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Fully Analytical Approach to Calibration of
Six-Port Reflectometers Using Matched Load and

Unknown Loads for One-Port Measurements
Kamil Staszek

Abstract— In this article, the first fully analytical procedure
for calibration of six-port reflectometers with a match load and
unknown calibration loads, allowing for relative measurements
of complex reflection coefficient, is proposed. The used loads
may vary in both magnitudes and phases, with no particular
requirement on their values; however, for a good performance,
they should be reasonably spread over the complex plane. The
proposed closed-form solution for six-port reflectometers’ cali-
bration does not require any sophisticated numerical algorithm
or convergence analysis. Hence, it is significantly simpler to
implement even in systems with reduced computational resources.
The comparison against the previously reported numerical solu-
tion shows that the execution time is reduced by a factor of
800. The calibration is validated with the use of two six-port
reflectometers with integrated power detectors over a bandwidth
of 2.5–3.5 GHz. The results confirm high robustness to imper-
fect power measurement and very good agreement with values
measured using a commercial vector network analyzer (VNA)
for a large range of both magnitude and phase of the measured
reflection coefficients.

Index Terms— Calibration, power measurement, quadric sur-
face, reflection coefficient, reflectometer, six-port.

I. INTRODUCTION

MEASUREMENT of complex scattering parameters is
one of the most fundamental and frequent actions in

contemporary microwave electronics. Nowadays, such mea-
surements are realized with the use of a vector network
analyzer (VNA), which is a substantial equipment in most
of the microwave laboratories. Because of their complexity
VNAs are bulky and expensive, which eliminates their appli-
cation in low-cost and/or mobile devices. In this area, six-port
reflectometers are an interesting alternative. A six-port reflec-
tometer is composed of a six-port passive network distributing
microwave signal from the source to four power detectors
and devices under test (DUT) [1]. A properly designed signal
distribution realized by the mentioned six-port network allows
for deriving complex reflection coefficients from the power
values. Six-port reflectometers do not need any frequency
conversion circuits; hence, they exhibit simple circuitry, high
linearity, as well as high power efficiency [2], [3].
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Thanks to their advantages, six-port reflectometers found
a wide area of applications, mainly in microwave sensors,
where a small, reliable system is needed for complex reflec-
tion coefficient measurement. Examples can be found in
permittivity measurements [4], modulators and demodulators
of RF signals [5], or in radars [6], [7]. Also, since the
six-port networks are fully passive, they are easily scalable
with frequency, meaning that a given circuit topology can
be realized for various frequency ranges. This phenomenon
distinguishes six-port reflectometers from other measurement
techniques, like mixer-based ones, in which the cutoff fre-
quency of active elements constitutes a fundamental limitation.
Therefore, six-port reflectometers allow for the realization
of simple measurement circuitry operating in the mm-wave
frequency range [8], as well as in the optical range [9], [10].

Regardless of the application, each six-port reflectometer
needs to be calibrated before actual measurement. As with
every practical circuit, they may exhibit magnitude and phase
imbalances, as well as nonidentical sensitivity of power
detectors, which lead to systematic errors arising in the
measurement results. Calibration is required to suppress these
errors. In general, the calibration procedures for six-port
reflectometers can be divided into two major groups. The
first one is constituted by methods using a set of precisely
known so-called “calibration standards.” Then, system con-
stants, being the result of calibration, are derived using the
known reflection coefficients of the used calibration standards
and the corresponding power values. Such methods are quite
common; they are based on analytical [11], [12], [13], [14]
and numerical [15], [16] approaches; however, they require
prior characterization of the calibration standards. Also, any
deterioration of these calibration standards directly affects the
calibration results.

An interesting modification of such a calibration method
is reported in [17], where instead of using a set of fixed
calibration standards, a multistate tuner with an adjustable
reflection coefficient is applied. It is used to find values for
particular power detectors that indicate zero-incident power
as the first calibration stage. In this method, the resulting
accuracy is, however, limited by the number of states of the
used tuner and its repeatability. Hence, such a method is rather
designated for laboratory environment, and it is difficult to
implement in portable, low-cost devices.

The second group of calibration procedures is formed by
methods that use unknown calibration standards. They are
mainly based on the ellipse fitting approach, which requires
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at least five unknown calibration loads, which may have
arbitrary phases; however, they all have to share equal mag-
nitude [18], [19]. In practice, such calibration standards are
realized as different positions of movable short or, in six-port-
based radars, by different positions of a target illuminated
by radar. In both cases providing a number of calibration
standards having identical magnitudes becomes particularly
difficult with increasing frequency of operation due to insertion
losses or free-space attenuation.

The above limitation has been recently overcome in [20],
where for the first time, a procedure for calibrating a six-port
reflectometer with the use of a matched load and loads having
unknown reflection coefficients is reported. In this procedure,
the calibration loads can exhibit reflection coefficients having
arbitrary and not equal both magnitudes and phases. Although
the requirements on calibration loads are now relaxed, the
trade-off is the high complexity of the algorithm, and thus,
large computational effort since the procedure requires several
numerical multidimensional optimizations. Hence, also initial
conditions and algorithm convergence must be taken into con-
sideration. All this significantly extends computational time
and makes the method suitable only for measurement systems
with large computing resources.

In contrast to the method presented in [20], this article
presents the first fully analytical procedure for the calibration
of six-port reflectometers using matched load and unknown
calibration loads. It allows for relative measurements, such
as phase shifts and/or magnitude ratios, which are of high
importance in modern electronics. As in [20], the reflection
coefficients of the used loads can vary in both magnitude and
phase, which greatly simplifies the selection or realization of
the needed calibration kit. The proposed procedure does not
require any numerical optimization algorithms, simultaneously
exhibiting high robustness to imperfect power measurement
realized with practical power detectors. Also, no convergence
analysis is needed, and the overall execution time is incompa-
rably lower than in the case of the numerical method reported
in [20].

The proposed calibration is verified experimentally in two
six-port reflectometers operating over a wide frequency range
from 2.5 to 3.5 GHz for a set of one-ports exhibiting a large
range of reflection coefficients’ magnitudes and phases. For
both reflectometers, the reflection coefficients are measured
using the proposed calibration and a reference one, in which
the same set of calibration loads is measured using VNA and
then used as known values. It is shown that in both cases,
the measured results are in very good agreement, although
the proposed calibration uses the loads as unknown values.
Moreover, the results are comparable to the ones obtained with
the aid of a commercial VNA, which confirms the correctness
of the proposed procedure.

II. THEORETICAL MODEL OF A SIX-PORT
REFLECTOMETER

A six-port reflectometer is schematically shown in Fig. 1.
It consists of a six-port passive power distribution network,
four power detectors, a signal source, and DUT exhibiting
reflection coefficient 0. The mentioned six-port network,

Fig. 1. Block diagram of a six-port reflectometer.

being a key element in the system, distributes excitation
signal from the source to DUT and all the power detectors
P1–P3 and Pref; further, the signal reflected from DUT at
port #2 is distributed backward to power detectors P1–P3
only. The value of power Pref is, therefore, independent of the
measured reflection coefficient 0 and can be used to monitor
the signal source’s power level. Also, the Pref value can be
used to normalize the power readings P1–P3. Then, the relation
between the measured reflection coefficient 0 and the power
readings equals [1]

pi =
Pi

Pref
= qi

∣∣1 + Ai0
∣∣2 (1)

where qi and Ai (i = 1, 2, 3) are system constants that have
to be found in the calibration procedure. It is seen in (1),
that power normalization using Pref value allows for taking
reflection coefficient measurements with different power levels
from the signal source since the system constants do not vary
with the power.

The model given by (1) can simply be rearranged to another
form, which has a well-known geometrical interpretation.
By substituting

Ci = −
1
Ai

(2)

ui = qi
∣∣Ai
∣∣2 (3)

equation (1) becomes

pi =
Pi

Pref
= ui

∣∣Ci − 0
∣∣2. (4)

Analyzing (4) it can be noticed that complex values Ci

constitute circle centers having radii ri equal to

ri =

√
pi

ui
. (5)

Simultaneously, a point on a complex plane in which these
three circles intersect is the measured reflection coefficient 0,
as illustrated in Fig. 2. This geometric interpretation has been
used to develop the proposed calibration procedure presented
in Section III.

III. PROPOSED SIX-PORT CALIBRATION PROCEDURE

In this section, the proposed fully analytical calibration
procedure for six-port reflectometers is presented. It starts
with mapping power values’ triples interpreted as 3-D-vectors
onto a quadric surface representing all possible values of the
complex reflection coefficient 0; further, this surface, namely
paraboloid, is used to find three points, for which one of three
power values is equal to zero. Both these steps are realized
with unknown loads having arbitrary and different magnitudes
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Fig. 2. Geometric model of reflection coefficient measurement with the use
of a six-port reflectometer.

and phase of reflection coefficients, which eliminates the need
for precise fabrication of calibration standards and their accu-
rate characterization. In the next step, one of the calibration
loads is selected as a reference value (0 = 1), and a matched
load is used to determine the center point in the mentioned
quadric surface. Having power values corresponding to these
two reflection coefficients and three characteristic points of
the surface defined above, the scaling factors ui and circle
centers Ci are calculated. In the final step, the procedure is
repeated to use each of the calibration loads as the reference
value, and the resulting circle centers Ci and scaling factors
ui are averaged using weighting factors. These can easily be
recalculated to qi and Ai constants in (1), completing the
entire procedure. As the proposed method is composed of
several major stages, this section is divided into corresponding
subsections presenting particular calculation steps.

A. Quadric Surface

The relation between power readings pi and the measured
reflection coefficient 0 given by (1) or (4) shows that a
three-element set of power values corresponds to certain 2-D
values 0. Hence, by generating a large set of different values
0, a corresponding set of points forming a quadric surface in
3-D space is obtained. As reported in [21], this surface is an
elliptic paraboloid, and its shape in 3-D space is determined
by nine real parameters, here denoted as ai , bi , and ci . For
convenience, these parameters can be arranged in the form of
the following vector:

X =
[

a1 a2 a3 b1 b2 b3 c1 c2 c3
]T (6)

for which

PX = 1 (7)

where P is a vector composed of power values p1–p3 obtained
for a single reflection coefficient 0

P =
[

p2
1 p2

2 p2
3 2p2 p3 2p1 p3 2p1 p2 2p1 2p2 2p3

]
.

(8)

Since there are nine parameters of the paraboloid (6) at least
nine different reflection coefficients, or simply N (N ≥ 9)
reflection coefficients 01–0N have to be used to obtain N

rows Pn (n = 1, . . . , N ) given by (8). Then, the parameter X
can be found by solving

X =
(
PT

N · PN
)−1

· PT
N ·

 1
...

1


N×1

(9)

where matrix PN is composed of N vectors Pn given by (8)

PN =

 P1
...

PN


N×9

. (10)

It must be underlined that solving (9) requires at least nine
different reflection coefficients 0n . They do not need to be
known, and their magnitudes and phases can be arbitrary.
Because of the limited measurement uncertainty of power
detectors P1–P3 and Pref, it is, however, advantageous to use
more than nine (N > 9) and reasonably distributed reflection
coefficients. In such a case, (9) provides the solution in the
least-squares sense.

B. Tangential Points of Quadric Surface

The quadric surface determined above contains all possible
sets of power values {p1, p2, p3} obtainable for all reflection
coefficients 0. Hence, the quadric also contains points for
which the reflection coefficient 0 equals particular circle
centers Ci . It is seen in (4) that for 0 = Ci , the normalized
power pi = 0; therefore, it can be concluded that the quadric
given by X has three points, in which it is tangential to
three quarter-planes, as each power can take zero value, but
not negative values of course [21]. Simultaneously, for a
reasonably designed six-port reflectometer, all three points Ci

are different from each other; therefore, if pi = 0, then the
remaining power values p j and pk ( j , k = 1, 2, 3; i ̸= j ;
i ̸= k; j ̸= k) take nonzero values. Finding all these values
is a crucial step in the proposed calibration procedure.

As reported in [17], such power values can be found by
means of an iterative process using a high-precision impedance
tuner. Then, a large number of measurements must be taken
to find the tuner’s impedance, for which pi = 0. This
process is, therefore, time-consuming and requires dedicated
circuitry with a very large number of realizable impedances
since the resolution of the tuner directly impacts calibration
precision. In the proposed procedure, no additional circuitry is
needed, and the discussed power values p j and pk , for which
pi = 0, can be found fully analytically, which greatly simpli-
fies the entire process.

For determining the three sets of power values that consti-
tute the described tangential points, the following procedure
can be proposed. Assuming that i is the index of power value
is equal to zero (pi = 0), the remaining p j and pk values
can be found by rewriting (7) in expanded form, in which
pi = 0. Then, it takes the following form:

a j p2
j + ak p2

k + 2bi p j pk + 2c j p j + 2ck pk = 1. (11)

As can be observed, (11) describes an ellipse in p j –pk plane.
The desired values can then be calculated as the center point



186 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 72, NO. 1, JANUARY 2024

of such an ellipse [18]. For convenience, the results can be
expressed in the form of a pmin matrix having the size of
3 × 3, where the i th column represents the mentioned set of
three power values, for which the quadric surface is tangential
to the given quarter-plane (pi = 0)

pmin =

 0 pmin(1, 2) pmin(1, 3)

pmin(2, 1) 0 pmin(2, 3)

pmin(3, 1) pmin(1, 3) 0

. (12)

The nonzero elements of the pmin matrix are equal

pmin( j, i) =
akc j − bi ck

b2
i − a j ak

. (13)

The above algorithm provides three sets of power values
{p1, p2, p3}, in which the quadric specified by X is tangen-
tial to quarter-planes. Although this approach yields correct
results for theoretical power values, it may be prone to finite
uncertainty power readings obtained in practical measurement
systems. In case of distinct power measurement errors, the
obtainable quadric may not be tangential to the quarter-planes.
This can, however, easily be verified by calculating the pmin
values according to (13) and then by inserting them into (7).
As a result, a quadratic equation for pi is obtained, in which
one of the roots should be equal to zero in an ideal case.

If, instead, pi takes nonzero values, the proposed algorithm
can be augmented by simple modification. The values of pmin
given by (13) can be considered as an approximation of the
additional three calibration loads, which could be used in
defining parameters X of the quadric. Therefore, the values
of pmin can be used to produce additional three rows in (10).
Hence, N + 3 calibration loads are used in finding quadric
surfaces by solving (9). This process can be repeated multiple
times, as with each iteration, the resulting quadric moves
closer to quarter-planes, making pmin values more accurate.
In practice, however, depending on power measurement inac-
curacy, three to five iterations are sufficient.

C. Scaling Factors ui

The values of power pmin found above correspond to the
case in which reflection coefficient 0 equals one of the circle
centers Ci . Hence, using (4), the following equations can be
formulated: ∣∣Ci − C j

∣∣ =

√
pi

ui
=

√
p j

u j
. (14)

In the next step, a reference calibration load having the
reflection coefficient 0r has to be selected. It will serve as a
normalizing value since genuine reflection coefficients of cal-
ibration loads are unknown. As a consequence, the reflection
coefficient 0r is assumed to be equal to 1 + j0, which, in turn,
will uniformly scale all measured reflection coefficients by its
unknown value 0r ; thus, relative measurement of magnitudes
as phase differences remain unaffected, as it is described
in [20]. On that basis, the following expression can be written:∣∣Ci − 1

∣∣ =

√
pri

ui
(15)

Fig. 3. Geometric values used in the proposed calibration procedure.

where pri is the power value measured by power detector
Pi , when calibration load having reflection coefficient 0r is
connected. Additionally, a calibration load with zero reflection
coefficient is needed, i.e., matched load, with the correspond-
ing power values p0i . For this calibration load∣∣Ci

∣∣ =

√
p0i

ui
. (16)

It is worth mentioning that the matched load used to obtain
(16) is the only load for which the reflection coefficient has to
be known in the proposed calibration; moreover, it may also
be used as one of the N calibration loads in the determination
of the quadric surface described in Section II-A.

As can be observed, (14)–(16) represent distances on a
complex plane, which are schematically shown in Fig. 3. These
distances will be used to calculate the scaling factors ui . It can
be shown that each ui can be found using (14)–(16) given for
a single pair {i , j}. Such a quite straightforward procedure
must be performed three times for three different pairs {i ,
j}; however, in the presence of noise and a distinct power
detectors nonlinearity, better results are obtained when all three
pairs are investigated simultaneously. It can be achieved by
creating an over-determined set of equations and solving it in
the least-squares sense. For this purpose, a single unknown
value has to be defined

v =
1
u1

. (17)

Then, the value v is the root of the equation

h3v
3
+ h2v

2
+ h1v + h0 = 0 (18)

having the maximum value among all real solutions. The
coefficients h3–h0 are defined as follows:

h3 = 2
∑
i ̸= j

e2
i j (19)

h2 = 3
∑
i ̸= j

ei j fi j (20)

h1 = 2
∑
i ̸= j

(
ei j gi j + f 2

i j

)
(21)

h0 =

∑
i ̸= j

(
fi j gi j

)
(22)
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where

ei j =
(
αiβ j − βiα j

)(
α j + βi − αi − β j

)
+ δi j (αi − βi )

(
β j − α j

)
(23)

fi j =
(
αi − α j

)(
β j − βi

)
+ δi j

(
αi + βi + α j + β j − δi j

)
(24)

gi j = −δi j (25)

and

αi =

 p0i , for i = 1

p0i
pmin(1, i)
pmin(i, 1)

, for i ̸= 1
(26)

βi =

 pri , for i = 1

pri
pmin(1, i)
pmin(i, 1)

, for i ̸= 1
(27)

δi j =

 pmin(i, j), for i = 1

pmin(i, j)
pmin(1, i)
pmin(i, 1)

, for i ̸= 1.
(28)

Once the value of v is derived, the scaling factors ui can be
calculated as

ui =


1
v
, for i = 1

1
v

pmin(i, 1)

pmin(1, i)
, for i ̸= 1.

(29)

D. Circle Centers Ci —Part I

The calculated scaling factors ui allow for the determination
of circle centers Ci . According to distances shown in Fig. 3,
the points Ci can be found using p0i and pri values. These
power values are used with respect to points 0 = 0 and 0

= 1, respectively. Hence, real parts of xi = Re[Ci ] can be
calculated directly as

xi =
p0i − pri + ui

2ui
(30)

whereas for imaginary parts yi = Im[Ci ] only their absolute
values can be determined

yi =

√
2p0i pri + 2p0i ui + 2pri ui − p2

0i − p2
ri − u2

i

2ui
. (31)

To choose the correct signs for imaginary parts yi an additional
algorithm is needed. At this point, an assumption can be made
that y1 is positive; therefore, the remaining signs of y2 and y3
can be determined using distances

ri j =
∣∣Ci − C j

∣∣ =
1
2

(√
pmin(i, j)

ui
+

√
pmin( j, i)

u j

)
(32)

indicated by blue lines in Fig. 3. Theoretically, (32) can,
however, be simplified to make the algorithm more robust
to nonlinearity, and noise present in power measurements of
the distances ri j should be calculated using (32). Now, two
signs need to be determined, namely for y2 and y3, giving

four variations {++, +−, −+, −−}. For each of them, the
error e can be calculated as follows:

e++ =

∣∣∣∣√(x1 − x2)
2
+ (y1 − y2)

2
− r12

∣∣∣∣
+

∣∣∣∣√(x1 − x3)
2
+ (y1 − y3)

2
− r13

∣∣∣∣+
+

∣∣∣∣√(x2 − x3)
2
+ (y2 − y3)

2
− r23

∣∣∣∣ (33)

e+− =

∣∣∣∣√(x1 − x2)
2
+ (y1 − y2)

2
− r12

∣∣∣∣
+

∣∣∣∣√(x1 − x3)
2
+ (y1 + y3)

2
− r13

∣∣∣∣
+

∣∣∣∣√(x2 − x3)
2
+ (y2 + y3)

2
− r23

∣∣∣∣ (34)

e−+ =

∣∣∣∣√(x1 − x2)
2
+ (y1 + y2)

2
− r12

∣∣∣∣
+

∣∣∣∣√(x1 − x3)
2
+ (y1 − y3)

2
− r13

∣∣∣∣
+

∣∣∣∣√(x2 − x3)
2
+ (y2 − y3)

2
− r23

∣∣∣∣ (35)

e−− =

∣∣∣∣√(x1 − x2)
2
+ (y1 + y2)

2
− r12

∣∣∣∣
+

∣∣∣∣√(x1 − x3)
2
+ (y1 + y3)

2
− r13

∣∣∣∣
+

∣∣∣∣√(x2 − x3)
2
+ (y2 + y3)

2
− r23

∣∣∣∣. (36)

Among these four error values, the lowest one can be selected
and used to determine signs for y2 and y3. Finally, temporary
values of circle centers Ci temp become

C1temp = x1 + j y1 (37)

e++ = min{e++, e+−, e−+, e−−} ⇒

{
C2temp = x2 + j y2

C3temp = x3 + j y3

(38)

e+− = min{e++, e+−, e−+, e−−} ⇒

{
C2temp = x2 + j y2

C3temp = x3 − j y3

(39)

e−+ = min{e++, e+−, e−+, e−−} ⇒

{
C2temp = x2 − j y2

C3temp = x3 + j y3

(40)

e−− = min{e++, e+−, e−+, e−−} ⇒

{
C2temp = x2 − j y2

C3temp = x3 − j y3.

(41)

Note that in (37)–(41), j is imaginary unit j =
√

−1.

E. Circle Centers Ci —Part II

The above calculation of points Ci temp is based on the
assumption that y1 > 0 and requires further investigation. Now,
the points Ci temp are located in correct distances with respect to
each other, but due to the above assumption, it may be required



188 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 72, NO. 1, JANUARY 2024

to inverse the signs for all imaginary parts yi . Decision on
making complex conjugate of Ci may be made upon analysis
of the used calibration loads γn , which are genuine reflection
coefficients of the calibration loads 0n normalized by the
reflection coefficient 0r of the load selected as the reference in
Section II-C. To calculate the values γn , the coefficients qi and
Ai have to be obtained by rearranging (2) and (3); further, each
normalized reflection coefficient γn can be calculated using

γn = s0 + s1 p1,n + s2 p2,n + s3 p3,n (42)

where pi,n is the power value measured by the i th power detec-
tor for the nth calibration load having reflection coefficient 0n;
furthermore

s0 =
q1q2q3

2ε
{τ1(ω2 − ω3) + τ2(ω3 − ω1) + τ3(ω1 − ω2)

+ j[τ1(σ2 − σ3) + τ2(σ3 − σ1) + τ3(σ1 − σ2)]}

(43)

s1 =
q2q3

2ε

[
τ3ω2 − τ2ω3 + j(τ3σ2 − τ2σ3)

]
(44)

s2 =
q1q3

2ε

[
τ1ω3 − τ3ω1 + j(τ1σ3 − τ3σ1)

]
(45)

s3 =
q1q2

2ε

[
τ2ω1 − τ1ω2 + j(τ2σ1 − τ1σ2)

]
(46)

and

ε = q1q2q3[τ1(σ2ω3 − σ3ω2) + τ2(σ3ω1 − σ1ω3)

+τ3(σ1ω2 − σ2ω1)] (47)
σi = Re[Ai ] (48)
ωi = Im[Ai ] (49)

τi =
∣∣Ai
∣∣2. (50)

Similarly, as in Section III-D in (43)–(46) j is an imaginary
unit j =

√
−1.

The calculated N reflection coefficients γn of the loads used
in calibration may now be used to make sign corrections for
imaginary parts of circle centers yi . As discussed above, the
proposed calibration makes use of unknown calibration loads.
Although they can be unknown, they should be reasonably
spread over the complex plane, i.e., they should exhibit
different magnitudes and phases. In this step, only coarse
information on the phase trend of their reflection coefficient is
sufficient. Such information in practical measurement systems
is almost always known.

Here, to address the question of imaginary parts of circle
centers yi it is sufficient to state if the consecutively measured
calibration loads have, on average, increasing or decreasing
electrical lengths. Then, the sign of the calculated averaged
phase progression ϕc indicates whether the signs of yi are
correct or they should be opposite. The phase progression ϕc

can be derived using linear regression

ϕc =
2

N 2 − N

N∑
n=2

(n − 1)2n (51)

where the angles 2n are calculated iteratively:

2n =

 0, for n = 1

arg
[

γn

γn−1

]
+ 2n−1, for n > 1.

(52)

Finally, the sign of ϕc has to be compared against the sign
of genuine phase progression of the used calibration loads
ϕg . For example, if the calibration loads are realized as
a set of transmission lines with increasing physical length
(higher electrical length for higher n), then the genuine phase
progression is negative (ϕg < 0). Hence, the final values of
circle centers can be determined

Ci =

{
Ci temp, for ϕcϕg < 0
Ci temp, for ϕcϕg > 0

(53)

where (¯) is a complex conjugate.
It is worth mentioning that such an iterative calculation of

2n using arguments of ratios γn/γn−1 makes the algorithm
robust to phase wraps, as described in [20]. Furthermore,
it must be emphasized that the above algorithm for determin-
ing phase progression ϕc does not require calibration loads to
be known, as only coarse information on the phase of their
reflection coefficients in terms of increasing or decreasing
values is needed. Moreover, the phases of calibration loads
do not have to be arranged monotonically, as only the sign of
the averaged trend is used.

F. Weighting Factors for Increased Robustness

The above steps described in Sections II-A–II-E constitute
the complete calibration procedure resulting in the determi-
nation of system constants ui and Ci , which can easily be
recalculated to the values qi and Ai seen in (1). Nevertheless,
in practical measurement systems, where power values are
affected by noise and nonlinearity, a deterioration is observed
for small values of imaginary parts of circle centers yi . As seen
in Fig. 3, the calculation of yi is done using two points
(0, 0) and (1, 0), and two distances |Ci | and |Ci − 1|,
which are affected by imperfect power measurement. Hence,
the determination of Ci becomes inaccurate for smaller yi .
On the other hand, the distribution of Ci is normalized by
the chosen reference load 0r . Therefore, it is beneficial to
make another selection of 0r and repeat the stages described
in Sections II-C–II-E. Since the value 0r is now changed,
also the corresponding circle centers Ci will be translated,
and the resulting yi will be of a different, possibly higher,
value. Such a procedure can be extended to consecutively use
all N calibration loads as the reference 0r . This will yield
N sets of Ci and ui , which can be averaged with weighting
factors based on yi values. Since the particular calibrations are
normalized to different 0r , they must be appropriately rescaled
prior to the averaging. The values ui and Ci calculated using N
calibrations become much more robust to power measurement
uncertainty, as the deterioration for small values of yi is greatly
suppressed.

To realize the algorithm proposed above, the stages
described in Sections II-C–II-E should be executed N times
instead of one. For each execution, another calibration load
with reflection coefficient 0k (k = 1, . . . , N ) is used as the
reference 0r (see Section II-C), and the obtained calibration
results are stored as

Ci,k = Ci (54)
ui,k = ui (55)
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together with the corresponding weighting factors based on
imaginary parts of the determined circle centers

wi,k = y2
i . (56)

As mentioned above, for each execution, the obtained solution
is normalized by the appropriate 0r value. Therefore, the
parameter of normalization with respect to the calibration
results obtained for the first case (where 0r is realized by
the first calibration load) has to be stored

1k =
γk

γ1
. (57)

Finally, all N calibrations can be equalized using factors 1k

and averaged with weighting factors wi,k

Ci =

∑N
k=1 wi,kCi,k1k∑N

k=1 wi,k
(58)

ui =

∑N
k=1 wi,kui,k1k∑N

k=1 wi,k
. (59)

The obtained final coefficients Ci and ui can be further
used to calculate qi and Ai by rearranging (2) and (3). Then a
complex reflection coefficient γ (normalized by 01) is equal
to

γ = s0 + s1 p1 + s2 p2 + s3 p3. (60)

IV. EXPERIMENTAL VERIFICATION

To comprehensively verify the proposed calibration pro-
cedure, it was used to calibrate two six-port reflectometers:
the classic reflectometer reported in [22] and the optimized
one presented in [23]. They operate over the same wide
bandwidth from 2.5 to 3.5 GHz; however, they exhibit different
circle centers’ distribution. For the classic reflectometer, the
circle centers have magnitudes equal to 1,

√
2, and

√
2, with

angular differences of 135◦, 90◦, and 135◦, respectively. On the
other hand, all circle centers of the optimized reflectometer
have unitary magnitude with 120◦ of angular separation. Both
reflectometers were fed using an SMB 100A signal generator
by Rohde & Schwarz, providing 0 dBm of power swept over
the mentioned frequency range. For power measurement, four
LTC5597 integrated power detectors by Analog Devices were
used together with 16-bit analog-to-digital converters con-
trolled by field programmable gate array (FPGA) board [24].
They offer a linear response within the range from −35 to
0 dBm at the frequencies of interest. Photographs of the
developed reflectometers are shown in Fig. 4.

As described in Section II, the proposed calibration pro-
cedure requires a matched load and at least nine calibration
loads, which should cover a reasonably large part of Smith’s
chart over the frequencies of interest; however, due to imper-
fect power measurement, it is advantageous to use a higher
number of calibration loads. Therefore, this number was
increased to 12. Each load was fabricated as a microstrip
transmission line section with different electrical lengths, ter-
minated with a short-circuited surface-mounted device (SMD)
resistor having a random value from the range from 0 to 20 �,
which corresponds to the reflection coefficients’ magnitudes

Fig. 4. Developed six-port reflectometers used to experimentally verify
the proposed calibration procedure. (a) General view of the classic six-port
reflectometer. (b) Layout of the classic six-port network. (c) General view
of the optimized six-port reflectometer. (d) Layout of the optimized six-port
network.
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Fig. 5. Photograph of the match load and 12 calibration loads used in the
experimental verification of the proposed calibration procedure.

TABLE I
IMPEDANCE VALUES OF THE LOADS USED IN CALIBRATION

ranging from ≈0.4 to 1. The calibration loads are shown in
Fig. 5, whereas their reflection coefficients for four uniformly
distributed frequencies over the range from 2.5 to 3.5 GHz are
illustrated in Fig. 6; moreover, the corresponding impedances
are listed in Table I. As seen, the reflection coefficients differ
in both magnitudes and phases and no particular pattern in
their values is observed.

The two six-port reflectometers described above were cal-
ibrated following the proposed procedure with the use of
the mentioned calibration loads with no information on their
reflection coefficients. It is only known that the subsequent
calibration loads are of higher electrical length, hence ϕg < 0,
what is inferred on the coarse view of the physical lengths of
these loads seen in Fig. 5; furthermore, for both reflectometers
also a reference calibration involving the same calibration
loads was performed. For this purpose, however, their reflec-
tion coefficients were beforehand measured with the use of
VNA and used as known values to solve (1) for qi and Ai

[and thus ui and Ci in (4)] using the numerical procedure
as described in [20]. The results of both calibrations in the
form of circle centers Ci for both reflectometers are shown
in Fig. 7. It is seen that both calibration procedures provide
similar results.

Since both reflectometers are now calibrated, they can be
used to measure complex reflection coefficients. It should be
emphasized that the proposed calibration allows for measuring
reflection coefficients γ normalized by the (unknown) value
of the calibration load used as the first one 01, marked as
the dark blue filled circle in Fig. 6. As seen its magnitude

Fig. 6. Reflection coefficients of the match load and 12 calibration loads
used in the experimental verification of the proposed calibration procedure for
four frequencies. (a) 2.50 GHz. (b) 2.83 GHz. (c) 3.17 GHz. (d) 3.5 GHz. The
reflection coefficient of the first calibration load 01 is marked with a filled
circle.

is lower than unity; therefore, the measured values γ can
exceed unity (or 0 dB) in magnitude. For comprehensive
verification of the measurement performance, a set of six
one-ports was composed of a single low-loss thru and five
broadband attenuators with attenuations ranging from 1 to
10 dB. The above thru and attenuators were terminated with
a sliding short having a fixed length chosen in such a way
that, over the considered frequency range, their phase response
varies by ≈360◦. As a result, the prepared one-ports exhibit
reflection coefficients covering the magnitude range from −20
to 0 dB and all angles.

The reflection coefficients were measured using both
six-port reflectometers and for both calibrations. Addition-
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Fig. 7. Circle centers Ci over the frequency range 2.5–3.5 GHz obtained in
the proposed calibration (solid lines) and in the reference calibration (dashed
lines) for (a) classic six-port and (b) optimized six-port.

ally, the measurements were also taken with the use of a
commercial VNA N5224A by Keysight. The values obtained
for the reference calibration and the ones measured using VNA
were additionally normalized by 01 for better comparison
against the results provided by the proposed calibration. The
magnitudes and phases of the tested one-ports measured in
these three ways are depicted in Fig. 8 for the classic six-port
and in Fig. 9 for the optimized six-port. Because of the similar
phase response of each one-ports, the phase response is only
shown for the reflection coefficient having the maximum and
the minimum magnitude, i.e., for 0-dB thru and for 10-dB
attenuator. Furthermore, to complete the assessment of the
calibration performance, error vector magnitude (EVM) was
calculated for each measured one-port as

EVM =
∣∣γSP − γVNA

∣∣ (61)

where γSP is the normalized reflection coefficient measured
using the six-port reflectometer (classic or optimized one,
with the proposed or reference calibration), and γVNA is the
corresponding value measured with the aid of VNA. The
calculated values are illustrated in Fig. 10.

In the final step, the execution time of the proposed method
developed in the MATLAB environment was measured. The
procedure was performed on a laptop with an Intel i5 processor
and 16 GB RAM. The time needed to process 101 points
in frequency, for which the six-port reflectometers were cali-
brated, was equal to 142 ms, which corresponds to 1.4 ms for
a single execution. In contrast, using the same computer, the
algorithm reported in [20] requires 113 s to perform calibration

Fig. 8. Reflection coefficient of a set of one-ports composed of thru (0 dB)
and five broadband attenuators having attenuation from 1 to 10 dB measured
using the classic six-port reflectometer with the proposed calibration (solid
lines) and with the reference calibration (dashed lines) compared against the
corresponding values measured using VNA (dotted lines) over the frequency
range 2.5–3.5 GHz. (a) Magnitudes. (b) Phases.

for the same number of 101 frequencies. It, therefore, equals
1.12 s for a single execution. As seen the proposed procedure
reduces the execution time by 800 times.

V. DISCUSSION

As seen in Figs. 8–10, the values measured using the
proposed calibration are in good agreement with the ones
obtained using the reference calibration in spite of using
unknown calibration loads. It proves the correctness of the
developed procedure. Although the proposed method measures
values normalized by unknown reflection coefficient 01, it can
successfully be applied in relative measurements, such as
phase shifts or magnitude ratios, which are very common in
modern electronics, e.g., in microwave sensors. It is exper-
imentally confirmed for complex values over the magnitude
range exceeding 20 dB and for all possible phases.

It can also be observed that the proposed calibration pro-
vides normalized results similar to those obtained for the
calibration reported in [20]. There are, however, substantial
differences between these calibrations, making the presented
one superior to previously reported solutions. The proposed
calibration is a closed-form solution providing the results by
means of fully analytical calculations. Therefore, it eliminates
any need for sophisticated numerical algorithms, such as non-
linear optimizations used in [20], which usually need advanced
computational resources. Also, there is no need for defin-
ing initial conditions to ensure the algorithm’s convergence.
Therefore, the execution time and number of calculations do
not vary with input data and/or parameters of a considered
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Fig. 9. Reflection coefficient of a set of one-ports composed of thru (0 dB)
and five broadband attenuators having attenuation from 1 to 10 dB measured
using the optimized six-port reflectometer with the proposed calibration (solid
lines) and with the reference calibration (dashed lines) compared against the
corresponding values measured using VNA (dotted lines) over the frequency
range 2.5–3.5 GHz. (a) Magnitudes. (b) Phases.

six-port reflectometer. This results in a significantly shorter
time of execution and easier implementation, allowing for
application in mobile devices featuring limited computational
resources.

Last, a discrepancy between the measurement results
obtained for both calibration procedures with respect to the
values obtained using VNA needs to be addressed. As given
in Section II, both the proposed calibration and the reference
one are based on the model (1); thus, the ideal impedance
match of the six-port network’s measurement port (s22 = 0)
and ideal isolation between the measurement port and the
port with a reference power meter (s62 = 0) are assumed.
This is, however, only an approximation since a practical
six-port network exhibits small yet nonzero magnitudes of
s22 and s62. Therefore, the model given by (1) is somehow
simplified. To make it complete, it should be augmented by
an A0 factor corresponding to nonzero parameters s22 and s62
to the following form:

pi =
Pi

Pref
= qi

∣∣ 1 + Ai0

1 + A00

∣∣2. (62)

Although the model given by (62) can be solved using a
procedure using known calibration loads, e.g., [15], there is
no known method for solving (62) with unknown calibra-
tion loads. Simultaneously, using (1) instead of (62) for a
reasonably well-designed and fabricated six-port reflectome-
ter introduces a small systematic error, which is of minor
importance, especially for the relative measurements described
here. Nevertheless, having a magnitude of A0 (which is
comparable to |s22| and |s62|), the introduced magnitude and
phase measurement errors can be estimated using the analysis
shown in [20]. Since the magnitude of A0 can be assumed to be
≈−25 dB for the used six-port reflectometers, the magnitude

Fig. 10. EVMs calculated for (a) classic and (b) optimized six-port
reflectometers with the proposed (solid lines) and reference (dashed lines)
calibration over the frequency range 2.5–3.5 GHz.

and phase measurement error can be approximated as

1mag ≈ 0.11 ·
∣∣0∣∣ (63)

1phase ≈ 6.5 ·
∣∣0∣∣[◦] (64)

meaning that the maximum error is obtainable for the unitary
magnitude of the measured reflection coefficient. By combin-
ing (63) and (64), the maximum EVM can be calculated.
For |0| = 1, it is equal to 0.162, which fully corresponds
to the worst case observed in Fig. 10. Also, for smaller
magnitudes |0|, this value becomes proportionally smaller,
which is also seen in Fig. 10. It should also be emphasized
that such systematic error is of lower importance for mea-
surements normalized to unknown calibration load as in the
proposed calibration procedure. For example, the magnitudes
measured by the classic six-port reflectometer over the range
2.6–2.8 GHz seen in Fig. 8(a) are uniformly decreased. Hence,
the ratio (or difference in dB scale) between any two measure-
ments remains almost unaffected, which is crucial for such
normalized measurements.

VI. CONCLUSION

In this article, a new method for calibrating six-port reflec-
tometers was proposed. It is the first fully analytical calibration
procedure, which uses a matched load and unknown calibra-
tion loads, which may differ in both magnitude and phase.
Since the used calibration loads do not have to share equal
magnitudes, arbitrary loads can be used; therefore, require-
ments on calibration loads are significantly relaxed. To obtain
good performance, the corresponding reflection coefficients
should, however, be reasonably spread over the complex
plane. The procedure requires at least nine different calibra-
tion standards, and this number can be arbitrarily increased
for higher robustness. Because of the provided closed-form
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solution, the proposed method does not require any sophisti-
cated iterative numerical algorithm. Thus, the execution time
is greatly reduced with the previously numerical approach
reported in [20]. Since it allows for relative measurements
of complex reflection coefficients, it may be applied in, e.g.,
microwave sensors, where phase shift and/or magnitude ratio
is subject to measure. Also, it is suitable for implementation
in mobile microwave measurement systems having limited
computational resources.

The proposed method was experimentally validated using
two wideband six-port reflectometers exhibiting different
parameters for a wide range of both magnitude and phase
of the measured reflection coefficients. The developed cali-
bration procedure ensures high robustness to imperfect power
measurement realized with the aid of integrated power detec-
tors. For further inspection, a reference calibration procedure
was developed, in which the same calibration loads were
used as known values, as their reflection coefficients were
previously measured using VNA. The comparison showed
that the proposed calibration provides accurate results, being
very close to the ones obtained in the reference calibration
using known calibration loads and to the reflection coefficients
measured using commercial VNA. It is therefore seen that
the presented procedure is particularly useful for systems in
which the measurement circuitry is integrated with DUT with
no possibility to precisely characterize calibration loads, and at
most, coarse information regarding their reflection coefficient
(e.g., simulation results) is given [25]. Furthermore, it can
be seen that the model (1) used in the proposed calibration
for one-port measurements is also valid for transmission
(two-port) measurements, as discussed in [25]. Hence, future
works will be focused on the augmentation of the developed
procedure on two-port measurements.
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