
n = 1, . . . , Nz . The SP volume �sp = d� is set equal to
that of the imaged voxel. This process provides the system
PSFs, H sc

ζ (x, y, t; z′
n), ζ = 1, . . . , NT . This is followed by

the computation of the OUT data Ssc
ζ (x, y, t) using (15).

Table I summarizes the system parameters employed in all
presented examples, except for the sampling step along x and
y, which is 1 mm for the IPSF study in Section III-A. The
first six system parameters describe the radar itself. These have
been chosen to match the settings of the LFM radar [58] used
in the experiments. The spatial sampling step 1x = 1y = 1⊥

TABLE I
SYSTEM PARAMETERS IN THE IMAGING EXPERIMENTS WITH

SYNTHETIC mm-WAVE LFM DATA

(2 mm in Table I) is always chosen to be somewhat smaller
than the expected cross-range resolution limit δ⊥. This limit
is given by δ⊥ = (λc/4 sin α) [51], [63] where λc = c/ fc
and α is the maximum viewing angle of the scan, α =

min
[
θa, avg(0.5θh, 0.5θe)

]
. Here, θa = arctan(0.5 A/R) is the

viewing angle provided by the aperture, with A and R being
the aperture width and the range distance to the object’s center,
respectively. θh,e denote the antenna half-power beamwidths
in two principal planes. For example, in the simulations, the
antennas are isotropic, thus α is determined by the aperture.
Provided that A = 15 cm and the target is 22.5 cm away,
α ≈ 18.4◦, leading to δ⊥ ≈ 3 mm.

It is worth commenting that obtaining synthetic LFM-radar
data with full-wave simulators is prohibitive slow due to:
1) the extremely long chirp signals and 2) the need to simulate
a large amount of illumination (Tx) positions associated with
scanning a multistatic radar system over a large aperture.4

A. Image Point Spread Function and Spatial Resolution

In the first experiment, we image a single-voxel scatterer
at 22.5 cm from the acquisition plane and obtain the IPSF
of the FSPM-TD algorithm. From the IPSF, the cross-range
and range resolution values are estimated and compared to
the theoretical limits. Here, the scanning step is 1⊥ = 1 mm,
and �sp = d� = 1 mm3. The IPSF contains 29 range slices
separated by 1z = 5 mm and centered on the z = 22.5 cm
plane. Fig. 3(a) shows the IPSF slice at z = 22.5 cm. The IPSF
width at −4 dB indicates the spatial resolution in the respective
direction [51]. Fig. 3(b) shows the line cuts of the IPSF along
x and y at z = 22.5 cm, and along the line cut along z at
x = y = 0. The results indicate cross-range resolution of
3 mm, which agrees with the theoretical limit δ⊥ ≈ 3 mm. The
range resolution is obtained as 22 mm whereas the theoretical
limit is [63] δz = (c/2B) ≈ 37 mm.

B. Three-dimensional Imaging With Synthetic Data

A 3-D object is implemented in the LFM radar simulator
as shown in Fig. 4. All structural components are built of

4Consider the F-shape/bar-shape example, which requires about 102 million
mesh cells to comply with a cell size equal to one-tenth of the shortest
wavelength. With a time step satisfying the Courant–Friedrichs–Lewy (CFL)
condition, it is estimated that the transmitted LFM chirp requires Nt,pulse =

68 133 333 time samples, and at least double this number of time steps to
complete the simulation for a single Tx position. The multistatic scanning
imaging experiment requires a total of 3 × 76 × 76 = 17 328 simulations.
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Fig. 3. FSPM-TD reconstructed image of a cubical probe 1 mm on a side,
at the range distance 22.5 cm. (a) Two-dimensional IPSF at the z = 22.5 cm
in terms of normalized reflectivity ρ̄. (b) Range and cross-range profiles of
the IPSF.

Fig. 4. Three-dimensional structure imaged in a synthetic example. (a) Bar
shape of relative permittivity εr = 3 at z = −120 mm. (b) F-shape of
εr = 1.8 at z = 0. (c) Slice without any targets at z = 120 mm. Background
is vacuum, εr,b = 1. All dimensions are in mm.

cubical scatterers 1 mm on a side. Fig. 4(a) shows the tilted
bar shape of length 50 mm and width 3 mm in the plane
z = −120 mm. Its relative permittivity is set to εr = 3.
An F-shape of εr = 1.8 is located at z = 0 mm [see Fig. 4(b)].
The background is vacuum (εr,b = 1). The F-shape has vertical
and horizontal arms of length 50 mm whereas the middle
arm measures 25 mm. All arms are 3 mm wide. The third
slice at z = 120 mm has no inclusions. The sampling step is
1⊥ = 2 mm.

The PSFs are acquired with a cubical SP of size
0.5 mm3 and εr,sp = 1.5, placed at z = −120, 0, 120 mm. This
results in 3-D image reconstruction at these three slices. Once
the OUT responses are computed with (15), the FSPM-TD

Fig. 5. Reconstructed images of the real and imaginary parts of the relative
permittivity of the object in Fig. 4 using synthetic data. (a) Bar shape in the
z = −120 mm slice (true permittivity εr = 3). (b) F-shape in the z = 0 slice
(true permittivity εr = 1.8). (c) Slice at z = 120 mm where there are no
embedded targets.

algorithm reconstructs the images of the real and imaginary
parts of the object’s relative permittivity shown in Fig. 5.
The results indicate that the algorithm retrieves well the
permittivity values of the bar and F shapes [see Fig. 5(a)
and (b)]. This quantitatively accurate result is expected since
both the PSFs and the OUT data are generated by the same
“measurement system” emulated by the LFM radar simulator.
Also, the radar simulator employs the simple superposition
scattering model in (15), i.e., it does not model the mutual
coupling and multiple scattering, which occurs in reality, and
which is the main reason for image degradation in quantitative
imaging. This example highlights the advantage of measuring
the PSFs with the same system used to measure the OUT.
Unfortunately, measuring the PSFs is not always possible,
especially in far-zone measurements, where the SP signal may
be too weak to detect with a sufficient signal-to-noise ratio.

To quantify the image quality in Fig. 5, the structural
similarity (SSIM) index is computed [64]. The SSIM index
ranges from 0 to 1, where 1 indicates perfect similarity and
0 indicates no similarity. Here, the SSIM is 0.9515 in the
F-shape slice and 0.9104 in the bar-shape slice. Additionally,
to evaluate the precision of the reconstructed permittivities,
the root-mean-square error (RMSE) is calculated as [51]

RMSE =

√√√√ 1
Nv

Nv∑
n=1

∣∣εr
(
r′

n
)
− εr

(
r′

n
)∣∣2 (17)

where εr (r′
n) is the true distribution, εr (r′

n) is the reconstructed
distribution, and Nv is the number of voxels. Here, the image
RMSE is 0.0219.

The accuracy of the FSPM-TD reconstruction is compared
with that of the QMH method. The QMH method is a fast
MHA, which does not employ Stolt’s interpolation. The QMH
images are not shown here since there is no visible difference
with those in Fig. 5. To compare better the two reconstructions,
an RMSE is computed where the FSPM-TD result provides
the reconstructed distribution εr (r′

n) whereas the QMH result
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is the true distribution εr (r′
n). The resulting RMSE is very

small: 3.12 × 10−16.
The two algorithms are also compared in terms of running

time. The FSPM-TD algorithm takes about 2.9 s whereas the
QMH algorithms take about 5 s. Note that both algorithms
are implemented in MATLAB without any code optimization
and using the same direct and inverse fast FT (FFT) function
calls. To understand the reason for the faster performance
of FSPM-TD, we first point out that both methods share
common initial steps, which involve the 2-D FFT of the
PSFs and the OUT data. Also, both of them employ 2-D
inverse FFT (slice by slice) on the reconstructed k-space
reflectivity function. However, they differ in solving their
respective linear systems of equations in k-space. FSPM-TD
solves square Nz × Nz systems (31) whereas QMH solves tall
(Nω NT ) × Nz systems [46], [54]. The number of slices Nz
rarely exceeds 10, and the number of response types NT is also
on the order of 1 to 10. However, in the image reconstruction
with QMH, the number of equivalent frequencies Nω equals
that of the time samples Nt , and that is on the order of
∼102 to ∼103, depending on the length of the employed
chirp sequence. In this example, which spans a single chirp,
Nt = 512. To solve the tall system of equations, QMH uses
MATLAB’s pseudo-inverse (pinv) function, which employs a
singular value decomposition approach [65], the computational
complexity of which is O((Nt NT )2 Nz + N 3

z ). FSPM-TD,
on the other hand, can employ either LU decomposition
or pseudo-inverse solvers. In either case, its computational
complexity is about O(N 3

z ). It is now clear that the com-
putational advantage of the FSPM-TD algorithm arises when
Nz < Nt NT .

IV. VERIFICATION WITH MEASUREMENTS

The experiments are carried out in a planar raster-scanning
chamber shown in Fig. 6(a). With the advent of system-on-chip
mm-wave sensing technology, the market now offers various
off-the-shelf radar modules. Here, we use the IWR1443Boost
evaluation module [58] along with the real-time data-capture
adapter board DCA1000EVM [66]. The mm-wave sensor is
equipped with three Tx and four Rx antennas as shown in
Fig. 6(b) (from [58]). The LFM transceivers can accommodate
up to 4 GHz bandwidth from 77 to 81 GHz. The configuration
of the radar system is done via the TI mmWave Studio
software suite. This includes activating/deactivating Tx and
Rx channels, the choice of the chirp sequence, and the chirp
settings. The chosen system parameters match those in Table I.
All twelve radar channels, formed by the three Tx and four
Rx on-board antennas, are used in the experiments. The OUT
data S(r, t) are captured through measurements employing all
available radar channels.

The radar module is mounted at the top of the chamber
[see Fig. 6(a)] and it is stationary while the platform carrying
the imaged object moves laterally along a raster-scan path
with increments 1x = 1y = 2 mm. At each grid point, the
radar takes measurements for about 2 s, during which time the
platform does not move.

The relative positions of the Tx and Rx antennas are needed
to calculate the time delay τd associated with an imaged point

Fig. 6. Photos of (a) acquisition chamber, and (b) on-board antenna array
of the IWR1443 sensor (from [58]).

and each Tx/Rx antenna pair. The center-to-center spacing
between the Rx elements is 1.9 mm whereas between the
Tx elements it is 3.8 mm. The center-to-center spacing from
rx4 to tx1 is 4.75 mm [see Fig. 6(b)]. The coordinate system is
aligned so that Rx antenna #4 [rx4 in Fig. 6(b)] is at (0, 0, z̄)
at the start of the scan, where z̄ is the distance from the radar
printed circuit board (PCB) to the center of the imaged object.

In all experiments presented next, background subtraction
is not used to extract the scattered portion of a response from
the total measured response. This subtraction is mandatory
in near-field imaging and especially when forward-scattering
signals are employed because the incident-field portion
of the total object response is strong. Here, background
de-embedding is unnecessary since the background signals are
negligible compared to the backscattering from the objects.

A. System Calibration
The measurements are susceptible to various types of

uncertainties, of which the internal system delay tsys is the
most detrimental to the ranging information carried by the
scattered signal. Aside from ignoring signal dispersion due
to the antennas, the PSF models in (13) or (14) assume that:
1) the signals at the Rx antenna terminals arrive at the input of
the down-converting mixer without delays and 2) the signals
transmitted by the Tx antennas are the same as those submitted
to the mixer. The first assumption is not true due to the
coplanar-waveguide (CPW) transmission lines connecting the
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Fig. 7. Schematic of system calibration setup.

Rx antennas to the radar chip [see Fig. 6(b)] along with signal
pathways inside the chip. Similarly, the second assumption
is not true due to the CPW and ON-chip interconnects to
the Tx antennas. The cumulative effect of the delays along
interconnects is represented by a constant tsys, which must be
added to the signal-delay time variable τd in the PSF model.
The calibration method aims at extracting tsys.

The calibration measurement setup is illustrated in Fig. 7.
It employs a 5 × 5 cm2 copper plate serving as an ideal
reflector, which lies parallel to the radar PCB and centered on
the boresight of the Tx/Rx antenna set. The system delay does
not depend on the distance between the radar and the plate but
measurements at various distances should be carried out to
verify the extracted τsys. Here, distances anywhere between
20 and 40 cm have been employed, which are within the
possible ranges in the chamber.

The echo signal Sm
ζ (t) is captured by every (ζ ) Tx/Rx

antenna pair. The goal is to align the measured signals Sm
ζ (t)

with an analytical model Sa
ζ (t) based on (13), namely

Sa
ζ (t) = −H sc

ζ (t). (18)

The response in (18) accounts for the phase reversal (the minus
sign) upon reflection from the copper plate. The integration
over the plate’s surface is ignored since the plate’s lateral size
is much smaller than the range distance. The time delay τd,ζ ,
needed to compute H sc

ζ (t), is obtained from RTxζ and RRxζ

using (12), where RTxζ = |rTxζ − r0| and RRxζ = |rζ − r0|

are the distances from the plate’s center (at r0) to the Tx and
Rx antennas, respectively.

The alignment is done in the frequency ( f ) domain. The
FT of Sa

ζ (t), S̃a
ζ ( f ), has a magnitude spectrum which peaks

at the frequency f p = −γ τd,ζ since [60], [67]

S̃a
ζ ( f ) = −Tpsinc

[
Tp(γ τd,ζ + f )

]
×e−i2π fcτd,ζ +iπγ τ 2

d,ζ e−i2π( f +γ τd,ζ )τd,ζ . (19)

Here, sinc(x) ≡ (sin(x)/x). The peak frequency f p is a crucial
marker for the target’s range. If the target motion is negligible
(zero Doppler shift), f p is proportional to τd,ζ [60], [67], and,
therefore, to the distance to the target; see (12). We exploit
this LFM signal feature to find tsys.

First, we generate the time sequence of Sa
ζ (t) with the

same sampling step and length as that of Sm
ζ (t). FFT is

Fig. 8. Comparison between the magnitude spectra of a measured calibration
response S̃m

ζ ( f ) and the respective analytical response S̃a
ζ ( f ) for a copper

plate placed 355 mm away from the radar. S̃a
ζ ( f ) is the analytical result

before calibration whereas S̃cal
ζ ( f ) is the result after calibration.

then applied to both Sa
ζ (t) and Sm

ζ (t). An example plot (for
the rx4/tx1 antenna pair) of the magnitude spectra of the
copper-plate measured and analytical responses is shown in
Fig. 8, when the plate is 355 mm away from the radar. It is
clear that the peak frequencies of |S̃a

ζ ( f )| and |S̃m
ζ ( f )| are

not aligned, which necessitates a correction of the analytical
model through tsys. The delay tsys is calculated from the peak
frequency of the measured signal f m

p and that of the analytical
signal f a

p as

tsys =
(

f m
p − f a

p
)/

γ. (20)

The internal system delays for the LFM radar employed here
have been determined for all Tx/Rx channels first with the
copper plate placed 355 mm away from the radar. The values
are the same across all radar channels: τsys = 0.26969 ns. The
calibration has been repeated for various range positions of
the copper plate and tsys has been confirmed to be the same.

To verify the calibration, the so obtained tsys is applied to the
analytical response Sa

ζ (t) in (18) by replacing τd with τd +tsys.
The magnitude spectrum of the calibrated analytical response
|S̃cal

ζ ( f )| is plotted in Fig. 8 for comparison with the measure-
ment |S̃m

ζ ( f )|, showing the peak-frequency alignment. It is
worth noting that although the peak-frequency misalignment
between the uncalibrated analytical response and the measured
response may appear small, it actually corresponds to about
4 cm difference in distance. Without calibration, this difference
results in extremely unfocused images with the measured data.

Similarly, tsys is used to calibrate the analytical system PSFs
in (13) and obtain H sc

cal,ζ (r, t, r′) by replacing τd,ζ with τd,ζ +

tsys for each Tx/Rx antenna pair. These calibrated PSFs are
used in the image reconstruction with the measured data.

B. Imaging Experiments

The initial validation is conducted using the same 3-D
F-shape/bar-shape object described in Section III-B. However,
in this experiment, copper tapes of thickness 1 oz (34.8 µm)
and width 4 mm are used in crafting the shapes, as shown
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Fig. 9. Imaging setup for the 3-D reconstruction of two copper-tape objects
depicted. (a). Both shapes consist of four layers of copper tape carefully
applied to a paper surface. The F-shape is positioned at the uppermost layer,
while the tilted bar shape resides at the bottom layer, as illustrated. (b) F-shape
plane is situated 22.5 cm away from the radar, whereas the plane of the bar
shape extends an additional 12 cm. All dimensions are in cm.

in Fig. 9(a). Each arm of the F and bar shapes comprises
4 stacked layers of copper tape to ensure large reflectivity.
The F-shape contains arms of lengths 5 and 2.5 cm. The bar
shape is 5 cm long. The shapes are affixed to paper sheets
[see Fig. 9(a)]. The imaging setup is shown in Fig. 9(b). The
F-shape is placed at the reference plane z = 0, which is
22.5 cm away from the radar. The bar shape is at z = −12 cm
(34.5 cm away from the radar). The paper sheets holding the
shapes are placed on Styrofoam (εr ≈ 1.175) slabs of thickness
12.7 mm. The system and sampling parameters are listed in
Table I.

In the image reconstruction, we employ the calibrated
analytical PSFs computed for a cubical SP of volume d� =

1 mm3 positioned at the three slices of interest: z =

−120, 0, 120 mm. Therefore, in this and all subsequent exper-
iments, the images are qualitative.

We briefly mention that we have attempted the measurement
of the PSFs using probes of size (λc/4) ≈ 1 mm. Unfortu-
nately, at the employed ranges, the scattering from such probes
is too weak to rise above the uncertainty of our measurement
system.

The FSPM-TD reconstructed image of the normalized
reflectivity is presented in Fig. 10(a). The F and bar shapes
are reconstructed with good structural accuracy. Even a small
air-gap in the top horizontal arm of the F-shape [see Fig. 9(a)]
is reconstructed well in the middle layer (z = 0) of Fig. 10(a).
The top layer at z = 120 mm [air in the setup shown in
Fig. 9(b)] accurately shows the absence of objects.

Regarding the image quality, the image slices are well
resolved along range, i.e., there is no “range bleeding”. This
is expected since the slice separation is well beyond the range
resolution limit of δz ≈ 37 mm. However, artifacts are present
in the bottom layer where the bar shape is. These are due to
reflections coming from the plastic rods as well as the scanning
platform itself. Note that, as shown in Fig. 9(b), the F-shape
at the top is far from any structural components of the
scanner and its image in the slice z = 0 shows practically no
artifacts.

Fig. 10. Reconstructed 3-D images in terms of normalized reflectivity ρ̄

enabling. (a) FSPM-TD method. (b) QMH method using measured data with
the F-shape/bar-shape object. The bar-shape and the F-shape are correctly
located at z = −120 mm and z = 0 mm, respectively. The top layer at
z = 120 mm correctly shows a slice without any targets.

To compare the accuracy of FSPM-TD images with an
MHA algorithm, the QMH image is provided in Fig. 10(b).
The two images are almost identical, validating the accu-
racy of the FSPM-TD algorithm. We note that the QMH
algorithm, although using the approximate PSF in (14), pro-
vides focused images since (14) is accurate in this example.
With a frequency-modulation slope of γ = 72.42 × 1012 Hz/s
and distance to target of about 35 cm, the phase contribution of
the πγ τ 2

d term does not exceed 0.09◦, which is well below the
limit of 2.5◦ recommended in [41]. As in the example with
the synthetic data, since all sampling rates are similar, the
FSPM-TD algorithm is faster than QMH (2.9 s versus 5.0 s).

The second imaging experiment addresses a scenario featur-
ing realistic items. The object includes a metallic key, a penny,
and a liquid lipstick, see Fig. 11(a). In an initial experiment, all
three objects are lying on a Styrofoam sheet, which is 22.5 cm
away from the radar. In a second experiment, the same objects
are enclosed within a toy bag shown in Fig. 11(b) and the bag
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Fig. 11. Photos of (a) key, penny, and liquid lipstick lying on a Styrofoam
sheet. (b) Small toy bag used to “conceal” the key, the penny, and the lipstick.
Dimensions are in mm.

Fig. 12. FSPM-TD image of the normalized 2-D projection of the reflectivity
ρ̄. (a) Key, penny, and lipstick on the scanning platform. (b) Same objects
inside the bag.

is placed on the same Styrofoam sheet. The radar and sampling
parameters remain the same as those in Table I.

Fig. 12(a) shows a 2-D image of the unobstructed key,
penny, and lipstick experiment. The image is obtained by
a maximum value projection of six slices within a volume
of 2.5 cm range thickness, i.e., confined between the planes
z = 19 cm and z = 21.5 cm. The reason for presenting the 2-D
projection images is that the objects have different thicknesses
and their reflectivity is best represented in a projection. The
image in Fig. 12(a) shows all items with excellent resolution
and no visible artifacts. The 2-D projection image of the same
objects concealed in the bag is shown in Fig. 12(b), following
the same procedure. It is clear that the bag has a negative
impact on the structural accuracy of the reconstructed objects,
likely due to the fact that the materials from which the bag is
made are not entirely transparent to the mm-wave radiation.
In fact, the outline of the bag is visible in Fig. 12(b). Moreover,
the hello-kitty plush toy attached to the bag is relatively large
and thick [see Fig. 11(b)].

The last experiment reported here addresses the realized
cross-range resolution of the experimental setup. To this end,
two benchmark targets are fabricated in PCB technology, each
consisting of five copper strips of thickness 2 oz (69.6 µm) and
length 2.5 cm; see Fig. 13. The PCBs employ FR-4 substrates
(εr ≈ 4.3) of size 8 × 8 cm2. The strip width in Benchmark
#1 is 3 mm whereas in Benchmark #2 it is 2 mm. In both
benchmark targets, the strip edge-to-edge spacing varies from
2 to 5 mm at 1 mm increment. The reconstructed 2-D image of
Benchmark #1 is shown in Fig. 14(a). All strips are resolved
well, even the two strips with a 2 mm spacing. On the other
hand, the image of Benchmark #2, shown in Fig. 14(b), fails

Fig. 13. Photos of benchmark PCB targets composed of copper strips of
2 oz (69.6 µm) thickness and length of 2.5 cm. (a) Benchmark #1 with
strip width of 3 mm. (b) Benchmark #2 with strip width of 2 mm. In both
benchmark targets, the strip edge-to-edge spacing varies from 2 to 5 mm
at 1 mm increment. The PCBs employ FR-4 (εr ≈ 4.3) substrates of size
8 × 8 cm2.

Fig. 14. Reconstructed images of benchmark targets with strips of width
(a) 3 mm and (b) 2 mm, in terms of normalized permittivity ρ̄.

in resolving the 2 mm-width strips which are separated by
a 2 mm gap. The results suggest a cross-range resolution of
about 3 mm. This agrees well with the theoretical cross-range
resolution δ⊥ = (λc/4 sin α) ≈ 2.95 mm. Here, λc ≈ 3.8 mm,
and the viewing angle is limited by the half-power beamwidths
of the on-board antennas, α = avg(0.5θh, 0.5θe), where θh ≈

56◦ and θe ≈ 28◦ [58]. Thus α ≈ 21◦.

V. DISCUSSION AND CONCLUSION

We have introduced the new FSPM-TD method for the fast
processing of time-domain signals in microwave and mm-wave
image reconstruction. The method’s application with mm-wave
LFM radar signals is presented and validated with synthetic
and measured data.

The proposed inversion algorithm employs a linearized inte-
gral scattering model whose kernel (the radar’s spatial impulse
response) is the PSF. For fast k-space inversion, the assumption
of a uniform unbounded background medium is made, which
renders the scattering model a 2-D convolution in the lateral
coordinates. Unlike conventional direct-inversion methods,
which rely on analytical PSFs, the FSPM-TD algorithm can
operate with analytical, simulated, or measured PSFs without
any modifications and with no impact on its speed. Since
measured PSFs enable near-field and quantitative imaging, this
capability is an important advantage.

In its first inversion stage, the FSPM-TD algorithm is a
projection algorithm, since it employs the inner product of
the measured responses with the system PSFs to produce a
reflectivity image. In its second inversion stage, it performs
image enhancement (and quantitative imaging, if the PSFs are
measured) by deconvolving the object’s reflectivity image with
that of the SP This approach of projection forming an inner
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product, followed by image deconvolution, is the hallmark of
the proposed algorithm.

The computational efficiency of the FSPM-TD algorithm
stems from performing both inversion stages in the mixed
(kx , ky, z) space. In contrast, prior k-space algorithms, perform
deconvolution in the (kx , ky, kz) space or the (kx , ky, k) space,
where the number of samples along kz or k equals the
equivalent-frequency samples. LFM signals feature a large
number of time samples, or, equivalent-frequency samples.
This number is usually much larger than the number of
image slices along z. This is why the FSPM-TD algorithm
is computationally more efficient than the QMH k-space
algorithm, which does not employ Stolt’s interpolation. At the
same time, the image quality is the same. The comparison
with the fast QMH algorithm shows an acceleration factor
of ∼(Nt NT )2/N 2

z , where Nt is the number of time samples,
NT is the number of Tx/Rx pairs, and Nz is the number
of image slices. The typical running time of the FSPM-TD
reconstruction is 1 to 2 s with an unoptimized MATLAB
code on a conventional laptop in examples where the imaged
volume consists of ∼104 voxels.

Also, a radar simulator based on a linearized model of
scattering has been developed for the rapid generation of
synthetic LFM data. The extremely long time scale of the
LFM signal renders the full-wave time-domain simulations
prohibitively slow, especially for multistatic imaging exper-
iments involving tens of thousands of scanned positions. The
radar simulator provides the synthetic data within several
minutes for objects consisting of thousands of sub-wavelength
voxels as opposed to weeks of simulation time with full-
wave simulations. The synthetic data has allowed for the
assessment of the FSPM-TD reconstruction in terms of its
IPSF and its spatial resolution. It is shown that the algorithm
achieves the theoretical spatial-resolution limits of far-zone
imaging.

Validation using experiments is also carried out with an off-
the-shelf mm-wave radar (77 to 81 GHz), where the FSPM-TD
algorithm achieves spatial resolution consistent with the theo-
retical estimates. It is shown that calibration of the employed
analytical PSF is critically important since there is temporal
misalignment with the measured responses. Here, a simple
calibration approach is used based on a measurement of a
copper plate. It extracts the system internal delay tsys, which
is used to correct the time-delay variable in the PSF.

Finally, we note that, unlike the synthetic data that are noise-
free, the measured data contain significant noise and radar
clutter. The noise figure of the mm-wave LFM receiver used
in the experiments is 15 dB. However, it is the radar clutter
(reflections from the structural components of the imaging
setup) that is more detrimental to the signal-to-noise/clutter
(SNCR) ratio of the data. The calibration IF signal depicted
in Fig. 8 indicates an SNCR of about 9.3 dB, when measuring
the 5 × 5 cm2 metallic plate at a distance of 355 mm from the
radar. However, the SNCR is much poorer when we measure
an SP. For example, with a 2-mm probe at a distance of
274 mm from the radar, the SNCR is about 3 dB, whereas
at 355 mm the probe’s signal cannot be detected. Despite the
low SNCR values in the experiments, the proposed FSPM-TD

algorithm yields images, which are structurally correct and
with spatial resolution close to the theoretical limits.

Future work will focus on enhanced calibration methods
to enable the quantitative imaging of targets with far-zone
measurements as well as the development of an FSPM-TD
algorithm for the real-time processing of randomly and
sparsely sampled data. The latter development will target
applications in imaging with mobile and handheld platforms.

APPENDIX
FOURIER-SPACE SCATTERED POWER MAPPING

The F-SPM image-reconstruction method [56], [57] has
been applied with the well-known forward model of scatter-
ing in terms of S-parameters [68]. Its application with the
electric-field model follows the same procedure.

Let the dataset be composed of the scattered portion of the
measured S-parameters, Ssc

ζ (r, ω), where r is the receiver (Rx)
position, ω is the frequency, and ζ ≡ (i, j) denotes the type of
response as determined by the receiving (i th) and transmitting
( j th) antennas. Then, the forward model is stated as

Ssc
ζ (r, ω) = cζ

∫∫∫
V ′

1εr (r′)

· Einc
ζ,Rx(r

′, r, ω) · Etot
ζ,Tx(r

′, rTx, ω)dr′ (21)

where r′
∈ V ′ is a position in the imaged volume V ′, 1εr (r′)

is the object’s relative-permittivity contrast, Etot
ζ,Tx is the total

internal field due to the transmitting (Tx) antenna at position
rTx, and Einc

ζ,Rx is the background Green function, which is
equivalent to the incident field due to the Rx antenna if it
were to transmit in the background medium. The relative-
permittivity contrast (assumed independent of the frequency
and the field polarization) is defined as 1εr = εr − εr,b,
where εr is the object’s relative permittivity whereas εr,b is
that of the background. The constant cζ = (−iωε0/2aRxaTx) is
determined by the root-power waves aξ , ξ = Rx, Tx, incident
on the ports of the antennas generating the respective fields.
Here, ε0 is the free-space permittivity.

From (21), the system PSF is readily derived as the scatter-
ing response due to an electrically small (point-like) scatterer
of volume �sp and contrast distribution represented by Dirac’s
δ-function, 1εr,spδ(r′

− rsp):

H sc
ζ (r, ω; rsp) = cζ �sp1εr,spEinc

ζ,Rx(rsp, r, ω)

· Einc
ζ,Tx(rsp, rTx, ω). (22)

Note that (22) employs Born’s approximation of the total
internal field, Etot

ζ,Tx(r
′, rTx, ω) ≈ Einc

ζ,Tx(r
′, rTx, ω), since a

point-like scatterer satisfies the assumption of weak scattering.
The PSF is the spatial impulse response of the measurement
system. Its expression (22) provides insight on how to model
it analytically or through simulations with account for the
field distributions generated by the antennas in the background
medium. In close-range imaging, where the scattering from
an electrically small probe is sufficiently strong to rise above
the measurement noise and uncertainty, the PSF can also be
acquired by calibration measurements [45], [46], [57].

In a homogeneous background and with the assumption
of weak scattering, the linearized forward model is obtained
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from (21) and (22) as [57]

Ssc
ζ (r, ω) ≈

∫∫∫
V ′

ρ(r′)H sc
ζ (r − r′, ω)dr′ (23)

where

ρ(r′) = 1εr (r′)/(1εr,sp�sp) (24)

is termed the object’s reflectivity function. H sc
ζ (r, ω) is the

response to a probe at the center of the imaged volume, r′
= 0.

With the data, Ssc
ζ (r, ω), and the PSFs, H sc

ζ (r, ω), available,
the F-SPM method solves (23) for ρ(r′) through a compu-
tationally efficient two-stage procedure. The first SPM stage
constructs the 3-D scattered-power map M(r′) of the OUT as
the inner product of the data and the system PSFs. In the case
of a planar scan at z = z̄, the measurement position is given
by r = (x, y, z̄), and the explicit map expression is

M(x ′, y′, z′)

=

NT∑
ζ=1

∫
ω

∫ ∫
yx

Ssc
ζ (x, y, ω)

×
[
H sc

ζ (x − x ′, y − y′, ω, z′)
]∗dxdydω. (25)

M(r′) in (25) is a 2-D cross correlation in x and y. The most
efficient way of computing it is in 2-D Fourier space (kx , ky),
where kx and ky are the Fourier variables corresponding to x
and y, respectively. For brevity, a point in Fourier (or k) space
is denoted as κκκ = (kx , ky). The k-space processing requires
the FTs of the data at all frequencies,

S̃sc
ζ (κκκ, ωk) = F2D

{
Ssc
ζ (x, y, ωk)

}
ζ = 1, . . . , NT , k = 1, . . . , Nω (26)

along with the FTs of the system PSFs at all frequencies and
all imaged range slices:

H̃ sc
ζ

(
κκκ, ωk, z′

n
)

= F2D
{

H sc
ζ

(
x, y, ωk, z′

n
)}

ζ = 1, . . . , NT , k = 1, . . . , Nω, n = 1, . . . , Nz . (27)

Note that the PSFs H sc
ζ (x, y, ωk, z′

n) represent the responses
acquired with the SP at position (0, 0, z′

n), i.e., at the center
(x ′

= y′
= 0) of the imaged slice z′

n = const. The k-space
OUT map is then computed as

M̃(κκκ, z′
n) =

NT∑
ζ=1

Nω∑
k=1

S̃sc
ζ (κκκ, ωk)

[
H̃ sc

ζ

(
κκκ, ωk, z′

n
)]∗

n = 1, . . . , Nz . (28)

The second SPM stage is also performed in k-space [56],
[57]. In addition to the OUT map in (28), it requires the 2-D
FTs of the SP maps. These are obtained analogously to (28)

M̃(κκκ, z′
n; z′′

m) =

NT∑
ζ=1

Nω∑
k=1

H̃ sc
ζ (κκκ, ωk, z′′

m)
[

H̃ sc
ζ

(
κκκ, ωk, z′

n
)]∗

n, m = 1, . . . , Nz . (29)

Here, z′
n indicates an image slice in the SP map whereas

z′′
m indicates the slice in which the scattering probe actually

resides.

With the OUT and SP maps available, the 2D FT
of the reflectivity function, ρ̃(κκκ, z′

n) = F2D{ρ(x ′, y′, z′
n)},

is extracted using the linear map relation [57]:

M̃
(
κκκ, z′

n
)

=

Nz∑
m=1

ρ̃
(
κκκ, z′′

m
)
M̃

(
κκκ, z′

n; z′′
m
)
n = 1, . . . , Nz . (30)

The Nz equations in (30) form a small Nz × Nz system of
equations at each k-space point written as:

M̃(κκκ)ρ̃(κκκ) = m̃(κκκ) (31)

where

ρ̃(κκκ) =

[
ρ̃
(
κκκ, z′

1
)
, . . . , ρ̃

(
κκκ, z′

Nz

)]T
(32)

m̃(κκκ) =

[
M̃

(
κκκ, z′

1
)
, . . . , M̃

(
κκκ, z′

Nz

)]T
(33)

M̃(κκκ) =


M̃

(
κκκ, z′

1; z′′

1
)

· · · M̃
(
κκκ, z′

1; z′′

Nz

)
...

. . .
...

M̃
(
κκκ, z′

Nz
; z′′

1
)

· · · M̃
(
κκκ, z′

Nz
; z′′

Nz

)
. (34)

Since M̃(κκκ) is a small square matrix, (31) can be efficiently
solved using LU decomposition.

The real-space reflectivity function ρ(x ′, y′, z′
n) is recovered

via the inverse 2D FT of ρ̃(κ, zn):

ρ(x ′, y′, z′
n) = F−1

2D
{
ρ̃
(
κκκ, z′

n
)}

, n = 1, . . . f d, Nz . (35)

The plot of |ρ(x ′, y′, z′
n)| provides a qualitative image of

the object’s reflectivity. Quantitative image is also possible,
provided the system PSFs scale properly with the probe’s vol-
ume �sp and relative-permittivity contrast 1εr,sp. As per (24),
the quantitative estimate of the object’s relative-permittivity
contrast is obtained as

1εr
(
x ′, y′, z′

n
)

= �sp1εr,spρ
(
x ′, y′, z′

n
)
. (36)
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