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Abstract— Superconducting quantum computing is at the fore-
front of demonstrating quantum advantages for revolutionary
applications in science and technology. One key component for
the readout of qubit state information is given by superconducting
traveling-wave parametric amplifiers (TWPAs) due to their low
power dissipation and unprecedented quantum-limited noise
performance. This work presents a black-box circuit quantum
electrodynamic model for TWPAs with arbitrary supercon-
ducting nonlinear elements. A unified Hamiltonian description
for directly pumped and flux-driven amplifiers is derived, and
analytic results for the gain and the added quantum noise
are presented, closely matching recent experimental realizations.
We also offer an optimization strategy for nonlinear elements
for large gain and low noise based on the proposed black-box
quantum model. The results of this article will be helpful in
the design and multitarget optimization of new and improved
quantum-limited low-noise amplifiers.

Index Terms— Black-box model, Josephson parametric ampli-
fier (JPA), quantum computing, qubit readout, superconducting
nonlinear asymmetric inductive element (SNAIL), supercon-
ducting quantum interference device (SQUID), traveling-wave
parametric amplifier (TWPA).

I. INTRODUCTION

QUANTUM computing using superconducting qubits
gained a lot of momentum recently after the demonstra-

tion of quantum supremacy [1], [2], i.e., that a programable
superconducting quantum computer can solve a given problem
that no classical computer could solve in a reasonable amount
of time. Despite the fact that the algorithm used for the
demonstration in [1] is of little to no practical relevance, and
the claim was heavily debated in the community, the achieve-
ment has kicked off a vast amount of research looking for
possible applications of quantum computing in different areas
of science and engineering. Promising engineering applica-
tions have been found in antenna simulations, where quantum
algorithms based on the quantum Fourier transform can be
applied to predict power patterns of phased-array antennas [3].
A different approach, also in the field of antenna engineering,
was presented in [4], where quantum annealing is used to
optimize reconfigurable intelligent surfaces by recasting the
problem of finding binary reflection patterns of a pixelated

Manuscript received 31 August 2023; revised 7 December 2023; accepted
17 December 2023. Date of publication 9 January 2024; date of current version
4 April 2024. This work was supported in part by the Munich Quantum Valley
through the Bavarian State Government from the Hightech Agenda Bayern
Plus.

The author is with the TUM School of Computation, Information and
Technology, Technical University of Munich, 85748 Garching, Germany
(e-mail: michael.haider@tum.de).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMTT.2023.3345641.

Digital Object Identifier 10.1109/TMTT.2023.3345641

metasurface into the problem of finding the ground state of an
equivalent Ising Hamiltonian. Both results are remarkable in
the sense that the realization of practical short-term quantum
advantage is currently mainly expected in the field of analog
quantum simulations [5], where suitable quantum experiments
model the properties of microscopic particles. Exploiting the
full potential of general-purpose quantum computers based
on superconducting qubits, which enables breakthrough appli-
cations in the mid and long term, however, requires further
technological advances in quantum error correction and qubit
readout [6].

In superconducting quantum computing, the qubit state
is typically probed by a quantum nondemolition measure-
ment of the state-dependent dispersive shift in the readout
resonator’s resonance frequency [7], [8], [9]. There, the
qubit state is inferred by measuring the transmission of
ultralow-power microwave signals [10], where the readout
fidelity is limited by the signal-to-noise ratio (SNR) of the
amplifier chain and the prohibitively short coherence time
of the qubits [11]. Hence, the SNR of the amplifier chain
must be as large as possible, i.e., quantum-limited [12] noise
performance of the first-stage amplifier is critical for high-
fidelity single-shot readouts of quantum information [10].
However, the relatively large noise temperature [13] and the
limited cooling power budget in the lowest temperature stage
of a dilution refrigerator [14] prohibit the use of cryogenic
microwave amplifiers based on high-electron-mobility transis-
tors (HEMTs). As an alternative, superconducting Josephson
parametric amplifiers (JPAs) [15], [16], where the amplifi-
cation is accomplished by nonlinear mixing of the input
signal with a strong coherent pump field, allow for a rea-
sonably large gain with very little power dissipation and
superior noise performance [17]. Hence, they are nowadays
commonly used as first-stage amplifiers in the readout of
superconducting qubits [18], [19], [20], [21], [22]. For large
gain, a single Josephson junction is typically coupled to
a microwave resonator, where the amplifier is operated
in reflection mode, neccessitating the use of a bulky cir-
culator [14]. The resonant amplification, however, limits
the gain bandwidth, and bulky circulators are prohibitive
in terms of fridge space for scaled-up many-qubit quan-
tum computers. Larger bandwidth and transmission-mode
operation can be achieved using traveling-wave parametric
amplifiers (TWPAs) [14], [23], [24], [25], where hundreds or
even thousands of Josephson nonlinear elements are embed-
ded within a microwave transmission line. It has been
shown that these devices can be operated in the three-
wave-mixing (3WM) and four-wave-mixing (4WM) regimes
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using specialized Josephson nonlinear elements [26], [27].
Although the nonlinear elements embedded within the
TWPA transmission line sections become increasingly com-
plex [28], the underlying wave-mixing mechanisms remain
the same. Thus, within this article, we propose a unified
realization-agnostic circuit quantum model [22], [29] for
TWPAs, where the nonlinear elements are treated as black
boxes. Also, the means of deriving the respective nonlinear
device coefficients up to the third nonlinear order are outlined
in the following [30]. This allows us to study the underlying
mechanisms of parametric amplification, as well as detrimental
phase-modulation and intermodal mixing effects, regardless of
the actual physical device realization, conceivably leading to
better devices in the future. In particular, parametric studies
for device optimization will benefit from a full quantum
model with analytic solutions for the gain and added quantum
fluctuations in a TWPA.

This article is structured as follows. First, we intro-
duce a unit cell model of a dissipative-dispersive nonlinear
transmission line featuring periodically embedded black-box
Josephson nonlinear elements in Section II. In this section,
we also distinguish between directly pumped TWPAs, where
a strong coherent pump tone is supplied to the same input
port as the weak signal that is to be amplified, and flux-
driven TWPAs, where a time-dependent modulation of the
linear Josephson inductance is used for parametric amplifi-
cation [27]. Section III introduces a general description for
directly pumped and flux-driven Josephson nonlinear elements
with arbitrary junction topology by expanding the potential
energy stored in the elements up to the fourth nonlinear
order. It is later shown that this description can be used to
uniformly describe different existing junction topologies, such
as RF [26] and dc-SQUIDs [27], as well as superconduct-
ing nonlinear asymmetric inductive elements (SNAILs) [31].
Also, Bi-SQUID-based TWPAs have been reported in the
literature [32]. We introduce a third-order black-box nonlinear
quantum model for TWPAs with arbitrary junction topologies
in Section IV, which constitutes the central part of this article.
Finally, we apply our proposed black-box quantum model to
existing TWPA designs reported in the literature and show
our results on the gain profile and added noise in Section V.
Due to the structure-agnostic formulation of our model, it is
ideally suited for device parameter optimization, which is also
discussed in this section.

II. NONLINEAR TRANSMISSION LINE

We consider a matched 50� coplanar microwave trans-
mission line on a lossy substrate material. The transmission
line is periodically loaded with nonlinear elements that
perform the amplifying wave-mixing operations. The super-
conducting nonlinear elements are formed by more or less
complex arrangements of Josephson junctions, which are
manufactured by sophisticated multistep evaporation processes
(e.g., Al/AlOx/Al, or Nb/Al-AlOx/Nb, typically on silicon
substrates with SiO2 passivation layers) [33]. For the moment,
we disregard the internal structure and physical mechanisms
of the nonlinear elements, i.e., the nonlinearities are treated as
a black box, described by a given current-phase relation i(ϕ).

Fig. 1. Circuit representation of a TWPA with a black-box Josephson
nonlinear element. The circuit model consists of N identical unit cells of
length 1z. A flux bias is given by the external magnetic field B. Substrate
losses and noise are included in our model (orange). The ivory-colored flux–
coupled (blue) transmission line represents an optional pumping mechanism
for flux-driven TWPAs.

The main goal of this article is to establish a nonlinear quan-
tum model for parametric amplification in superconducting
TWPA transmission lines up to the third nonlinear order.
Parametric amplification is a wave-mixing process in which
energy is converted from a strong, coherent pump tone into a
weak input signal to be amplified. Due to energy conservation,
the process also creates another mode, the so-called idler
field. In a traditional microwave amplifier, e.g., based on
HEMTs, amplification is achieved by coherent modulation
of a resistive channel. This adds losses, and due to the
dissipation-fluctuation theorem [34], also noise to the system.
In contrast, parametric amplification relies on a wave-mixing
process due to a second- or third-order nonlinearity without
adding additional thermal noise contributions. Although the
system is assumed to be superconducting, i.e., there are no
Ohmic losses along the transmission line, there are still losses
and associated noise due to imperfect substrate isolation [35].

For the formulation of a black-box quantum model of
distributed parametric amplification in superconducting trans-
mission lines, we consider the unit cell, depicted in Fig. 1.
A continuous coplanar transmission line can be analyzed
by considering an infinitesimal line segment in terms of an
equivalent circuit featuring a linear inductance per unit length,
a ground capacitance per unit length, and a resistor modeling
substrate losses [36]. In our unit-cell model, we neglect the
series resistance, as we assume the transmission line to be
superconducting, and we absorb the linear line inductance
into the nonlinear black box. Additionally, we introduce a
dispersion capacitor across the black-box Josephson nonlinear
elements, which models the intrinsic junction capacitances.
Our unit cell has a finite length 1z, given by the distance
between the nonlinear elements (in the order of some 10 µm),
which is, however, much smaller than the operation wave-
length between 3 and 10 GHz. This means that a continuous
treatment for the discrete element structure is a reasonably
good approximation [37].

A. Direct Pumping

In a TWPA, a strong pump signal needs to be supplied to
the nonlinear elements for efficient wave-mixing interactions.
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Typically, the pump is incident at the same input port as
the weak signal to be amplified. In this case, a directional
coupler is needed to inject a high-power monochromatic pump
tone [14]. Since the gain of a TWPA is proportional to the
pump amplitude, a considerable pump power is desirable in
many applications. However, the maximum pump amplitude is
limited by the critical current of the Josephson elements along
the transmission line. The critical current is the maximum
supercurrent that can flow across the barrier of a Josephson
element and depends on the junction geometry. While propa-
gating through the nonlinear transmission line, the pump wave
experiences self- and cross-phase modulation (XPM) due to
the nonlinear elements.

B. Flux-Driven TWPAs

Some of the shortcomings with directly pumped TWPAs,
where the pump wave is provided at the input port of
the amplifier, can be overcome by considering flux-driven
devices. A flux-driven TWPA is operated in a regime where
the intrinsic Josephson nonlinearity is no longer used for
wave-mixing interactions. Instead, parametric amplification is
achieved by a time-varying modulation of the linear Josephson
inductance [27]. The modulation of the linear part of the
Josephson inductance arises from an additional time-varying
magnetic flux threading of the nonlinear element. Hence, in a
flux-driven TWPA, the nonlinear element must be formed
by a loop-like geometric structure that allows for external
pumping by an additional flux-coupled transmission line in
close vicinity, carrying the strong microwave pump tone. Here,
the pump amplitude is not limited by the critical current and is
not subjected to self-phase modulation (SPM) since the pump
wave travels in an independent weakly coupled linear flux line.
The weakly coupled external flux line is depicted in ivory
color in Fig. 1. It is, however, not necessary for parametric
amplification if the pump wave is provided directly at the
input port using a directional coupler. Notably, it should be
mentioned that external pumping requires different design con-
siderations for the final implementation of a TWPA [27], [32].
The operation point of a given Josephson nonlinear element
with a loop-like geometry can be controlled by an external
magnetic field B, which causes a constant flux 8B in the
loop. Alternatively, a constant current i0 that is impressed
along the transmission line using, e.g., a bias-tee, can alter
the current–phase relation, respectively [38].

III. MODELS FOR JOSEPHSON NONLINEAR ELEMENTS

In general, a Josephson nonlinear element is an inductive
one port, described by a nonlinear current–phase relation i(ϕ),
where ϕ is the quantum phase difference of the supercon-
ducting wavefunctions at both contacts. The phase difference
is related to the magnetic flux 18J across the Josephson
junction by ϕ = 18J/ϕ0, where ϕ0 = h̄/2e is the reduced
magnetic flux quantum, given by the reduced Planck constant
h̄ = h/2π divided by two times the unit charge e. Interpreting
the Josephson flux 18J = ϕ0ϕ as a space-like quantity in a
Hamiltonian treatment, the potential energy stored in a single

Josephson nonlinear element is given by

U (ϕ) = ϕ0

∫ ϕ

ϕ∗

i(ϕ′)dϕ′ (1)

given a current–phase relation i(ϕ). For an arbitrary
current–phase relation, with an operation point selected by
an external bias field B, there might be a non-zero steady-
state flux ϕ∗, determined by i(ϕ∗) = 0 with minimum
potential energy. One would measure this flux without an
external current through the junction, just due to the external
flux threading. We can perform a Taylor expansion of the
current–phase relation i(ϕ) around the steady-state flux ϕ∗,
i.e.,

i(ϕ) =
di(ϕ)

dϕ
ϕ=ϕ∗

(ϕ − ϕ∗) +
1
2

d2i(ϕ)

dϕ2
ϕ=ϕ∗

(ϕ − ϕ∗)2

+
1
6

d3i(ϕ)

dϕ3
ϕ=ϕ∗

(ϕ − ϕ∗)3
+O(ϕ4). (2)

Replacing the current–phase relation in (1) by the Taylor
expansion in (2), and performing the integration over the
resulting polynomial yields [30]

U (ϕ)

EJ
≈

1
2Ic

di(ϕ)

dϕ

∣∣∣∣
ϕ=ϕ∗︸ ︷︷ ︸

c2

(
ϕ − ϕ∗

)2

+
1

6Ic

d2i(ϕ)

dϕ2

∣∣∣∣∣
ϕ=ϕ∗︸ ︷︷ ︸

c3

(
ϕ − ϕ∗

)3

+
1

24Ic

d3i(ϕ)

dϕ3

∣∣∣∣∣
ϕ=ϕ∗︸ ︷︷ ︸

c4

(
ϕ − ϕ∗

)4 (3)

with the Josephson energy EJ = ϕ0 Ic. The coefficients c2, c3,
and c4 describe the Josephson nonlinear element up to the
third order. In the following, we want to establish a third-order
black-box quantum model based on a Hamiltonian explicitly
depending on these coefficients.

For flux-driven TWPAs, the intrinsic nonlinearity of the
Josephson elements is no longer used for the wave-mixing
interactions [27]. Due to the absence of a strong pump mode
propagating along the nonlinear transmission line, the system
is not driven into nonlinear behavior. By contrast, a time-
varying modulation of the linear inductance of the respective
black-box element is used in a first-order approximation.
Hence, the potential energy from (1) can be rewritten as

U (ϕ) = ϕ0

∫ ϕ

ϕ∗

i(ϕ′, ϕext)dϕ′

≈
ϕ0

2
∂i(ϕ, ϕext)

∂ϕ

∣∣∣∣
ϕ=ϕ∗

(
ϕ − ϕ∗

)2 (4)

where ϕext = ϕB + ϕac is the external flux threading given by
a large constant bias phase ϕB and a time-varying pump phase
ϕac with ϕac ≪ ϕB. Hence, in the flux-driven case, we perform
another Taylor expansion of (4) with respect to ϕext around ϕB,
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i.e.,

U (ϕ)

EJ
≈

1
2Ic

∂i(ϕ, ϕext)

∂ϕ

∣∣∣∣
ϕ=ϕ∗,
ϕext=ϕB︸ ︷︷ ︸

c2

(
ϕ − ϕ∗

)2

+
1

2Ic

∂2i(ϕ, ϕext)

∂ϕ∂ϕext

∣∣∣∣
ϕ=ϕ∗,
ϕext=ϕB︸ ︷︷ ︸

c3

ϕac
(
ϕ − ϕ∗

)2

+
1

4Ic

∂3i(ϕ, ϕext)

∂ϕ∂ϕ2
ext

∣∣∣∣
ϕ=ϕ∗,
ϕext=ϕB︸ ︷︷ ︸

c4

ϕ2
ac

(
ϕ − ϕ∗

)2 (5)

where we identified ϕac = ϕext − ϕB.
Overall, the coefficients c2, c3, and c4, describing a

black-box Josephson nonlinear element up to the third order,
are given by

c2 =


1

2Ic

di(ϕ)

dϕ

∣∣∣∣
ϕ=ϕ∗

, for direct pumping

1
2Ic

∂i(ϕ, ϕext)

∂ϕ
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ϕ=ϕ∗,
ϕext=ϕB

, for flux-driven TWPAs

(6)

c3 =


1

6Ic

d2i(ϕ)

dϕ2

∣∣∣∣∣
ϕ=ϕ∗

, for direct pumping

1
4Ic

∂3i(ϕ, ϕext)

∂ϕ∂ϕ2
ext

∣∣∣∣
ϕ=ϕ∗,
ϕext=ϕB

, for flux-driven TWPAs

(7)

c4 =


1

24Ic

d3i(ϕ)

dϕ3

∣∣∣∣∣
ϕ=ϕ∗

, for direct pumping

1
2Ic

∂2i(ϕ, ϕext)

∂ϕ∂ϕext

∣∣∣∣
ϕ=ϕ∗,
ϕext=ϕB

, for flux-driven TWPAs.

(8)

For any given element with a current–phase relation i(ϕ),
these coefficients can be easily extracted and fed into our
quantum model for parametric amplification. Possible real-
izations for the black-box Josephson nonlinear elements are
given in Fig. 2. The nonlinear coefficients for some of these
structures are explicitly evaluated in [28], [31], [39], [40], [41],
and [42].

IV. BLACK-BOX QUANTUM MODEL

Independent of the actual physical realization, we now want
to construct a quantum model of parametric amplification in
superconducting directly pumped and flux-driven TWPAs. The
parametric gain in the quantum model will only depend on the
nonlinear parameters c2, c3, and c4 of the black-box Josephson
nonlinear element. Additional degrees of freedom are the
respective design choices for the transmission line parameters.
The black-box nonlinear element, internally composed of
Josephson junctions, will behave like a nonlinear inductor.
Expanding the system up to linear order yields the effective
linear Josephson inductance of the element, which is given as

Fig. 2. Circuit representation of (a) single junction, (b) RF-SQUID,
(c) dc-SQUID, (d) and SNAIL, and (e) gradiometric SNAIL. The RF-SQUID
consists of a single Josephson junction embedded in a loop-like geometry with
a geometric inductance Lg. A dc-SQUID comprises two identical Josephson
junctions forming a ring structure. In a SNAIL, n large junctions and a single
small junction with a critical current α Ic, where Ic is the critical current of
the large junctions and α is the asymmetry ratio, form a loop-like geometry.
A gradiometric SNAIL is additionally shorted by another small junction,
forming a second loop.

a function of c2 by

LJ,0 =
ϕ0

2Ic

1
c2

. (9)

Hence, the effective linear inductance of the element is
inversely proportional to the parameter c2. In order to investi-
gate parametric amplification of a signal propagating through
the amplifier’s nonlinear transmission line, we need to model
the incoming weak photon field at the input of the amplifier
as a traveling-wave mode. Traveling-wave amplitudes in a
dispersionless transmission line exhibit space–time translation
invariance [43]. Thus, a single spatial or temporal depen-
dence can describe a wave amplitude. In the modeling of
TWPAs, one typically considers only right-propagating waves.
We choose to describe our system in terms of time-dependent
wave amplitudes that evolve in a co-propagating reference
timeframe [22]. In the case of a dispersive transmission line,
each mode travels at a slightly different velocity. Hence, the
velocity of the co-propagating timeframe would be different
for each mode. This must be properly accounted for whenever
modes of different frequencies are coupled in the nonlinear
elements. To circumvent this problem, we introduce a fixed
reference timeframe that moves with a constant velocity given
by (1z/LJ,0C ′)1/2, and introduce a frequency-dependent,
dimensionless dispersion factor 3(ω) to compensate for
different propagation speeds, i.e., to translate between the
individual timeframes. The fixed reference velocity used
here corresponds to a linear lossless transmission line that
would have the same inductance per unit length LJ,0/1z and
the same capacitance per unit length C ′ as the nonlinear
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transmission line, featuring our black-box loadings. The
dimensionless dispersion factor as a function of c2 is given
by

3(ω) =

1 +

√
1 +

1
ω2 R2C ′21z2

2
(

1 −
ϕ0ω2Ceff

disp

2Icc2

) ≈
2Icc2

2Icc2 − ϕ0ω2Ceff
disp

(10)

and includes dispersion due to the effective capacitance
across the black-box elements from Fig. 1, as well as pos-
sible substrate losses in terms of the substrate resistance R.
As the substrate resistance is typically huge, it can be safely
neglected here, yielding the approximate dispersion factor on
the right-hand side of (10).

The effective magnetic flux wave across the Josephson
nonlinear element ϕ̂eff = ϕ̂ − ϕ∗, which represents the
traveling electromagnetic field along the nonlinear trans-
mission line, can be described by the continuous mode
operator [22], [44]

ϕ̂eff =
1z

√
2π

∫
∞

0

[√
h̄k(ω)3

2C ′ω2ϕ2
0

âωeik(ω)z−iωt
+ H. c.

]
dω

(11)

with the dispersion relation

k(ω) = ω

√
ϕ0C ′3(ω)

2Icc21z
. (12)

To investigate the field’s quantum nature, a circuit quantum
electrodynamic treatment is necessary, where the field in (11)
is expanded into Bosonic creation and annihilation operators,
â†

ω and âω, respectively. This is similar to an expansion of the
traveling-wave flux field into 1-D plane waves, where the plane
wave amplitudes are given by harmonic oscillators, represent-
ing a quantum field mode with frequency ω. The annihilation
operator âω and the corresponding creation operator â†

ω fulfill
the Bosonic commutator relation [âω, â†

ω′ ] = âωâ†
ω′ − â†

ω′ âω =

δ(ω−ω′). Hence, the creation operator â†
ω and the annihilation

operator âω together describe the spatiotemporal evolution of
the effective phase operator ϕ̂eff, and thus, of the quantized
electromagnetic field in the transmission line. An introduction
to electromagnetic circuit quantization for microwave engi-
neers can be found in [45], while some key concepts are also
outlined in [46].

It makes sense to decompose the mode spectrum at the input
of the amplifier into a weak photon field with annihilation
operator âω, that is to be amplified, and a strong coherent
pump tone â�p . The pump tone is supplied directly to the input
using a directional coupler or flux-coupled to the amplifier via
an external pump line.

For constructing the Hamiltonian, we must again distinguish
between directly pumped and flux-driven TWPAs. Expressing
the potential energy from (3) in terms of a quantum operator
ϕ̂eff and adding the kinetic energy in the dispersion capacitor
Ceff

disp and in the ground capacitor 1zC ′ yields the total
system Hamiltonian Ĥ for a directly pumped TWPA without

considering losses

Ĥ =
1

1z

∫ x

0

[
EJc2ϕ̂

2
eff + EJc3ϕ̂

3
eff + EJc4ϕ̂

4
eff

+
ϕ2

0

2
Ceff

disp

(
∂ϕ̂eff

∂t

)2

+
1

21zC ′
Q̂2

]
dz . (13)

In the case of a flux-driven TWPA, we need to express the
potential energy from (5) in terms of ϕ̂eff instead. We also
need a quantum description for the flux-coupled pump field
incident from the separate pump line. The operator for the
quantum phase difference due to the external pump ϕ̂ac is
given by

ϕ̂ac

=
κ1z
√

2π

∫
∞

0

[√
h̄k(�p)k ′(�p)2

2C ′
p�

2
pϕ

2
0

â�p eik(�p)z−i�pt
+H.c.

]
d�p

(14)

where κ is a coupling coefficient between the external flux
line and the nonlinear transmission line. The wavevector
k ′ in the external flux line is given by the dispersion
relation

k ′(ω) = ω

√
ϕ2

0C ′3p

4I 2
c c2

21z2L ′
p

(15)

with the dimensionless, frequency-independent pump-line dis-
persion factor 3p, which is equal to

3p =
2Icc21zC ′

pL ′
p

ϕ0C ′
. (16)

Here, L ′
p and C ′

p are the inductance per unit length and capac-
itance per unit length of the external pump line, respectively.
The Hamiltonian for a flux-driven TWPA in the nonlinear
transmission line, expressed in terms of c2, c3, and c4,
is given by

Ĥ =
1

1z

∫ x

0

[
EJc2ϕ̂

2
eff + EJc3ϕ̂acϕ̂

2
eff + EJc4ϕ̂

2
acϕ̂

2
eff

+
ϕ2

0

2
Ceff

disp

(
∂ϕ̂eff

∂t

)2

+
1

21zC ′
Q̂2

]
dz

(17)

where the operators ϕ̂eff and ϕ̂ac commute, i.e., [ϕ̂eff, ϕ̂ac] =

ϕ̂effϕ̂ac − ϕ̂acϕ̂eff = 0.
Inserting the Bosonic mode operators from (11) and (14)

into the Hamiltonians (13) and (17), and neglecting non-
resonant terms, unveils the underlying wave mixing mech-
anisms up to third order. The unperturbed linear part of
the free-propagating signal and pump fields is given by the
Hamiltonian Ĥ 0. In both cases, the unperturbed Hamiltonian
Ĥ 0 is given by

Ĥ 0 =

∫
∞

0
h̄ωâ†

ωâωdω +

∫
∞

0
h̄�pâ†

�p
â�p d�p . (18)

From the terms proportional to the nonlinear coefficient
c3 in (13) and (17), we can derive a 3WM part Ĥ 3WM of
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the total Hamiltonian, given by

Ĥ 3WM =

∫
∞

0

∫
∞

0

∫
∞

0

√
h̄3C ′ f 3

�p,ω,ω′

16Ic
√

π3

(
81ϕ0C ′

2Icc21z

)m
4

×
c3

c2
2

â†
ωâ†

ω′ â�p e−i(�p−ω−ω′)t

×

∫ x

0
ei[k(�p)−k(ω)−k(ω′)]zdz + H. c.


×

[
κ
(

L ′

pC ′

p

) 1
4

]1−m

dωdω′d�p . (19)

In (19) and in the following, m ∈ {0, 1} is a binary selection
parameter, where m equals one for the case of direct pumping
and zero for external flux drive. The dispersion product f 3

�p,ω,ω′

can be evaluated from the general form

f 3
ω1,...,ωN

=

N∏
n=1

√
ωn3(ωn)

3
4 . (20)

The 3WM nature of (19) becomes apparent from the operator
product â†

ωâ†
ω′ â�p , representing the annihilation of a photon

in the pump mode at frequency �p, and the simultaneous
creation of a signal photon at frequency ω and another photon
at frequency ω′.

Similarly, we obtain a 4WM part Ĥ 4WM of the Hamiltonian
from terms proportional to the nonlinear coefficient c4. Jointly
represented for internal and external pumping, the 4WM
Hamiltonian is given by

Ĥ 4WM =

∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0

[
h̄2√C ′1z f 3

�p,�′
p,ω,ω′

32π2
√

2I 3
c ϕ0

(
36ϕ0C ′

2Icc21z

)m
2

×
c4

c5/2
2

â†
ωâ†

ω′ â�p â�′
p
ei(�p+�′

p−ω−ω′)t

×

∫ x

0
ei

[
k(�p)+k(�′

p)−k(ω)−k(ω′)
]
zdz + H. c.

]
×

[
κ2

(
L ′

pC ′

p

) 1
2

]1−m

dωdω′d�pd�′

p (21)

where 4WM is due to the operator product â†
ωâ†

ω′ â�p â�′
p
. Here,

two pump photons at frequencies �p and �′
p are annihilated,

creating a signal photon in the mode with frequency ω and
an additional idler photon at frequency ω′. The interaction
strength is proportional to c4/c5/2

2 .
Depending on the desired operation mode, either (19)

or (21) can be used for parametric amplification. The operation
mode is selected by the frequency of the pump tone and
by the respective 3WM and 4WM coupling strengths set by
the nonlinear coefficients c3 and c4. Hence, some amplifier
implementations with a suitable choice of c3 and c4 can be
operated in either 3WM or 4WM mode, depending on the
frequency �p of the supplied pump tone with respect to
the signal mode frequency ω.

4WM, however, also allows for other possible resonant
interactions of the weak photon field and the pump drive
or of the pump drive with itself. These effects are called
XPM and SPM. XPM occurs due to a non-vanishing coef-
ficient c4 for internal and external pumping. With the binary

selection parameter m, the XPM Hamiltonian is given by

Ĥ XPM =

∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0

h̄2√C ′1z f 3
�p,�′

p,ω,ω′

16π2
√

2I 3
c ϕ0

(
36ϕ0C ′

2Icc21z

)m
2

×
c4

c5/2
2

â†
ωâω′ â†

�p
â�′

p
ei(�p−�′

p+ω−ω′)t

×

∫ x

0
e−i

[
k(�p)−k(�′

p)+k(ω)−k(ω′)
]
zdz

×

[
κ2

(
L ′

pC ′

p

) 1
2

]1−m

dωdω′d�pd�′

p . (22)

The input photon field âω is assumed to be very weak,
i.e., in the range of just a few microwave photons. Thus,
SPM of the signal mode plays a subordinate role and can be
neglected. SPM of the strong pump field, however, needs to be
taken into account, as the pump tone is assumed to be strong
enough to drive the system into nonlinearity, at least in the case
of direct pumping. In contrast to direct pumping, a pump tone
propagating in an external, weakly coupled transmission line
does not directly experience the black-box nonlinear elements
and is thus not affected by SPM. The SPM Hamiltonian of the
pump field for the case of direct pumping is then given by

Ĥ SPM =

∫
∞

0

∫
∞

0

∫
∞

0

∫
∞

0

h̄2√C ′1z f 3
�p,�′

p,�̃p,�̃′
p

64π2
√

2I 3
c ϕ0

(
36ϕ0C ′

2Icc21z

)1
2

×
c4

c5/2
2

â†
�p

â�′
p
â†

�̃p
â�̃′

p
ei(�p−�′

p+�̃p−�̃′
p)t

×

∫ x

0
e−i

[
k(�p)−k(�′

p)+k(�̃p)−k(�̃′
p)

]
zdz

×
(
2m

− 1
)
d�pd�′

pd�̃pd�̃′

p . (23)

In order to model losses and noise due to the
imperfect substrate isolation, we add a phenomenological
heat bath [22], [35], representing an environmental photon
field [47]. The distributed bath consists of an infinite number
of harmonic oscillators with Bosonic creation and annihilation
operators b̂n and b̂†

n . The bath field can be described by the
Hamiltonian

Ĥ bath =

∑
n

h̄ωn

∫
∞

0
b̂†

n(ω)b̂n(ω)dω (24)

where we omitted the zero-point energy. Neglecting the
zero-point energy is justified, as it will not play a role in
the commutator relations forming the equations of motion
for the bath modes later on [47]. The heat bath is coupled
to the Bosonic field modes inside the amplifier by means
of phenomenological coupling constants gn . The field-bath
coupling can be described by the Hamiltonian

Ĥ coupling =

∑
n

h̄
∫

∞

0

[
gn(ω)b̂†

n(ω)âω + H. c.
]
dω . (25)

Note that the coupling is bidirectional, such that energy might
be dissipated into the bath, but also thermally excited photons
(i.e., thermal noise) can be brought back from the environment
into the field mode in terms of the fluctuation-dissipation
theorem [34]. Classically, this resembles a resistor, modeling
the substrate losses (out-coupling into the environment), and a
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noise current source, which describes thermal fluctuations (in-
coupling from the environment), given by Johnson–Nyquist
noise [48], [49]. Hence, the bath and bath coupling Hamilto-
nians complete the circuit quantum electrodynamic black-box
model by describing the orange (light-gray) resistor and asso-
ciated current source in Fig. 1.

Overall, we can now distinguish four different scenarios.
In the first one, we have a dominant 3WM interaction with
residual 4WM, operated with an appropriate pump tone, which
is directly supplied to the input of the amplifier. Thus, the
Hamiltonian, in this case, reads as

Ĥ = Ĥ 0 + Ĥ 3WM + Ĥ XPM + Ĥ SPM + Ĥ bath + Ĥ coupling

(26)

with m = 1. The Hamiltonian for an internally pumped device
operating in the 4WM regime, on the other hand, is given by

Ĥ = Ĥ 0 + Ĥ 4WM + Ĥ XPM + Ĥ SPM + Ĥ bath + Ĥ coupling

(27)

with m = 1. In the remaining two cases, i.e., with exter-
nal pumping, SPM does not play a role and is therefore
not included in the total Hamiltonian. For a flux-driven
TWPA with a dominant 3WM nonlinearity, the Hamiltonian
is given by

Ĥ = Ĥ 0 + Ĥ 3WM + Ĥ XPM + Ĥ bath + Ĥ coupling (28)

including residual XPM effects. Similarly, the Hamiltonian for
an externally pumped 4WM TWPA can be written as

Ĥ = Ĥ 0 + Ĥ 4WM + Ĥ XPM + Ĥ bath + Ĥ coupling. (29)

To get rid of the unperturbed evolution, we switch to a
Heisenberg interaction picture, rotating with exp (iĤ 0t/h̄).
Furthermore, we assume that the pump modes in both cases,
3WM and 4WM, are represented by strong monochromatic
discrete mode operators at a single degenerate pump frequency
�p = �′

p = ωp. The continuous mode pump operators âωp can
then be replaced by their discrete counterparts according to√

h̄�p

2C ′vph(�p)
â�p →

√
2π

√
h̄ωp

2C ′lq
âpδ(�p − ωp) (30)

with a quantization length lq [22], [50]. The phase velocity
of the pump wave is equal to vph(ω) = ω/k(ω) for direct
pumping and vph(ω) = ω/k ′(ω) in the case of an external
pump.

In the asymptotic scattering limit [51], [52], the uni-
tary time-evolution operator Û of the system can be
obtained in a first-order perturbation theory, neglecting time
ordering [53], [54]

lim
t0→−∞

t→∞

Û (t0, t) = lim
t0→−∞

t→∞

exp
[
−

i
h̄

∫ t

t0
Ĥ(τ )dτ

]
= exp

[
−

i
h̄

K̂
]

. (31)

Hence, we form a propagator K̂ in a first-order perturbation
theory by integrating the desired system Hamiltonian, which is
one of (26)–(29). Due to the time integral, the time-dependent

complex exponentials in (19) and (21)–(23) yield Dirac delta
distributions, and hence, strict requirements for the signal
and idler frequencies concerning the pump tone. In the case
of 3WM, the pump frequency must be equal to the sum of the
signal and idler frequencies, i.e., ωp = ω + ω′. For 4WM,
on the other hand, the pump frequency must be half as
large, i.e., 2ωp = ω + ω′. These requirements are a direct
consequence of energy conservation and are well known in
terms of the Manley–Rowe relations [55], [56].

Performing the replacement in (30) and integrating (26)
or (28) over time yield a single propagator K̂ for the 3WM
Hamiltonian when making use of the resulting delta dis-
tributions. The single propagator K̂ corresponds to internal
and external pumping, depending on the binary selection
parameter m. The propagator K̂ is given by

K̂ =

∫
∞

0


√

2h̄3vph(ωp)C ′ f 3
ωω,ωp−ω,ωp

8Ic
√

lq

(
81ϕ0

2Icc21z

)m
4

×
c3

c2
2

âpâ†
ωâ†

ωp−ω

∫ x

0
ei1k3WMzdz + H. c.


×

[
κ
(

L ′

pC ′

p

) 1
4

]1−m

dω

+

∫
∞

0

h̄2vph(ωp)
√

1zC ′ f 3
ω,ω,ωp,ωp

4
√

2I 3
c ϕ0lq

(
36ϕ0

2Icc21z

)m
2

×
c4

c5/2
2

â†
pâpâ†

ωâω

∫ x

0
ei1kXPMzdz

×

[
κ2

(
L ′

pC ′

p

) 1
2

]1−m

dω

+
h̄2vph(ωp)

√
1zC ′ f 3

ωp,ωp,ωp,ωp

16
√

2I 3
c ϕ0lq

(
36ϕ0

2Icc21z

)1
2

×
c4

c5/2
2

â†
pâpâ†

pâp

∫ x

0
ei1kSPMzdz

(
2m

− 1
)

+

∫
∞

−∞

∫
∞

0

∑
n

h̄ωn b̂†
n(ω)b̂n(ω)dωdt

+

∫
∞

−∞

∫
∞

0

∑
n

h̄
[
gn(ω)b̂†

n(ω)âωe−iωt
+ H. c.

]
dωdt .

(32)

The wavevector phase differences 1k3WM, 1kXPM, and 1kSPM
in (32) are given by

1k3WM = k̃(ωp) − k(ω) − k(ωp − ω) (33)

1kXPM = k̃(ωp) − k̃(ωp) + k(ω) − k(ω) = 0 (34)

1kSPM = k̃(ωp) − k̃(ωp) + k̃(ωp) − k̃(ωp) = 0 (35)

where

k̃(ωp) =

{
k(ωp), for direct pumping
k ′(ωp), for flux-driven TWPAs.

(36)

Hence, k̃(ωp) represents the dispersion relation for the non-
linear transmission line in the case of direct pumping and the
dispersion relation of the external pump line for flux-driven
TWPAs.
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Exploiting the space–time translation invariance discussed
before, we replace the total amplifier length x with a reference
travel time tr, such that x = (1z/LJ,0C ′)1/2tr. Hence, we can
translate the remaining linear spatial wavevector phase differ-
ence to a linear temporal phase mismatch 1�L by

1k3WMx =
[
k̃(ωp) − k(ω) − k(ωp − ω)

]
x

=

[
ωp

√
3̃(ωp) − ω

√
3(ω)

−
(
ωp − ω

)√
3(ωp − ω)

]
tr

= 1�Ltr (37)

where 3̃(ωp) is equal to 3(ωp) from (10) in the case of direct
pumping and 3̃(ωp) = 3p from (16) in the case of a flux-
driven TWPA.

Note that the mode-dependent propagation time can always
be identified with the reference time tr by t → (3(ω))1/2tr.
Hence, we can derive a propagator K̂ that only depends on
the total reference propagation time tr.

A single propagator K̂ for the 4WM case is obtained by
replacing the continuous pump operators according to (30) and
then integrating either (27) or (29) over time. The resulting
4WM propagator K̂ also depends on the binary selection
parameter m and is given by

K̂ =

∫
∞

0

[
h̄2vph(ωp)

√
1zC ′ f 3

ω,2ωp−ω,ωp,ωp

8
√

2I 3
c ϕ0lq

(
36ϕ0

2Icc21z

)m
2

×
c4

c5/2
2

âpâpâ†
ωâ†

ω′

∫ x

0
ei1kLzdz + H. c.

]

×

[
κ2

(
L ′

pC ′

p

) 1
2

]1−m

dω

+

∫
∞

0

h̄2vph(ωp)
√

1zC ′ f 3
ω,ω,ωp,ωp

4
√

2I 3
c ϕ0lq

(
36ϕ0

2Icc21z

)m
2

×
c4

c5/2
2

â†
pâpâ†

ωâω

∫ x

0
ei1kXPMzdz

×

[
κ2

(
L ′

pC ′

p

) 1
2

]1−m

dω

+
h̄2vph(ωp)

√
1zC ′ f 3

ωp,ωp,ωp,ωp

16
√

2I 3
c ϕ0lq

(
36ϕ0

2Icc21z

)1
2

×
c4

c5/2
2

â†
pâpâ†

pâp

∫ x

0
ei1kSPMzdz

(
2m

− 1
)

+

∫
∞

−∞

∫
∞

0

∑
n

h̄ωn b̂†
n(ω)b̂n(ω)dωdt

+

∫
∞

−∞

∫
∞

0

∑
n

h̄
[
gn(ω)b̂†

n(ω)âωe−iωt
+ H.c.

]
dωdt .

(38)

Here, 1kXPM = 0, 1kSPM = 0, and the remaining wavevector
phase difference 1k4WM in (38) is given by

1k4WM = 2k̃(ωp) − k(ω) − k(2ωp − ω) . (39)

We can again exploit the space–time translation sym-
metry and replace the total length of the amplifier x by

(1z/LJ,0C ′)1/2tr. Hence, the temporal linear phase mismatch
1�L in the 4WM case is given by

1k4WMx =
[
2k̃(ωp) − k(ω) − k(2ωp − ω)

]
x

=

[
2ωp

√
3̃(ωp) − ω

√
3(ω)

−
(
2ωp − ω

)√
3(2ωp − ω)

]
tr = 1�Ltr .

(40)

The equation of motion for the mode annihilation opera-
tor âω, with respect to the reference propagation time tr, can
now be calculated from

∂ âω

∂tr
=

i
h̄

[
dK̂
dtr

, âω

]
(41)

similar to [22]. According to [22], [50], and [52], we can
obtain analytic solutions by assuming a strong, monochro-
matic, undepleted, classical pump, which is described by a
classical amplitude instead of an operator. With the term
undepleted, we mean that the interaction between the indi-
vidual modes does not affect the strong classical amplitude.
As already stated in [22], this is a bold assumption since
it violates energy conservation. As a consequence of this
approximation, the energy added to the signal and idler modes
comes out of nowhere. However, this approximation seems
justified for the case of a relatively small total amplifier
length such that the cumulative signal and idler energies are
still orders of magnitude smaller than the pump tone. The
approximation is given by [22]√

h̄
2C ′ωplq

âp → −
i
2

Ap (42)

where Ap is a classical mode amplitude. Since the pump is
not depleted while traveling through the amplifier, it is only
affected by SPM for internal pumping and travels completely
unperturbed in the external flux line. This decouples the
equation of motion from the remaining system, which means it
can be easily solved analytically. Hence, the pump amplitude
is given by

Ap = Ap,0 eiθp
√

3(ωp)tr (43)

with

θp = −
I 2
p

√
1z f 3

ωp,ωp,ωp,ωp

16ωp
√

2I 3
c ϕ0

·
c4

c5/2
2

(
36ϕ0

2Icc21z

)1
2

. (44)

Here, Ip is the initial pump current at the input of the amplifier,
and Ap,0 is the initial pump amplitude. Both are related
through the characteristic impedance of the transmission line
the pump wave is propagating in. Thus, θp(ω) = 0 for flux-
driven TWPAs, since there is no SPM, and it holds that
Ap = Ap,0.

The equations of motion for the remaining signal and
idler annihilation and creation operators, âω and â†

ω′ , can
be found by evaluating (41) with the respective propagators
from (32) or (38), with the corresponding linear phase mis-
match from (37) or (40), respectively. In the resulting set
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of equations, we can summarize the effect of XPM in terms
of a frequency-dependent coefficient θ(ω), given by

θ(ω) = −
I 2
p ω3(ω)32(ωp)

√
1z

8
√

2I 3
c ϕ0

·
c4

c5/2
2

(
36ϕ0

2Icc21z

)m
2

×

[
κ2

(
L ′

pC ′

p

) 1
2

]1−m
[

ϕ0C ′
p

2Icc21zL ′
p

] m−1
2

. (45)

Hence, we find the total phase mismatch 1�, which is jointly
due to chromatic dispersion, as well as self- and XPM, to be
equal to

1� = 1�L − θ(ω)
√

3(ω) − θ(ωp − ω)

√
3(ωp − ω)

+ θp

√
3(ωp) (46)

in the 3WM operation regime, and

1� = 1�L − θ(ω)
√

3(ω) − θ(2ωp − ω)

√
3(2ωp − ω)

+ 2θp

√
3(ωp) (47)

for 4WM. Note that θp = 0 for flux-driven TWPAs.
Using the total phase-mismatch 1�, we introduce another

co-rotating frame similar to [22], given by

Âω = âω exp
{
−i

[
θ(ω)

√
3(ω) +

1�

2

]
tr

}
. (48)

Within this co-rotating frame, the system of coupled first-order
equations of motion for the signal mode annihilation operator
and the idler mode creation operator assumes the following
simple form:[

∂ Âω

∂tr
∂ Â†

ω′

∂tr

]
=

[
−

γ (ω)

2 −
i1�

2 χ ′
[
3(ω)3(ω′)

] 1
4

χ ′∗
[
3(ω)3(ω′)

] 1
4 −

γ (ω′)

2 +
i1�

2

][
Âω

Â†
ω′

]
+

[
f̂ (ω)

f̂ †(ω′)

]
(49)

with ω′
= ωp − ω for 3WM and ω′

= 2ωp − ω for 4WM.
The coefficient χ ′ is either the 3WM or 4WM interaction

strength. This coefficient is ultimately responsible for the
parametric gain of the TWPA. For 3WM, it can be evaluated to

χ ′
=

Ip3(ωp)

√
ω

(
ωp − ω

)
3(ω)3(ωp − ω)

8Ic

c3

c2
2

×3m
(

ϕ0

2Icc21z

) m−1
2

[
κ
(

L ′

pC ′

p

) 1
4

]1−m
[

C ′
p

L ′
p

] m−1
4

(50)

with the binary selection parameter m ∈ {0, 1}. For 4WM, the
interaction strength is given by

χ ′
=

iI 2
p 32(ωp)

√
1zω

(
2ωp − ω

)
3(ω)3(2ωp − ω)

16
√

2I 3
c ϕ0

c4

c5/2
2

×

(
36ϕ0

2Icc21z

) m
2
[
κ2

(
L ′

pC ′

p

) 1
2

]1−m
[

ϕ0C ′
p

2Icc21zL ′
p

] m−1
2

.

(51)

The damping factors γ (ω) and the noise operators f̂ (ω)

are similar to [17] and [22]. They arise from the formal

Fig. 3. Functional blocks of the black-box quantum model for supercon-
ducting TWPAs.

integration of the equation of motion of the bath operators b̂n ,
assuming a memoryless Markovian system with closely spaced
bath modes over a continuous frequency spectrum [47]
and [57]. It shall be noted here that distributed losses in
quantum models for TWPAs have also been introduced by
means of a continuous input-output theory in [58] and [59].
The damping rates γ (ω) are given by

γ (ω) = 2πD(ω)g(ω)2
√

3(ω) (52)

where D(ω) is the 1-D density of states and g(ω) is the
continuous frequency version of the bath coupling constants
gn from (25). The fluctuation operators f̂ (ω) from (49) are
given by

f̂ (ω) = −i
∑

n

gn(ω)
√

3(ω)b̂n,0(ω)

× e−i[(ωn−ω)
√

3(ωn)+θ(ω)
√

3(ω)+1�/2]tr (53)

with the operator b̂n,0 describing the initial bath occupation.
The phenomenological loss rates from (52) can be associated
with the loss tangent [36] of the substrate material according
to [22] and [35]

γ (ω) 7→ ω
√

3(ω) tan δ . (54)

Overall, (49) represents the Heisenberg equation of motion
for any nonlinear superconducting transmission line with
Josephson nonlinear elements, accounting for nonlinearities up
to third order. The generic Josephson nonlinear element is rep-
resented through the coefficients c2, c3, and c4. Our black-box
quantum simulation framework for superconducting TWPAs
is sketched in Fig. 3. Equation (49), i.e., the Heisenberg
equations of motion are the core of the framework, which are
independent of the actual realization of the nonlinear elements.
The coefficients c2, c3, and c4 are obtained independently of
the system dynamics using a Taylor expansion of the nonlinear
current–phase relation according to either (3) or (5). The
nonlinear parameters are fed from the green device description
block in Fig. 3 into the blue block, representing (49). Addition-
ally, the parameters describing the scenario (orange block) are
also supplied to the system. This device-independent nonlinear
black-box quantum model is the core achievement of this
article.

Since the calculation of the system dynamics is completely
decoupled from the physical realization of the Josephson
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nonlinear elements, the presented model can prove useful in
designing and optimizing different TWPA architectures with
respect to gain, added noise, and quantum effects.

V. RESULTS

Analytic solutions to the Heisenberg equations of motion
have been found in [22] for the 4WM case, using a single
Josephson junction for the nonlinear element. Important quan-
tities, such as, e.g., the gain and the equivalent added quantum
noise of the amplifier, can then be obtained from the analytic
solution of the signal annihilation operator in a post-processing
step (see Fig. 3). To calculate the gain and added noise of a
TWPA with a black-box nonlinear element, we are interested
in the number of energy quanta in the signal mode within a
narrow signal bandwidth Bs. The signal photon number after a
reference propagation time of tr at the output of the amplifier
is then given by

Ns =

∫ ω+
Bs
2

ω−
Bs
2

⟨ Â†
ω Âω̃⟩dω̃ . (55)

Inserting the analytic solution from [22] yields

Ns = n̄(ω) +
[
Ns,0 − n̄(ω)

]
ζ1(ω, tr)ζ ∗

1 (ω, tr)e−
γ (ω)+γ (ω′)

2 tr

+ Csi,0ζ1(ω, tr)ζ ∗

2 (ω, tr)e−
γ (ω)+γ (ω′)

2 tr

+
[
Ni,0 + n̄(ω) + 1

]
ζ2(ω, tr)ζ ∗

2 (ω, tr)e−
γ (ω)+γ (ω′)

2 tr

+ C∗

si,0ζ2(ω, tr)ζ ∗

1 (ω, tr)e−
γ (ω)+γ (ω′)

2 tr

+
[
n̄(ω) + n̄(ω′) + 1

] F̄(ω, tr)
R̄(ω)

e−
γ (ω)+γ (ω′)

2 tr (56)

where Ns,0 is the initial signal photon number in the weak
photon field at the input of the amplifier, Ni,0 is the initial
idler photon number at frequency ω′, and Csi,0 is the initial
signal-idler correlation. Similar to [22], we assume that the
bath is thermally populated with an average occupation of
n̄(ω) at frequency ω according to Bose–Einstein statistics. The
independent part F̄(ω, tr) evolves according to

F̄(ω, t)

= −|g|
2
|ρ|

2γ (ω′)2ζ1(ω, t)ζ ∗

1 (ω, t)

+ |g|
2
|ρ|

2[γ (ω)γ (ω′) + γ (ω′)2][ζ2(ω, t)ζ ∗

2 (ω, t)
]

− γ (ω)γ (ω′)
∣∣gρζ1(ω, t) +

[
2gη + γ (ω′)

]
ζ2(ω, t)

∣∣2

+ |g|
2
|ρ|

2[γ (ω)γ (ω′) + γ (ω′)2]e γ (ω)+γ (ω′)

2 t (57)

with the time-independent denominator R̄(ω), given by

R̄(ω) = γ (ω)γ (ω′)
[
4|g|

2
|η|

2
+ γ (ω)γ (ω′)

]
− |g|

2
|ρ|

2[γ (ω) + γ (ω′)
]2

. (58)

The time-evolution of Ns is governed by the functions ζ1(ω, tr)
and ζ2(ω, tr), which are the inherent solutions to (49). They
are given by

ζ1(ω, t) = cosh(gt) − η(ω)sinh(gt) (59)
ζ2(ω, t) = ρ(ω)sinh(gt) (60)

TABLE I
PARAMETERS FOR A FLUX-DRIVEN SNAIL-BASED TWPA

with the frequency-dependent coefficients

η(ω) =
γ (ω) − γ (ω′) + 2i1�

4g
(61)

ρ(ω) = −
χ ′

[
3(ω)3(ω′)

] 1
4

g
. (62)

The exponential gain rate g in (59)–(62), is determined as

g =

√(
γ (ω) − γ (ω′) + 2i1�

4

)2

+ |χ ′|2
√

3(ω)3(ω′) .

(63)

Equation (56) describes the temporal evolution of the average
energy dynamics in the TWPA. It can be decomposed into
parametric gain and noise that is added by the amplifier.

A. Parametric Gain

We can identify an expression for the parametric gain of
a TWPA from the term in (56), which is multiplied with the
initial signal photon number Ns,0 at the input of the amplifier.
Thus, an analytic expression for the gain G of the TWPA,
after a reference propagation time tr at the amplifier output,
is given by

G = ζ1(ω, tr)ζ ∗

1 (ω, tr)e−
γ (ω)+γ (ω′)

2 tr . (64)

The gain depends on the black-box nonlinear coeffi-
cients c2, c3, and c4 and can be calculated by (64)
independently for 3WM and 4WM operation, as well as
for direct pumping and flux-driven TWPAs. For example,
we evaluate the parametric gain for two devices with different
operation modes and pumping schemes, both using (64). The
first device is a single junction TWPA from [22] and [60],
where experimental data for the gain and added noise is
readily available. As a second device, we propose a flux-driven
SNAIL-based TWPA with the parameters in Table I. Note that
in both cases, no hidden fitting parameters are used besides
the values given in [22] and [60] and Table I, respectively.

The gain spectrum of the first device with directly driven
single Josephson junctions is given by the dashed orange
line in Fig. 4(a). The maximum gain of around 10 dB is
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Fig. 4. Gain and added noise of two different devices. (a) Directly pumped TWPA featuring a single Josephson junction as a nonlinear element. (b) Flux-driven
SNAIL-based TWPA with parameters as given in Table I. The solid blue curves depict the added noise of the amplifiers. The dashed orange lines represent
the gain. The minimum added noise is plotted by the dark gray lines, where the ivory-shaded backgrounds mark the forbidden areas for the added noise. The
insets show a zoom-in of the total input noise in the useable frequency ranges between 5 and 7 and 4 and 8 GHz, respectively.

around 6 GHz. Note, however, that due to the 4WM operation,
the signal frequency must be sufficiently far apart from the
pump tone at 5.97 GHz to be able to separate the signal and
pump modes at the output of the amplifier. The measured
gain spectrum from [60] is plotted in light-gray color in the
background for comparison. The experimental results closely
follow the predicted gain from (64), which was obtained with
the parameters given in [22] and [60], without any additional
data fitting. The dashed orange curve in Fig. 4(b) shows the
gain of the proposed flux-driven SNAIL-based TWPA obtained
by evaluating (64) with the parameters in Table I. Compared
to the directly pumped single junction TWPA, the gain in dB
is almost twice as large. The SNAIL-based TWPA also has a
substantially increased bandwidth.

B. Added Noise

The added noise in the system is given by the remaining
terms in (56), which cannot be attributed to the parametric
gain. The added noise is then calculated based on the linear
amplifier model introduced in [12] and [22]. There, the noise
at the output of a linear amplifier, i.e., Ns = G · Ns,0,
can be decomposed into contributions of the amplified input
fluctuations and the noise added by the internal degrees of
freedom of the amplifier. The added noise of the amplifier
is then quantified as the equivalent number of energy quanta
added to the input of the amplifier if an ideal noiseless
amplifier with gain G would be used instead [12]. This
approach has been routinely applied to study added quantum
noise in TWPAs [58], [61], [62]. The symmetric variance

|1 Âω,tr |
2

=

∫ ω+
Bs
2

ω−
Bs
2

〈
Âω,tr Â†

ω̃,tr
+ Â†

ω,tr Âω̃,tr

〉
dω̃ = Ns +

1
2
(65)

provides a measure for the mean-square fluctuations
|1 Âω,tr |

2 of the weak photon field within the narrow signal
bandwidth Bs. The simple linear amplifier model from [12]

then predicts the output fluctuations |1 Âω,tr |
2 to be the sum

of the amplified input fluctuations |1 Âω,0|
2 and the noise

|1F̂ |
2
op due to the amplifier’s internal degrees of freedom.

The equivalent number of added input photons A is thus given
by the intrinsic fluctuations |1F̂ |

2
op divided by the parametric

gain G of the amplifier. Finally, we can express the added noise
of any TWPA with a nonlinearity up to third order, including
noise due to substrate losses by

A =
|1 Âω,tr |

2

G
− |1 Âω,0|

2
=

2Ns + 1
2G

− Ns,0 −
1
2

. (66)

Inserting (56) and (64) into (66) yields

A =

[
n̄(ω) +

1
2

][
1

ζ1(ω, tr)ζ ∗

1 (ω, tr)e−
γ (ω)+γ (ω′)

2 tr
− 1

]

+ Csi,0
ζ ∗

2 (ω, tr)
ζ ∗

1 (ω, tr)
+ C∗

si,0
ζ2(ω, tr)
ζ1(ω, tr)

+
[
Ni,0 + n̄(ω) + 1

]ζ2(ω, tr)ζ ∗

2 (ω, tr)
ζ1(ω, tr)ζ ∗

1 (ω, tr)

+
[
n̄(ω) + n̄(ω′) + 1

] F̄(ω, tr)
R̄(ω)ζ1(ω, tr)ζ ∗

1 (ω, tr)
. (67)

The lower bound for the added input noise A for phase-
insensitive linear amplifiers with a gain larger than or equal
to unity

A ≥
1
2

∣∣∣∣1 −
1
G

∣∣∣∣ , for G ≥ 1 (68)

was derived in [12]. In the limit of G → ∞, (68) reduces to
the well-known half-photon standard quantum limit (SQL).

Similar to the treatment of the amplifier gain in
Section V-A, we want to demonstrate the calculation of the
added noise for the two exemplary TWPAs introduced above.
Fig. 4(a) shows the added noise of the directly pumped
single-junction TWPA from [22] and [60] (blue curve). The
dark-gray curve and the shaded background area represent the
lower bound on the added noise according to (68). The inset
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of Fig. 4(a) shows a zoom-in into the usable frequency range
marked by the dashed green box. The inset shows the total
input noise, also accounting for the half-photon uncertainty
of the input signal mode. It can be seen that the device
operates close to the SQL at around 1.3 equivalent total
input noise photons, which is in excellent agreement with
experimental observations [60], also without any additional
fitting parameters. The added noise according to (67) for the
flux-driven SNAIL-based TWPA with the values proposed in
Table I is given in Fig. 4(b), together with the lower bound
in (68). The inset shows that the proposed SNAIL-based
TWPA also outperforms the single-junction TWPA in terms
of total equivalent input noise, which is evaluated to around
1.1 photons in theory. We are looking forward to experimental
confirmation of the predicted gain and added noise of our
proposed design.

C. Optimization of Nonlinear Parameters

Since the proposed black-box quantum model in (49) is
completely independent of the physical realization of the
Josephson nonlinear elements, it is perfectly suitable for the
parameter optimization of given nonlinear junction topolo-
gies. Coupled with a powerful system identification toolbox,
the model could also be used to propose new, more effi-
cient, higher gain, larger bandwidth, and lower noise designs.
We want to discuss how to obtain optimized parameters
for three different types of nonlinear junction topologies.
For this, we discuss RF-SQUIDs, dc-SQUIDs, and SNAILs
to identify their optimum operation regimes. The respective
junction topologies can be found in Fig. 2(b)–(d). We refrain
from discussing single Josephson junction nonlinearities since
they do not possess any degree of freedom besides choosing
a critical current. Similarly, we do not discuss the recently
proposed gradiometric SNAIL [28] here, as it possesses an
additional degree of freedom for the independent upper and
lower loops.

The loop-like geometries of the RF-SQUID, the dc-SQUID,
and the SNAIL allow for an additional constant flux thread-
ing, introducing a constant bias phase ϕB, as discussed in
Section III. Something similar could also be achieved by
impressing a constant current i0, using a bias-tee, as mentioned
before [38]. We now use this constant flux threading as a
degree of freedom for choosing an optimal parameter set c2,
c3, and c4 for the nonlinear elements. Note that a SNAIL has
an additional degree of freedom, given by the asymmetry ratio
α. In principle, the RF-SQUID also has an extra degree of
freedom, provided by the geometric inductance Lg. However,
it is hard to tune the geometric inductance while keeping
the impedance of the transmission line [36]. Also, Lg only
influences the screening parameter βL of the RF-SQUID,
which is typically neglected for dc-SQUIDs and SNAILs,
as the Josephson inductance is usually much larger than the
geometric inductance.

1) RF-SQUID: The current-phase relation of the
RF-SQUID is given by [26]

i(ϕ) =
Ic

βL
ϕ + Ic

[
sin

(
ϕJ,0 + ϕ

)
− sin

(
ϕJ,0

)]
(69)

with the screening parameter βL = Lg Ic/ϕ0 and the induced
phase ϕJ,0, given by the implicit equation

ϕJ,0 + βL sin
(
ϕJ,0

)
= ϕext (70)

where ϕext is the total external flux threading, according to
Section III. The minimum potential energy is attained for
i(ϕ∗) = 0, and thus ϕ∗

= 0. Hence, according to equa-
tions (6)-(8), the coefficients c2, c3, and c4 are expressed by

c2 =
1
2

[
1
βL

+cos
(
ϕJ,0(ϕB)

)]
(71)

c3 =


−

sin
(
ϕJ,0(ϕB)

)
6

, for m = 1
1
2

d
dϕext

cos
(
ϕJ,0(ϕext)

)∣∣∣∣
ϕext=ϕB

, for m = 0
(72)

c4 =


−

cos
(
ϕJ,0(ϕB)

)
24

, for m = 1

1
4

d2

dϕ2
ext

cos
(
ϕJ,0(ϕext)

)∣∣∣∣
ϕext=ϕB

, for m = 0
(73)

given a solution for ϕJ,0 from the implicit equation in (70) [42].
As always, m = 1 refers to the case of direct pumping,
whereas m = 0 implies flux drive.

2) dc-SQUID: The current–phase relation of the dc-
SQUID, on the other hand, is given by [27]

i(ϕ) = 2Ic

∣∣∣cos
(ϕext

2

)∣∣∣ sin(ϕ) (74)

with two identical junctions with critical current Ic. Also,
here, it trivially holds that ϕ∗

= 0. The coefficients for the
dc-SQUID are then given by

c2 =

∣∣∣cos
(ϕB

2

)∣∣∣ (75)

c3 =


0, for m = 1

−
sin(ϕB)

4
∣∣cos

(
ϕB
2

)∣∣ , for m = 0
(76)

c4 =


−

∣∣cos
(

ϕB
2

)∣∣
12

, for m = 1

−
cos2(ϕB)

8
∣∣cos

(
ϕB
2

)∣∣ , for m = 0
(77)

where we have neglected the geometric inductance in favor of
the large inductance of the Josephson junctions [42].

3) SNAIL: The current–phase relation of a SNAIL with
asymmetry ratio α ∈ [0, 1] is given by [31] and [39]

i(ϕ) = α Ic sin(ϕ) + Ic sin
(

ϕ − ϕext

n

)
(78)

where n denotes the number of large junctions. Here, the
calculation of the minimum potential energy flux ϕ∗ from
i(ϕ∗) = 0 is a more intricate procedure [42]. It holds that

i(ϕ∗) = α Ic sin
(
ϕ∗

)
+ Ic sin

(
ϕ∗

− ϕext

n

)
= 0 (79)

where an analytic solution for ϕ∗ is not readily apparent.
Hence, by introducing a complex variable z = exp (iϕ∗/n),
we can equivalently solve for the zeros of the polynomial

z2n
+

1
α

e−i ϕext
n zn+1

−
1
α

ei ϕext
n zn−1

− 1 = 0 (80)
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Fig. 5. Nonlinear coefficients c3 and c4 for an RF-SQUID (first column), a dc-SQUID (second column), and a SNAIL (third column). The upper row
represents the nonlinear coefficients obtained for direct pumping, while the lower row represents the results for flux-driven nonlinear elements. The solid blue
lines indicate the second-order nonlinear coefficient c3, while the dashed orange lines represent the third-order Kerr-like coefficient c4, respectively.

with n ∈ N and |z| = 1, instead. The solution for ϕ∗ is then
recovered via ϕ∗

= −in log(z). For n = 3 large junctions,
an analytic solution for ϕ∗ can be obtained by solving a
sixth-order polynomial equation for z. However, due to the
double-well structure of the SNAIL, the minimum potential
energy phase ϕ∗ is not unique for large biases ϕB and large
asymmetry ratios.

The coefficients c2, c3, and c4 for the SNAIL are then given
by

c2 =
1
2

[
α cos

(
ϕ∗

)
+

1
n

cos
(

ϕ∗
− ϕB

n

)]
(81)

c3 =



−
1
6

[
α cos

(
ϕ∗

)
+

1
n2 cos

(
ϕ∗

− ϕB

n

)]
, for m = 1

1
2

d
dϕext

[
α cos

(
ϕ∗

)
+

1
n2 cos

(
ϕ∗

− ϕext

n

)]∣∣∣∣
ϕext=ϕB

, for m = 0

(82)

c4 =



−
1

24

[
α cos

(
ϕ∗

)
+

1
n3 cos

(
ϕ∗

− ϕB

n

)]
, for m = 1

1
4

d2

dϕ2
ext

[
α cos

(
ϕ∗

)
+

1
n2 cos

(
ϕ∗

− ϕext

n

)]∣∣∣∣
ϕext=ϕB

, for m = 0.

(83)

The second- and third-order nonlinear coefficients c3
and c4 for the RF-SQUID, the dc-SQUID, and the SNAIL
are given in Fig. 5 for the case of direct pumping and
external flux drive. It is apparent that a directly pumped
dc-SQUID can only be operated in 4WM mode since the
second-order nonlinear coefficient c3 is uniformly zero for
all bias points. The most significant nonlinear coefficients c3
and c4 are obtained for the RF-SQUID for both direct pumping
and flux drive. However, it should be noted that the inverse
linear inductance, given by the coefficient c2, also plays an

Fig. 6. Inverse linear inductance coefficient c2 for an RF-SQUID (dotted,
dark blue), a dc-SQUID (dashed–dotted, blue), a SNAIL with an asymmetry
ratio of α = 0.29 (dashed, orange), and a SNAIL with an asymmetry ratio of
α = 0.12 (solid, green).

important role. The larger the nonlinear inductance, i.e., the
smaller the coefficient c2, the larger the 3WM and 4WM
gains according to (50) and (51). We depict the inverse linear
inductance for the RF-SQUID, the dc-SQUID, and the SNAIL
in Fig. 6. The inverse linear inductance is the same for direct
pumping and flux-driven TWPAs. Since we find different
optimal asymmetry ratios α for the SNAIL for both pumping
scenarios, we depict c2 for the directly pumped SNAIL with
α = 0.29 and for the flux-driven SNAIL TWPA with α =

0.12. The RF-SQUID and the dc-SQUID do not have any
additional degrees of freedom. One can see in Fig. 6 that the
flux-driven SNAIL-based TWPA (green) has by far the most
significant inductance. Note here that a naïve optimization only
accounting for the magnitudes of the second- and third-order
nonlinear coefficients c3 and c4 favors an inferior design
since the exact functional dependence of the inverse linear
inductance parameter c2, revealed by our black-box quantum
model, must not be ignored.
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VI. CONCLUSION

We have introduced a black-box quantum model for TWPAs
based on nonlinear coefficients up to third order. The quantum
model is based on a Hamiltonian that features all necessary
effects, such as linear field propagation, 3WM, 4WM, SPM,
and XPM, as well as losses and noise due to imperfect sub-
strate isolation. The black-box model can accurately describe
the gain and added quantum fluctuations for different nonlin-
ear junction topologies. Using standard approximations, such
as the rotating wave approximation, and assuming a strong
undepleted classical pump, we found analytic solutions for the
Heisenberg equations of motion for flux-driven and directly
pumped TWPAs operating in 3WM and 4WM regimes. How-
ever, these approximations break down if the signal power
becomes large, i.e., when it is close to the pump power.
Hence, to describe further performance metrics, such as power
handling capabilities in terms of gain compression, advanced
numerical calculations beyond the analytical model presented
here are necessary and shall be discussed in future work. For
a single-junction 4WM TWPA, we were able to demonstrate
excellent agreement of the results for the gain and added noise
predicted by our analytical model with experimental results
from the literature. The structure of the system Hamiltonian
and insights from the analytic solutions were then used to
find optimal working points for devices with different junction
topologies, such as RF-SQUIDs, dc-SQUIDs, and SNAILs.
We are confident that a systematic device synthesis approach
using the black-box quantum model presented in this article
will lead to new and better devices with optimized nonlinear
elements for higher gain, larger bandwidth, and lower noise
TWPAs.
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