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Abstract— Current quantum computers (QCs) belong to the
noisy intermediate-scale quantum (NISQ) class, characterized
by noisy qubits, limited qubit capabilities, and limited cir-
cuit depth. These limitations have led to the development of
hybrid quantum-classical algorithms that split the computational
cost between classical and quantum hardware. Among the
hybrid algorithms, the variational quantum eigensolver (VQE)
is mentioned. The VQE is a variational quantum algorithm
designed to estimate the eigenvalues and eigenvectors of a system
on universal-gate quantum architectures. A canonical problem
in electromagnetics is the computation of eigenmodes within
waveguides. Following the finite difference method, the wave
equation can be recast as an eigenvalue problem. This work
exploits the quantum superposition and entanglement in quantum
computing to solve the square waveguide mode problem. This
algorithm is expected to demonstrate exponentially efficiency over
classical computational techniques as the qubit count increases.
The simulations were performed on IBM’s three-qubit quantum
simulator, Qasm IBM Simulator. A shot-based simulation was
performed considering computationally based measurements of
the quantum hardware. The results of the probabilistic read-
out, reported in terms of 2-D eigenmode field distributions, are
close to ideal values with a few number of qubits, confirming
the possibility to exploit the quantum advantage to formulate
innovative eigensolvers.

Index Terms— Hamiltonian simulation, Helmholtz equation,
quantum computing, variational quantum eigensolver (VQE),
waveguide modes.

I. INTRODUCTION

A QUANTUM computer (QC) is a calculator that exploits
quantum principles such as superposition, entanglement,
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and tun neling to perform operations on data [1], [2]. QCs
were proposed by Richard Feynman in 1981 specifically for
modeling quantum systems, whose complexity is too great to
be adequately described using classical computation [3]. Since
their introduction, QCs have undergone several decades of
theoretical development in tandem with a significant increase
in experimental capability to realize qubits and implement
quantum circuits [4]. QCs have the goal of offering time
complexity and energy efficiency advantages over classical
computers [5]. Achieving practical quantum advantage in
quantum simulations has proved possible [6] but it comes
at the cost of solving experimental challenges. Among these,
it is important to consider the issue of quantum decoherence
and noise in quantum computing architectures, for which
quantum error corrections methodologies have been developed
and improved over the years.

The scientific community has been seeking to identify
problems where quantum computation solutions possess the
greatest advantage [7], [8]. Currently there are several
large technology companies working on quantum computing,
including superconducting (IBM, Google, Rigetti Computing),
trapped ion qubit (IonQ, Honeywell), quantum annealing
(D-Wave), spin qubits (Intel), cold atoms (Atom Computing),
etc., [9], [10].

We are currently in the era of noisy intermediate-scale
quantum (NISQ) machines [11], [12]. This era is defined by
the current limitations of quantum hardware such as quantum
circuit depth, number of qubits, and noise, which results
in a significant reduction of accuracy with the number of
operations completed [13]. Due to these limitations, hybrid
classical-quantum computing–a strategy that uses joint classi-
cal computation and existing quantum hardware–must be used
to solve prescribed algorithms [14]. This class of algorithms
is known as VQA [15]. The VQA belongs to set of hybrid
classical-quantum algorithms for quantum simulations that
minimize cost functions to find the ground state and the excited
states of a physical system using variational quantum circuits
[12], [16].

According to the Bharadwaj-Sreenivasan classification [17],
reproduced here in Fig. 1, eigenvalue solvers constitute
an important part of quantum algorithms adopted in many
branches of engineering.

This current work discusses application of the variational
quantum eigensolver (VQE) to solve the waveguide mode
problem described by the Helmholtz equation. It is an
extension of the work in [18]. Thus far, problems in the fields
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of chemistry and fluid dynamics, as well as thermodynamics
and power electronics, have exploited the use of quantum
algorithms. The same trend is developing in electromagnetic
engineering, where quantum computing has been used to
design antenna arrays [19] and metasurfaces [20]. The accu-
rate computation of electric and magnetic eigenmodes of
waveguides with arbitrary cross sections [21] is a challenging
task that requires sophisticated numerical methods to improve
the associated computational complexity [22]. These modes
are determined by the geometry, dimensions, and material
composition of the waveguide. An advantage is theoretically
obtainable by mapping the canonical numerical solution of
the wave equation onto a simple numerical scheme that can
be implemented on next-generation quantum computing archi-
tectures [23]. For example, using the finite difference method,
the Helmholtz equation modeling transverse electric (TE) and
transverse magnetic (TM) eigenmodes can be discretized and
broken up into algebraic equations which can be expressed as
a system of linear equations [24].

The seminal paper Harrow et al. [25] demonstrated that
solving sparse systems of linear equations represented by
matrices with small condition numbers by the HHL algorithm
can be accomplished exponentially faster on quantum devices
than their classical counterparts [26]. Unfortunately, current
and near term future hardware is incapable of supplying
enough qubits to fully execute this algorithm. To account for
this current deficiency, Ewe et al. [15] have proposed using
the VQE algorithm to model TE and TM wave propagation
on current and near term computational hardware. VQE is
a type of VQA that minimizes a given cost function to
find the eigenvalues and eigenmodes of a physical system
described by an eigenvalue equation. To achieve this, the
Authors utilize the Hamiltonian decomposition proposed in
[27], which expresses the Hamiltonian of the system as
a linear combination of unitary operators, namely I , the
identity matrix, X , the X -Pauli rotation operator, and Pn ,
the cyclic shift operator implemented using the multi-control
Toffoli gate [28], [29], [30]. By leveraging this mathematical
formulation, the Authors demonstrate that VQE offers an
effective solution for solving the Helmholtz’s equation for
waveguide modes. Herein, we adopt the formulation of VQE
proposed by Peruzzo et al. [31], employing the canonical
Pauli decomposition of the Hamiltonian, with a change of
basis to simulate measurements in computational basis, thus
mimicking the actual readout procedure on real quantum
hardware. Therefore, the objective of the paper is to exploit
the quantum principles of superposition and entanglement in
quantum computing to solve the waveguide mode problem.
In particular, it allows us to solve exponentially numerical
domains as the qubit count increases. This is performed by
a shot [28] based-quantum simulation in computational basis
that emulate the behavior and hardware limitations of real
QCs [28].

Specifically, our focus lies on a three-qubit simulation of
waveguide modes by VQE algorithm. This approach allows us
to replicate the probabilistic nature of current NISQ computers,
making it feasible for implementation on existing quantum
hardware.

II. QUANTUM FORMULATION

A. Waveguide Modes

Waveguide modes are distributions of transverse and lon-
gitudinal components of electric and magnetic fields within
structures that confine electromagnetic waves along guided
paths [21]. Two different types of waves can propagate inside
such structures, TE and TM waves. For TM waves, the
magnetic field is perpendicular to the direction of propagation,
while the electric field is parallel. In the case of TE waves, the
electric field is perpendicular to the direction of propagation,
while the magnetic field is parallel. Let us analyze a cross
section of a rectangular hallow metallic waveguide shown
in Fig. 2. It is assumed that the waveguide is a square
filled with a material with specific electrical permittivity ε

and magnetic permeability µ. The choice of a square lies
above its degenerate modes being the most challenging in
electromagnetics. The distribution of the electromagnetic fields
within a waveguide is described by the Helmholtz equation,
for TE and TM cases

−
∂2 Ez

∂x2 −
∂2 Ez

∂y2 = k2
s Ez, for TM modes (1)

−
∂2 Hz

∂x2 −
∂2 Hz

∂y2 = k2
s Hz, for TE modes (2)

where k2
s = k2

− k2
z , k = (ω2µε)1/2 is the wavenumber inside

the waveguide, ω the angular frequency, and kz the propagation
constant along z-direction. To solve the Helmholtz equation for
rectangular waveguide, the boundary conditions for the electric
and magnetic fields are considered. In case of TE waves, the
magnetic component Hz must satisfy the Neumann boundary
condition
∂Hz

∂x
(0, y) =

∂Hz

∂x
(a, y) =

∂Hz

∂y
(x, 0) =

∂Hz

∂y
(x, b) = 0.

(3)

For TM waves, the component of the electric field Ez must
satisfy the Dirichlet boundary condition

Ez(0, y) = Ez(a, y) = Ez(x, 0) = Ez(x, b) = 0. (4)

The two partial differential equations can be solved by sep-
arating the variables, i.e., by solving the equation for x and
y separately, and then multiplying them together to get the
two-variable solution of the Helmholtz equation. The separa-
tion of variables allows us to solve the following equation:

−
d2 f
dl2 = k2

s f (5)

where f ∈ {Ez, Hz} and l ∈ {x, y}, according to the modes.
To solve the equations numerically, the central finite difference
method has been adopted to approximate the second-order
derivative as follows:

d2 f
dl2 ≈

fi+1 − 2 fi + fi−1

1l2 . (6)

Using this approximation, (5) can be written as a system of
linear equations in matrix form of the type A f = b whose
dimension depends on the length of the vector f that you want
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Fig. 1. Bharadwaj-Sreenivasan classification of quantum simulations.

Fig. 2. Rectangular waveguide of width a along x and height b along y.

to obtain [32]. Furthermore, being a homogeneous equation,
it may be represented as an eigenvalue equation as follows:

A f = k2
s f (7)

where A is the matrix of the coefficients of Helmholtz equation
in matrix form while f ∈ {Ez, Hz} [22], [32].

B. Hamiltonian Simulation

Writing (1) and (2) in matrix form (7), the Helmholtz
equation represented as an eigenvalue equation can be solved
by finding the eigenvalues k2

s and eigenvectors f , also called
eigenmodes, of matrix A. The eigenvalues define the mode
excitation frequencies [33] while the eigenvectors identify Ez

or Hz in the cross section of the waveguide. In quantum
mechanics, the eigenvalue problem can be solved using the
variational method to find approximations of the lowest energy

state, called the ground state, and some excited states of
complex quantum systems. Using the Dirac notation, (7) can
be expressed as follows:

H|ψ⟩ = E |ψ⟩ (8)

where H is the Hamiltonian operator associated with the
matrix A, |ψ⟩ is the quantum state, also called eigenstate,
associated with the eigenvector f in Hilbert space and E the
energy level associated with the eigenvalue k2

s in the quantum
system. Considering a three-particle quantum system (see three
qubit simulation, described in Section II-C), the dimension of
|ψ⟩ is 23, thanks to quantum superposition. Therefore, the
size of H is 23

× 23 for (8). Considering the TM case, the
Hamiltonian operator becomes [15]

HTM =
1
1l2



3 − 1 0 0 0 0 0 0
−1 2 − 1 0 0 0 0 0
0 − 1 2 − 1 0 0 0 0
0 0 − 1 2 − 1 0 0 0
0 0 0 − 1 2 − 1 0 0
0 0 0 0 − 1 2 − 1 0
0 0 0 0 0 − 1 2 − 1
0 0 0 0 0 0 − 1 3


(9)

where the first and last rows refer the Dirichlet boundary con-
ditions ([15], see Appendix). For TE modes, the Hamiltonian
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operator becomes [15]

HTE =
1
1l2



1 − 1 0 0 0 0 0 0
−1 2 − 1 0 0 0 0 0
0 − 1 2 − 1 0 0 0 0
0 0 − 1 2 − 1 0 0 0
0 0 0 − 1 2 − 1 0 0
0 0 0 0 − 1 2 − 1 0
0 0 0 0 0 − 1 2 − 1
0 0 0 0 0 0 − 1 1


(10)

where the first and last rows are determined by Neumann
boundary conditions ([15], see Appendix). Let us decompose
the Hamiltonian operators by Pauli decomposition allowing us
to write the Hamiltonian operators as a linear combination of
Pauli matrices I, X, Y, Z which form a basis for Hermitian
matrices in dimensions that are powers of 2, as follows:

H =

∑
i

αiPi (11)

with αi the coefficients of the Pauli linear combination, Pi is
the Pauli string with

X =

(
0 1
1 0

)
, Y =

(
0 − i
i 0

)
, Z =

(
1 0
0 − 1

)
.

(12)

X, Y and Z are the Hermitian matrices which define the rota-
tion of |ψ⟩ around the x-, y-, and z-axis of the Bloch Sphere
[28]. This decomposition is especially useful in quantum
information and quantum computing, where Pauli operators
play a crucial role in error correction, gate implementation,
and quantum algorithms. Considering a unitary 1l, the HTM
can be decomposed as follows [28]:

HTM = 2.25 I I I − 1.0 I I X − 0.5 I X X − 0.5 I Y Y

+ 0.25 I Z Z − 0.25 X X X + 0.25 XY Y

− 0.25 Y XY − 0.25 Y Y X + 0.25 Z I Z + 0.25 Z Z I

(13)

while the matrix HTE [28]

HTE = 1.75 I I I − 1.0 I I X − 0.5 I X X − 0.5 I Y Y

− 0.25 I Z Z − 0.25 X X X + 0.25 XY Y − 0.25 Y XY

− 0.25 Y Y X − 0.25 Z I Z − 0.25 Z Z I (14)

both referred to energy (J ) where X X X is the Kronecker
product of Pauli operators X ⊗ X ⊗ X , and the same for all
the other Pauli strings.

C. Cost Function

The cost function to be minimized by VQE to find the
ground state and the excited states of the system is defined
as follows [31]:

cm(θ) = ⟨ψ(θ)|H|ψ(θ)|⟩ +

m−1∑
i=0

ki
∣∣〈ψ(θ) | ψ

(
θ (i)

)〉∣∣2
(15)

where m is the mth excited state to be calculated, |ψ(θ)⟩

is the parameterized quantum state, that finds the solution

of the Helmholtz equation. H is the Hamiltonian for the
TM or TE systems, ki a multiplicative constant such that
ki > Em − Ei while θ (i) represents the set of parameters
that minimize the cost function for the previous state [15],
[31]. The cost function consists of two terms, the first term is
the expectation value of the Hamiltonian operator while the
second term forces the orthogonality between the quantum
states |ψ⟩, to be optimized and the previous found state |ψ i

⟩.
In particular, the expectation value represents the weighted
average of all possible outcomes of a particular measurement
on |ψ⟩. In quantum mechanics, every measurable physical
quantity is mathematically represented by an operator called
an observable whose results of the measurements are the
eigenvalues of the operator itself. In our case, the observable
of our system is the Hamiltonian operator for the cases
TM and TE. The Hamiltonian is the mathematical operator
corresponding to the total energy of a system. Therefore, the
results of the measurements of the Hamiltonian observable,
i.e., its eigenvalues, are exactly the energy levels E into which
the quantum system collapses upon measurement. Its spectrum
is the set of all possible outcomes of the system’s total energy.
At the end of the measurement the quantum state collapses into
a well-defined state represented by the eigenstate at specific
energy level. To reduce the computational complexity, it is
possible to calculate the expectation value of the Hamiltonian
by evaluating the linear combination of expectation values of
the simple Pauli contributions

⟨H⟩ψ =

∑
i

αi ⟨Pi ⟩ψ (16)

where ⟨Pi ⟩ψ denotes the expectation value of the Pi operator
with respect to the state |ψ⟩. In this way, the expectation value
of each Pauli string, i.e., its eigenvalue, can be λ = 1 in
the case the result of measurement is the classical bit 0 or
λ = −1 in case that the result of measurement is the classical
bit 1. The second term of the cost function is the forcing
term which allows us to find that set of parameters forcing
the orthogonalization of the states to be found. The term
⟨ψ(θ)|ψ(θ i )⟩ represents the inner product between the state
to be found ⟨ψ | and the previously found state |ψ i

⟩. Overall,
minimizing the cost function involves finding those sets of
parameters θ that minimize the aforementioned inner product.
Once we have found these eigenstates, and their corresponding
eigenvalues, of the Hamiltonian we have solved the Helmholtz
equation.

D. Pauli Basis Change

Current quantum hardware is not able to measure the x
and y components of the quantum state vector but only the
z component. This implies that for each Pauli string it is
necessary to introduce a specific quantum measurement circuit
which allows the quantum state vector to be rotated to get
measurements along z-axis. This rotation allows the state
vector to be rotated appropriately so as to measure the x and y
components along z-axis. The Pauli string I I I is the identity
matrix, therefore ⟨I I I ⟩ψ = 1, while Z Z Z does not need a
measuring quantum circuit since it is already in z basis. For
all the remaining Pauli strings, a specific measuring quantum
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circuit must be added to the ansatz. An ansatz is a parametric
quantum circuit consisting of a sequence of quantum gates
with tunable parameters applied to specific wires [16]. For the
observable X , a Hadamard gate H needs to be added to the
ansatz. The Hadamard gate rotates the state vector by π around
the z-axis and by π/2 around the y-axis. For the observable Y ,
instead, it is necessary to add a conjugate transpose of phase
gate S† in series with a Hadamard gate. S† gate rotates the state
vector by −π/2 around the z-axis. Their matrix representation
is shown below

H =
1

√
2

(
1 1
1 −1

)
, S†

=

(
1 0
0 −i

)
. (17)

For the observable I , on the other hand, it is necessary to add
a CNOT gate which acts on two qubits: a control qubit and
a target one. The control qubit is the qubit acted upon by the
observable I while the target qubit is the first qubit of the
system. The CNOT gate is defined as follows:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (18)

The Pauli-based quantum measurement circuits for the Pauli
observables of the three qubit Hamiltonian decomposition for
TM and TE modes are reported in the Appendix.

III. VQE IMPLEMENTATION

The VQE relies on the variational method of quantum
mechanics to find approximations to the ground state and
excited states of a physical system. This method is based
on the minimization of a cost function which allows for the
calculation of the eigenvalues of the quantum system. In par-
ticular, the VQE is a hybrid classical-quantum algorithm that
splits the computational task between classical and quantum
hardware to overcome the current limitations of quantum
machines. It exploits the computational power of the QC
based on quantum superposition and quantum entanglement to
evaluate the cost function and uses the classical computation
to minimize the cost function. In our case the cost function is
(15) whose minima represent the energy levels of the phys-
ical system while the eigenvectors represent its eigenstates.
To define the cost function, the ansatz is needed. In the
context of quantum computing, an ansatz, is a parameterized
quantum circuit, that initializes a parameterized quantum state
|ψ(θ)⟩. In our case, the hard efficient ansatz (HEA) has
been initialized for both the TM and TE modes. HAE is a
parameterized quantum circuit used in quantum computing to
minimize the effect of noise and errors in quantum systems.
The HEA is designed to be efficient in terms of computational
resources, allowing for better management of complexity in
quantum simulations. The HEA acts on an n-qubits register
initialized to the computational basis state |0⊗n

⟩. This circuit
consists of Ry(θ) and CNOT quantum gates. The Ry(θ) is the
quantum gate that performs the rotation of the state vector
around the y-axis of the Bloch sphere by an angle of θ
acting on a single qubit. The CNOT gate, on the other hand,
is the gate that performs quantum entanglement between two

connected qubits. In the case of n = 3, the ansatz becomes

q0 : Ry(θ1) • Ry(θ4) • Ry(θ7)

q1 : Ry(θ2) • Ry(θ5) • Ry(θ8)

q2 : Ry(θ3) Ry(θ6) Ry(θ9)

The state initialized by the ansatz is the following parame-
terized quantum state:

|ψ(θ)⟩ = U (θ)|0⊗n
⟩. (19)

After the parameterized quantum circuit initialization, the
starting set of parameters θ has been defined. The VQE
algorithm starts by evaluating the cost function using the
quantum hardware. The expectation value of the Hamiltonian
is computed by evaluating the linear combination of the expec-
tation values of simple Pauli terms, following the Hamiltonian
decomposition defined in Section II. For each Pauli term there
is an associated quantum measurement circuit, that joined to
the ansatz allows us to measure the probability distribution of
that Pauli string. From the probability distribution it is then
possible to calculate the expectation value of that operator
by calculating a weighted average of all possible outcomes
for the observable. The result of the measurement of each
Pauli string is a bitstring whose values denote the states that
the qubits have collapsed into. Each bitstring is assigned
a value which is given by the product of the eigenvalues
λ = 1 or λ = −1 related to the classical states of the
qubits 0 or 1, respectively. The forcing term is obtained by
carrying out the absolute square of the inner product between
the current state |ψ(θ)⟩ and the previously found one |ψ(θ)i ⟩.
After evaluating the cost function using the set of initialized
parameters, the result is passed to the classical hardware which
updates the set of parameters to minimize the cost function by
a classical optimization algorithm. A representative scheme of
VQE is shown in Fig. 3. Upon investigation of several testing
several minimization algorithms, Powell’s Conjugate Gradient
algorithm proved to be the most accurate. For this reason,
Powell’s Conjugate Gradient algorithm has been adopted.
Powell’s Conjugate Gradient method is classical minimization
algorithm that permits calculation of the local minimum of
a function. The advantage of this method lies in the fact
that the cost function need not be differentiable, therefore its
derivatives are not necessary. The method is based on a set
of search vectors {s1, . . . , sn}, each of which is aligned to
each axis. The method minimizes the cost function through
a bidirectional search of the local minimum along each search
vector which can be performed using the Brent’s method. Let
the minima found after each iteration be{

x0 + α1s1, x0 +

2∑
i=1

αi si , . . . , x0 +

N∑
i=1

αi si

}
(20)

where x0 is the initial search point while αi is a coefficient
obtained following each bidirectional search from vectors si .
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Fig. 3. Representative scheme of the VQE algorithm. Step 1, the n qubits are initialized to the state |0⟩. Step 2, application of the parameterized unitary
U (θ) to the initial state |0⊗n

⟩. Step 3, application of the quantum measurement circuits for the rotation of the quantum state vector for z-based measurements.
Step 4, calculation of the cost function c(θ). Step 5, update of the θi parameters by the cost function minimization process.

TABLE I
NORMALIZED ENERGY LEVELS

The new points found are

xi+1 = xi +

N∑
i=1

αi si (21)

where
∑N

i=1 αi si is the new search vector added to the
search list. At each iteration, the vector that best satisfies the
following condition:

arg
N

max
i=1

|αi |∥si∥ (22)

is removed from the search list. The algorithm stops when no
improvement is made [34].

IV. RESULTS

The simulations for the TE and TM modes have been
performed on a three-qubit quantum simulator, Qasm IBM
Simulator. We consider the waveguide cross mapped onto
a grid of 1 mm2 cells for a total of 8 × 8 mm hollow
metallic square waveguide. This choice is due to the possibility
of obtaining solutions |ψ⟩ of (8) of dimensions 23, due to
quantum superposition for three qubit QC. The VQE algorithm
was implemented using the Python-based quantum instruction
kit (Qiskit) from IBM [35]. Qiskit is an open source IBM
framework for working with QCs at the circuit, pulse and
algorithm levels that allows us to simulate the results of a
quantum circuit using different simulators. The framework
also gives the possibility to transfer the code directly to real
quantum hardware allowing for real measurements on multi-
qubits hardware. Among the various simulators, the Qasm
IBM Simulator was chosen, which is a shot-based simula-
tor that runs quantum circuits by measuring the probability
distribution of the different states, i.e., the bitstrings [28].
By default the Qasm IBM Simulator performs 1024 shots,
therefore for more accurate results, 213 shots have been chosen.
This is the maximum number of shots that can be performed
on this hardware. The energy values calculated following

Fig. 4. (a) Convergence of the VQE algorithm for TM modes, (b) conver-
gence of the VQE algorithm for TE modes. The calculated energy level E
in (a) and (b) is shown in black, while the reference energy levels E0 and
E1 related to the ground state and the first excited state are shown in red and
blue, respectively.

optimization, the exact analytic values, the percentage error
between the calculated and exact value, and the number of
iterations are shown in Table I. After the simulation has run,
the cost function plot converges toward the ground state energy
E0 and subsequently converges to the first excited state energy
E1 for both the TE and the TM modes are shown in Fig. 4.
The values of E0 and E1 are known a priori, obtained by
mathematically solving (1) and (2) for case reported in Fig. 2.
Although the behavior of c(θ) is oscillatory, the minimum
values of the oscillations converges to the analytical values
previously obtained. The convergence is defined as an error
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Fig. 5. Probability distribution of the ground state |E0⟩ and of the excited state |E1⟩ for the 1-D solutions of the TM and TE modes. The probability
distribution of the state E0 in the TM case is reported at the top left, the probability distribution of the state E1 in the TM case is reported at the top right.
The probability distribution of the state E0 in the TE case is shown at the bottom left, the probability distribution of the state E1 in the TE case is shown at
the bottom right.

Fig. 6. Two-dimensional distributions of Ez and Hz inside a square waveguide. The grid consists of 8 × 8 cells of 1 mm2. The TM and TE modes are
obtained by the VQE algorithm on a three qubits quantum simulator. In (a) and (b) TM11 and TM21 mode are shown while in (c) and (d) TE01 and TE10
modes are reported. The values of the intensity of the fields are reported in the corresponding scales.

within 3% of the analytical value of the energies. In case
of TM modes, the cost function converges to the ground
state |ψ0⟩, also called |E0⟩, after 1124 iterations with the
eigenvalue E0 = 0.15313671, while it converges to the first
excited state |ψ1⟩, also called |E1⟩, after 1613 iterations, with
the eigenvalue E1 = 0.60570108 as shown in Fig. 4 (top),
for a total of 2727 iterations. In case of TE modes, the cost
function converges to the ground state |E0⟩ after 629 iterations
with the eigenvalue E0 = 0.00175170, while it converges
to the state |E1⟩ after 2746 iterations, with the eigenvalue
E1 = 0.16633822 as shown in Fig. 4 (bottom), for a total
of 3375 iterations. The most precise value of the ground state
(red line) has been found in the TM case with an absolute
error of e = 0.0008975, while for the first excited state
(blue line), the best result has been found for the TE case

with an absolute error of e = 0.01409729. The probability
distributions, as well as the square root of the absolute value
of the solution of the Helmholtz equation for both the TE
and the TM modes are shown in Fig. 5. On the horizontal
axis the sequence {0, 1, 2, 3, 4, 5, 6, 7} is encoded as the
three qubit bitstrings {000, 001, 010, 011, 100, 101, 110, 111},
respectively. The probabilities are shown in the vertical axis.
On the upper left corner, the probability distribution of the
state |E0⟩ in the case of TM modes is reported. In particular,
this state coincides with the square root of the absolute value of
the Helmholtz solution for the ground state in the TM case.
In the upper right corner, the probability distribution of the
state |E1⟩, in the case of TE modes, is shown. In particular,
this state coincides with the square root of the absolute value
of the Helmholtz solution for the first excited state in TM case.
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In the lower left corner, the probability distribution of the state
|E0⟩ in the case of TE modes is reported. In particular, this
state coincides with the square root of the absolute value of
the Helmholtz solution for the ground state in the TE case.
In the lower right corner, the probability distribution of the
state |E1⟩ in the case of TE modes is reported. In particular,
this state coincides with the square root of the absolute value
of the Helmholtz solution for first excited state in the TE
case. The electric field and magnetic field distributions for
the modes TM11, TM21, TE10, and TE01 are shown in Fig. 6.
These 2-D distributions of the electric and magnetic fields are
obtained starting from the states E0 and E1 for the TM and
TE cases. In particular, the states represent the 1-D solution of
the Helmholtz equation, i.e., with respect to x or y. To build
the scalar maps, the two solutions are multiplied using a mesh
grid defining the variation of the fields along the two axes.
To obtain the mode TM11, the product between |E0⟩ on x and
|E0⟩ on y of TM solutions was carried out. For the mode
TM21, on the other hand, the product between |E1⟩ on x and
|E0⟩ on y of TM solutions was carried out. In these cases, the
variation of the electric field component Ez on the transversal
section of the waveguide is represented. The way TE01, the
product between |E0⟩ on x and |E1⟩ on y of TE solutions was
carried out. To obtain the mode TE10, the product between
|E1⟩ on x and |E0⟩ on y of TE solutions. In these cases, the
variation of the magnetic field component Hz on the cross
section of the waveguide is represented.

V. CONCLUSION

We have proposed a VQE algorithm for solving the waveg-
uide modes on quantum simulator exploiting the quantum
advantage of superposition and entanglement. In particular,
shot-based simulations have been carried out to emulate
the behavior of real quantum hardware accounting for the
limitations of current implementations. First, the Helmholtz
differential equation has been written into matrix form result-
ing in an eigenvalue equation associated with the Hamiltonian
operator. Second, the Hamiltonian has been broken up into
linear combination of Pauli strings consisting of Kronecker
products of X , Y , Z , and I state vector rotation matrices. One
of the current limitations of real QCs lies above z-axis of the
Bloch sphere measurement without directly measuring the x
and y components of the state vector. Thus, the basis change
has been made by adding the measuring quantum circuits
to the HEA for each simple observable of the Hamiltonian
decomposition. Third, the cost function has been defined as a
sum of the expectation value of the Hamiltonian ⟨H⟩ψ and the
excitation term

∑n−1
i=0 ki |⟨ψ(θ) | ψ(θ (i))⟩|2. Hence, by mini-

mizing the cost function c(θ) through the Powell optimization
algorithm, the VQE algorithm has been able to find the ground
state and the first excited state that correspond to the first
two waveguide modes. The VQE algorithm proved to be a
valid solution for solving electromagnetic problems allowing
to use a small number of qubits to simulate larger domains
with logarithmic complexity. In particular, the solution we
proposed is based on simulating the probabilistic nature of
real quantum hardware executable to current NISQ systems.
The goal was to create a variational (universal gate) quantum

circuit that completely emulates the probabilistic behavior
of QCs to obtain the probability density distribution. The
focus of the study was on defining the VQE to solve elec-
tromagnetic problems efficiently, i.e., overcoming hardware
limitations such as the decomposition of the Hamiltonian in
the Pauli basis and the related quantum measurement circuits.
In future studies, the noise model for quantum gate and real
measurements will be introduced to quantify the uncertainty
of prediction. Introducing numerical noise models in the
VQE shot-based simulations would lead to more accurate,
efficient, and optimized quantum prediction algorithms for
current and future NISQ systems. Moreover, thanks to the
proof of principle provided by this work, it will be possible to
simulate, more complex waveguide and cavity geometries [36],
introduce non-homogeneous materials [37], [38], increase the
number of qubits, and run the variational algorithm on real
quantum hardware. The VQE represents an important solu-
tion for NISQ era that overcomes the limitations of limited
number of qubits and limited quantum circuit depths, enabling
academia and industry to find optimized codes to achieve
quantum advantage.

APPENDIX
QUANTUM MEASUREMENT CIRCUITS FOR THE QUANTUM

STATE VECTOR ROTATION

The measurement circuits that allow the quantum state
vector to rotate appropriately to carry out the measurements
along z-axis for TM and TE modes are shown below.

The quantum measurement circuit for the observable I I X
is represented as

q0 : H I
q1 : •

q2 : •

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable I X X
is represented as

q0 : H I
q1 : H
q2 : •

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable I Y Y
is represented as

q0 : S† H I
q1 : S† H
q2 : •

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable I Z Z
is represented as



2092 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 72, NO. 4, APRIL 2024

q0 : I
q1 :

q2 : •

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable X X X
is represented as

q0 : H
q1 : H
q2 : H

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable XY Y
is represented as

q0 : S† H
q1 : S† H
q2 : H

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable Y XY
is represented as

q0 : S† H
q1 : H
q2 : S† H

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable Y Y X
is represented as

q0 : H
q1 : S† H
q2 : S† H

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable Z I Z
is represented as

q0 : I
q1 : •

q2 :

meas : /3
0

��
1

��
2

��

The quantum measurement circuit for the observable Z Z I
is represented as

q0 : I •

q1 :

q2 :

meas : /3
0

��
1

��
2

��

We have excluded the cases of the observables Z Z Z
and I I I .
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