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Abstract— In this article, we investigate the feasibility of a
high angular resolution method based on deep learning for
estimating the angle of arrival (AoA) using an automotive
frequency-modulated continuous-wave (FMCW) multiple-input
multiple-output (MIMO) radar. The deep learning approach
takes advantage of the 2-D signal structure from the range-
Doppler (RD) maps to determine AoA of targets. To achieve
this, we use a neural network architecture that is based on
the frequency-representation module of the DeepFreq model.
We call it FRNet12, since it uses 12 virtual antennas, which
are derived from three transmit and four receive antennas using
our FMCW MIMO radar. Furthermore, we propose a cascaded
neural network system to further improve the performance of the
FRNet12 model. This system consists of an extrapolation neural
network (ETPNet) and FRNet18. The ETPNet extrapolates six
additional samples from the 12 virtual antenna inputs, and
the output is then used to train the FRNet18. The cascaded
system provides an improvement of 33% in angular resolution
compared to FRNet12. Additionally, it maintains the probability
of resolution (PoR) at nearly 100%, even when two targets with
different amplitudes are within the theoretical angular resolution
region. The proposed method is verified using simulation and
measurement data from a 77-GHz FMCW MIMO radar with
three transmit and four receive antennas. The results of this
research demonstrate the potential of applying deep learning
to estimate the AoA in an automotive radar system, and the
proposed cascaded neural network system represents a significant
improvement over the FRNet12 model.

Index Terms— Angular resolution, deep learning, frequency-
modulated continuous-wave (FMCW) radar, multiple-input
multiple-output (MIMO) radar, neural netwoks, probability of
resolution (PoR).

I. INTRODUCTION

WITH the emergence of self-driving cars and advanced
driver assistance system, automotive radars have

become the eyes of the autonomous vehicles [1], [2]. State-of-
the-art automotive radar sensors have the ability to simultane-
ously and precisely identify the range, velocity, azimuth, and
elevation angle of multiple objects. However, a weakness of
radar sensors is their angular resolution, which is determined
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by the number and positioning of physical antennas. Multiple-
input multiple-output (MIMO) antenna systems are used to
improve the virtual antenna aperture. The transmit (TX) and
receive (RX) antennas from MIMO radar can be combined into
virtual receivers to increase the angular resolution for detecting
angle of arrival (AoA) of the targets [3], [4], [5]. A MIMO
radar system can be implemented using time-division multiple
access (TDMA) [6], [7], [8], [9], and [10], frequency-division
multiple access (FDMA) [11], [12], [13], [14], [15], or code-
division multiple access (CDMA) [16], [17].

In a MIMO radar system, the number of virtual receivers
(NVRX) corresponds to the product of the number of TX (NTX)
and RX (NRX) antennas. In applications for detecting the AoA
of the targets, a uniform linear array (ULA) is widely used.
This type of array typically has virtual antennas spaced half a
wavelength apart and is commonly employed in MIMO radar
systems, as seen in [6], [13], [14], [18], [19], [20], [21], [22],
[23]. The theoretical angular resolution of MIMO radars using
these ULA can be calculated as [6]

θres =
λ

NTX NRXd cos(θ)

=
2

NTX NRX

=
2

NVRX
(1)

where d = λ/2 is the RX virtual element spacing, λ

denotes for wavelength and θ denotes for AoA of the received
signal relative to the antenna array boresight direction that
is perpendicular to the axis of the linear receiver antenna
array. The angular resolution of a radar system refers to its
ability to distinguish between two separate targets located at
different angles relative to the antennas. A higher angular
resolution means that the radar system can distinguish the AoA
between two targets more precisely. To enhance the angular
resolution, a typical approach is to increase the number of
physical antennas and the size of the aperture, but this solution
is costly and requires hardware changes.

There has been a long history of developments in AoA
estimation techniques [24]. The fast Fourier transform (FFT)
is a widely used technique for estimating the spectrum and
AoA of targets. However, the probability of resolution (PoR)
using this method is low. Besides FFT, many algorithms have
been developed, and among them, subspace-based estimation
methods such as multiple signal classification (MUSIC) [25],
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[26] and estimation of signal parameters via rotational invari-
ance techniques (ESPRITs) [27] are well-known for their
high-resolution capabilities. Moreover, various modifications
of the MUSIC and ESPRIT algorithms have been proposed
to accommodate different conditions [28], [29], [30], [31],
[32]. However, these algorithms face challenges in real-time
implementation due to their high computational complexity,
and require knowledge of the number of frequencies or tar-
gets beforehand, which is not always available in automo-
tive radar applications. Furthermore, when the signal-to-noise
ratio (SNR) decreases, the performance of these algorithms
deteriorates significantly. To determine the number of fre-
quencies, information-theoretic criteria such as the Akaike
information criterion (AIC) [33] or minimum description
length (MDL) [34], [35] could be used, along with model
order selection rules based on maximum a posteriori proba-
bility (MAP) [36]. Nevertheless, these additionally required
algorithms would further increase computational complexity.

Another approach in AoA estimation is the use of deep
learning, a specialized branch of machine learning. In contrast
to traditional neural networks that only have a few hidden
layers, deep neural networks (DNNs) often have tens to
hundreds of hidden layers. Researchers have recently intro-
duced deep learning techniques to solve the problems of AoA
estimation [37], [38], [39], [40], [41], [42]. However, these
approaches require the estimation of the spatial covariance
matrix, and they have not been validated with measure-
ment data, which makes them difficult to evaluate in real-
world applications. The research in [43] highlights the recent
advancements and studies in the area of deep learning for
AoA estimation in the context of automotive radar over the
past few years. Recently, the DeepFreq model was introduced
as a deep learning approach to estimate AoA in a data-driven
manner [44]. The model consists of two modules: a frequency-
representation module and a frequency-counting module. It is
an improved version of the pseudo-spectrum neural network
(PSNet) model from [45] and produces a highly accurate 1-D
frequency representation. DeepFreq does not rely on the spatial
covariance matrix, and directly operates on the generated
complex sinusoidal signal data. This eliminates the need for
preprocessing and still results in state-of-the-art performance.

In this article, we propose a high angular resolution deep
learning method to estimate the AoA of targets in a frequency-
modulated continuous-wave (FMCW) MIMO radar system.
Our method leverages the 2-D signal structure from the range-
Doppler (RD) map. The neural network architecture used
in this approach is based on the frequency-representation
module of the DeepFreq model and is referred to as FRNet12,
as it utilizes NVRX = 12 virtual antennas, derived from the
combination of three transmit and four receive antennas in our
FMCW MIMO radar prototype. FRNet12 offers higher PoR
and lower SNR requirements than traditional techniques like
FFT and MUSIC. Additionally, the method does not require
the prediction of the number of frequency components, further
enhancing its efficiency. To further improve the performance
of FRNet12 model, we propose a cascaded neural network
system includes an extrapolation neural network (ETPNet)
and FRNet18. The ETPNet extrapolates six additional samples

from the 12 virtual antenna inputs, and the output is then used
to train the FRNet18. The cascaded neural network system
increases the theoretical angular resolution for the MIMO
radar system using ULA receivers to

θres =
2

NTX NRX + NETP

=
2

NVRX + NETP
(2)

where NETP = NVRX/2 = NTX NRX/2 = 6 represents the
number of extrapolated virtual receiver channels. Compared to
FRNet12, the cascaded network system consisting of ETPNet
and FRNet18 not only improves angular resolution by 33%,
but also maintains a nearly 100% PoR even when two targets
with different amplitudes are present within the new theoretical
angular resolution region. This idea was inspired by [19],
but our approach does not require model order selection or
an estimation of the number of targets. The potential of
using deep learning for AoA estimation without estimating
the spatial covariance matrix is also explored in [46] and [47].
However, their approach uses a simpler single-stage feed-
forward neural network (FNN) architecture compared to our
two-stage architecture consisting of ETPNet, which uses FNN
architecture, and FRnet12, which incorporates auto-encoder
and 1-D convolutional neural network (1D-CNN) architecture.
While our approach is more complex and takes longer to
train, it outperforms using FRnet12 alone, demonstrating the
advantage of a multistage approach.

In summary, this article presents two major contributions as
follows.

1) A deep learning method that utilizes the 2-D signal
structure from the RD map of an FMCW MIMO
radar system to estimate the AoA of the targets. The
neural network structure built upon the frequency-
representation module of the DeepFreq model, referred
to as FRNet12.

2) A cascaded neural network system consisting of two
networks, ETPNet and FRNet18, which further improves
the performance of FRNet12 by increasing the angular
resolution by 33% and maintaining a nearly 100%
PoR even when two targets with different amplitudes
approach the new theoretical angular resolution in (2).

The organization of this article is as follows. Section II
presents a review of the fundamental principles of FMCW
MIMO radar. In Section III, we outline the data genera-
tion process, the FRNet12 and ETPNet architecture, and the
training procedure. Section IV analyzes the simulations and
measurements using a 77-GHz FMCW MIMO radar system
with three TX and four RX antennas. Finally, Section V
provides the concluding remarks based on the results obtained.

II. BACKGROUND OF FMCW MIMO RADAR

In this section, we briefly review the basic operation of
FMCW MIMO radar [14]. In an FMCW radar, the signal
model sT (t f ) for a transmitted chirp can be written as

sT (t f ) = A cos
(

2π f0t f + π
B

Tsw
t2

f + ϕ0

)
(3)
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where A is the amplitude, f0 is the start frequency, B is the
bandwidth, Tsw is the time duration of single up-chirp, ϕ0 is
the initial phase, and t f represents the time within the up-
chirp, referred to as fast-time. If a target is illuminated by the
radar beam, a portion of the signal energy is reflected back
to the radar’s receiver. The intermediate frequency (IF) signal,
obtained after passing through a mixer and low-pass filter,
is the result of multiplying the transmitted and received sig-
nal. The analog-to-digital converter (ADC) samples N points
during Tsw for each receive channel. To determine the velocity
of targets, the transmitting antennas continuously transmit Np

chirps in the slow-time ts . Each RX channel then receives
IF signal matrix SIF ∈ RN×Np . For a radar system with NRX
receive antennas, this process forms the raw radar cube data
S ∈ RN×Np×NRX . The range profile can be determined by taking
the first FFT along the fast-time with N sampling points, while
the velocity profile is estimated by taking another FFT along
the slow-time with Np chirps. The result of this 2-D FFT is
referred to as the RD maps XRD and XRD ∈ CZ R×Z D×NRX ,
where Z R and Z D is the zero padding for FFT along N and
Np, respectively. Finally, the AoA of targets can be calculated
by taking the third FFT along the receiving channels or the
spatial domain.

A MIMO radar system can be established using one of
the three distinct approaches: TDMA, FDMA, or CDMA.
Implementing CDMA techniques in radar systems signifi-
cantly increases hardware complexity, making it an impractical
solution, especially for millimeter-wave systems. TDMA is
the most straightforward method of separating signals from
multiple transmit antennas, using sequential activation with
orthogonality in time. However, TDMA cannot utilize simul-
taneous transmission from all transmit antennas and requires
motion compensation for dynamic scenarios [7], [8], [9], [10].
DDMA, on the other hand, is one of the possible FDMA
techniques which can utilize simultaneous transmission from
all TX antennas. Fig. 1 illustrates the comparison between
TDMA and DDMA using three TX antennas over a period of
3tp, where tp is the transmission time for Np chirps, or one
burst, and tp = Tsw Np. With three TX antennas, TDMA needs
three bursts to estimate range, velocity, and AoA of the targets
simultaneously. In contrast, DDMA only requires one burst to
estimate these parameters and DDMA does not require motion
compensation for moving targets [14]. Therefore, in this work,
we apply DDMA technique for our FMCW MIMO radar.

The application of DDMA technique and the separation
method using binary mask algorithm for FMCW MIMO
radar is explained in detail in [14]. In brief, the DDMA
FMCW radar system with NTX and NRX antennas operates as
follows. After mixer, lowpass filter and ADC, each RX channel
receives a signal S̃IF ∈ RN×Np while NTX antennas transmit
simultaneously. With NRX antennas, this creates a raw ADC
radar cube data S̃ ∈ RN×Np×NRX . By applying a 2-D FFT of S̃
with a window function, the RD maps X̃RD ∈ CZ R×Z D×NRX are
generated. The Hann window is applied in range and Doppler
for this approach to reduce the sidelobes. The main difference
between the RD maps X̃RD generated by DDMA FMCW
radar and the RD maps XRD created by the conventional
FMCW radar lies in the Doppler domain where the targets

Fig. 1. Sketch of linear FMCW ramps visualizing the difference between
the TDMA and DDMA approach for activating three different TX anten-
nas. DDMA leverages the simultaneous transmission over all TX antennas,
while TDMA employs a sequential activation of only one TX during the
transmission time tp . Additionally, TDMA requires three bursts to estimate
simultaneously range, velocity, and AoA of the targets while DDMA only
needs one burst.

in X̃RD are shifted. As a result, the number of targets in X̃RD
is greater than in XRD, with the ratio of M × NTX where
M represents the number of targets in XRD. The 2-D cell
averaging constant false alarm rate (2-D CA-CFAR) [48], [49]
is then applied to determine the adaptive threshold for the
binary mask algorithm [13], [14]. The processed RD maps
J ∈ CZ R×Z D×NVRX , where NVRX = NTX NRX, are produced
through a separation method [14] and serve as input to the
deep learning approach. The signal processing chain in this
work is depicted in Fig. 2.

III. DEEP LEARNING APPROACHES

A. Data Preparation and Frequency Representation Neural
Network Architecture

In the deep learning approach, we need to train a neural
network to estimate the AoA of targets. To accomplish this,
we must first model the input data from NVRX RD maps J in
the spatial domain. This model is then used to generate the
input data for training the neural network. When there are M
unknown point-targets at the same RD bin, the vector x from
NVRX virtual receivers can be modeled by its entries

x[n] =

M−1∑
m=0

αme j (2π fm n+φm )
+ z[n] (4)

where αm , fm , and φm are the unknown amplitude, spatial fre-
quency, and initial phase of the mth complex sinusoid, z[n] is
complex white Gaussian noise, and n = {0, 1, . . . , NVRX − 1}.

Our FMCW radar prototype features three TX and four
RX antennas. To generate the data for training and testing
our neural network, we created 105 samples x from (4) while
varying αm , fm , φm , and z[n]. The number of virtual receivers
used in this process was NVRX = 12. We used 9 · 104 samples
for training and 104 samples for testing the neural network.
The procedure for generating these data samples is described
as follows.

1) Since M is unknown, the value of M is chosen uniformly
at random between 1 and 5. The performance of the
neural network is influenced by both M and the length of
NVRX. In cases where NVRX > 12, M can be increased.
However, for our approach with NVRX = 12, a value of
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Fig. 2. Overview of signal processing chain in this article. S̃ ∈ RN×Np×NRX , X̃RD ∈ CZ R×Z D×NRX , J ∈ CZ R×Z D×NVRX .

Fig. 3. FRNet12 architecture. The input of the FRNet12 comprises of
complex numbers, which are separated into their real and imaginary parts
and then concatenated. The colors in this figure indicate the classification of
the input and output data, both of them are real numbers.

M = 5 was found to provide better training results com-
pared to values of M > 5. In practical radar applications,
the probability of having five targets with both the same
range and velocity in the RD map is low, whereas it is
more probable to have multiple targets with the same
range but different velocities. Typically, the case of two
or three targets having both the same range and same
velocity may occur. Therefore, in the AoA estimation
with NVRX = 12, a value of M = 5 is considered a
suitable choice for training the neural network.

2) The frequencies fm in (4) play an important role in AoA
estimation, as they indicate the angle of the targets. fm

are randomly generated, but with a minimum separation
determined by (1). With NVRX = 12, the minimum
angular separation between targets is around 9.55◦. If the
training process involves a minimum angular separation
between targets that is less than 9.55◦, it would result
in a decrease in performance [44].

3) The phases φm are chosen uniformly random from 0 to
2π .

4) The SNR is defined as (α2
m/2σ 2) [50]. To ensure a wide

range of SNR values, the amplitudes αm are chosen
accordingly with the variance σ 2 from the complex
Gaussian noise z[n] such that the SNR varies from 0 to
40 dB.

5) The input power needs to be normalized between 0 and
1 in order to improve the efficiency of the training
process.

6) The output y of the neural network is a pseudo-spectrum
or frequency representation [44], [45]. y is the superpo-
sition of narrow Gaussian pulses where the width of the
pulses is determined by the variance σ 2

g and the mean
is represented by fm . This can be expressed as

y[k] =

M−1∑
m=0

exp

(
−

( f [k] − fm)2

2σ 2
g

)
(5)

where f [k] is the AoA axis, −π/2 ≤ f [k] ≤ π/2,
k = {0, 1, . . . , K − 1}, and K is the length of y. σ 2

g is
also a hyperparameter for training the neural network.

The neural network architecture employed in this approach
is based on the frequency-representation module of the Deep-
Freq model as described in [44]. It consists of an encoder,
a series of 1-D CNN, and a decoder. A similar structure can
be found in previous works, such as [51], [52], [53]. However,
the hyperparameters used in this approach differ from those
used in the frequency-representation module of the DeepFreq
model, as the latter uses an input of 50 complex samples,
while this approach uses input from 12 virtual antennas. The
neural network architecture is depicted in Fig. 3. This network
is referred to as FRNet12, as it utilizes NVRX = 12 virtual
antennas. The input model in (4) is complex, so the real
and imaginary parts need to be separated and concatenated.
The input is then passed through an encoder, consisting of a
single linear layer followed by a parallel linear transformation,
mapping the input to an intermediate feature space. The linear
layer has an input size of 2NVRX = 24 and an output size
of 2048. The parallel linear transformation converts these
2048 outputs into 64 feature channels, each with a size of
32. These feature channels are processed by 22 1-D convo-
lutional layers with localized filters of length 3, along with
batch normalization and rectified linear units (ReLUs). Finally,
a decoder using upsampling and 1-D-transposed convolution
generates the pseudo-spectrum with a length of K = 512.
The network’s training loss was minimized using the Adam
optimizer [54] with a batch size of 256 and L2 regularization,
for reducing overfitting problem [55]. The learning rate was
initialized at 7.45·10−4 and the loss was measured using mean-
squared error (mse). All these parameters are hyperparameters
that were tuned to achieve the minimum test loss.

After completing the training of the FRNet12, the AoA of
the targets can be estimated through the following steps.

1) The 3-D input J ∈ CZ R×Z D×NVRX is flattened into a 2-D
matrix F1 ∈ C(Z R ·Z D)×NVRX .

2) The input J is generated from the separation method
utilizing 2-D CA-CFAR and binary mask algorithm [14].
During these process, the indices containing the target
locations are determined. After obtaining F1, F2 is
created as a reduced version of F1 using the information
on the target location indices and F2 ∈ CZ×NVRX where
Z represents the total number of target indices. The
reduction of Z R ·Z D to Z serves to minimize unnecessary
calculations during application of the neural network.
The neural network only processes the region in the RD
map that contains the targets.

3) F2 contains complex data, it must be separated into its
real and imaginary parts, which are then concatenated
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Fig. 4. Process of deep learning approach to estimate output Y which is the RA map containing the AoA of targets from input J. The blue color is complex
data and the light green color is real data. J ∈ CZ R×Z D×NVRX , F1 ∈ C(Z R ·Z D )×NVRX , F2 ∈ CZ×NVRX , F3 ∈ RZ×2NVRX , Y1 ∈ RZ×K , Y2 ∈ RZ R×Z D×K , and
Y ∈ RZ R×K .

to form F3 ∈ RZ×2NVRX . F3 serves as the input of the
FRNet12.

4) The FRNet12 generates an output Y1 ∈ RZ×K .
5) Given the information of the target location indices, Y2

can be reconstructed from Y1 and Y2 ∈ RZ R×Z D×K .
6) Finally, the mean is taken over dimension Z D of Y2

to form Y, which represents the range-angle (RA) map
containing the AoA of the targets and Y ∈ RZ R×K .

Fig. 4 shows the process of creating output Y from input J
using the deep learning approach with FRNet12.

B. Cascaded Neural Network System

The FRNet12 has the ability to enhance the PoR when
the AoA of the targets approaches the theoretical angular
resolution as indicated in (1), as demonstrated in Section IV.
However, its performance degrades if the AoA of the targets
is less than 2/NVRX. Training the FRNet12 with a minimum
angle between targets set to less than 2/NVRX would result
in a decrease in performance [44]. To address this issue,
we propose the use of a cascaded neural network system,
which outperforms the FRNet12. The cascaded neural network
system can improve the PoR as the AoA of the targets
approaches the new theoretical angular resolution according to
(2). As previously discussed in the introduction, this network
consists of an ETPNet followed by the FRNet18. The ETPNet
extrapolates NETP samples from NVRX data. In this imple-
mentation, we have set NETP = NVRX/2. Choosing NETP >

NVRX/2 would result in a decrease in the performance of the
ETPNet. As the number of extrapolated samples increases, the
associated error also increases, and vice versa. We found that
to optimize the performance of our deep learning approach,
setting NETP = NVRX/2 achieves the optimal balance between
the number of extrapolated samples and the resulting extrap-
olation error using ETPNet. The following steps outline the
process for generating the data for training the ETPNet.

1) Generating 105 samples x′ following equation (4)
without adding the noise term z[n], where n =

0, 1, . . . , NVRX + NETP − 1, NVRX = 12, and NETP =

NVRX/2 = 6. Using 9 · 104 of the generated samples for
training and the remaining 104 for testing purposes.

2) Adding noise z[n] to the first NVRX = 12 samples of x′

by selecting amplitudes αm that are in accordance with
the variance σ 2 of the Gaussian noise, such that the

Fig. 5. ETPNet architecture. The input of the ETPNet consists of complex
numbers, which are separated into their real and imaginary parts and then
concatenated. The colors in this figure indicate the classification of the input
and output data, both of which are real numbers.

SNR ranges from 0 to 40 dB. Keeping the last NETP =

6 samples of x′ without adding noise, and defining this
new data as x̄, with a length of NVRX + NETP = 18.
The reason for splitting the noise in this manner is to
enhance the training of the ETPNet, compared to using
the training sample x from (4) with noise z[n]. This
has been confirmed through multiple experiments with
a minimum test loss.

3) M is chosen uniformly at random between 1 and 5.
4) fm are generated randomly, with a minimum separation

between them as specified in (2). Since NVRX = 12,
NETP = NVRX/2 = 6, (2) results in a minimum angle
between targets of 6.36◦.

5) The phases φm are chosen uniformly at random from
0 to 2π .

6) The input of the ETPNet is the first NVRX = 12 samples
of x̄.

7) The output of the ETPNet is x̄.
8) The input and output power is normalized between 0 and

1 to improve the training process.

The ETPNet architecture is depicted in Fig. 5. It is an FNN
that utilizes linear layers with a hyperbolic tangent (Tanh)
activation function. The input size is 2NVRX = 24 which is the
concatenation of the real and the imaginary data. The network
consists of eight hidden layers, each with 112 neurons, and the
output layer has a size of 2(NVRX + NETP) = 36, representing
the real and imaginary extrapolated data. mse is used as the
loss metric, which is minimized through training using the
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Adam optimizer with an initial learning rate of 5 · 10−4. The
batch size is set at 256, and L2 regularization is applied
to mitigate overfitting issues. These hyperparameters were
selected through a tuning process to achieve the minimum
test loss. After finishing the training process, the weights are
saved for training the FRNet18 model.

The data generation process for training the FRNet18 is
the same as that for training the FRNet12, with the exception
of the frequency fm specified in (4). The frequency fm

are randomly generated such that the minimum separation
between them follows the constraint specified in (2), which
is 6.36◦ when NVRX = 12 and NETP = 6. In addition, the
encoder of the FRNet18 has a slight modification compared to
the structure of the FRNet12. Since the input of the FRNet18
is the output of the ETPNet, the input size for the single
linear layer in the encoder is 2(NVRX + NETP) = 36, rather
than 2NVRX = 24 as in the case of the FRNet12. To train
the FRNet18, the training data is fed into the ETPNet, which
has been previously trained, and the output of the ETPNet is
then used to train the FRNet18. After finishing the training
for FRNet18, the AoA of the targets is estimated in a similar
manner as depicted in Fig. 4, with the only difference being
that the FRNet12 is replaced by a cascaded neural network
system. The signal F3 is fed into the ETPNet, and the output of
the ETPNet is then passed on to the FRNet18 and subsequent
layers in the neural network architecture.

IV. SIMULATIONS AND MEASUREMENTS

A. Simulations

In this section, we present four different types of simulations
to compare the performance of conventional digital beam-
forming using FFT, MUSIC, FRNet12, and a cascaded neural
network system using ETPNet and FRNet18. We also compare
the performance of the ETPNet with another extrapolation
method using least squared (LS). The LS method can predict
the future sample of x[n] from (4) by the following equation:

x̂[n + 1] =

L−1∑
p=0

a[p]x[n − p] (6)

where a[p] are the linear prediction coefficients, L is the
model order, L ≤ NVRX −1, L = 2M̂ [56], M̂ is the estimated
number of frequency component or number of point-targets M
in (4). M̂ can be estimated using AIC or MDL or MAP. In this
work, we select the MAP criterion as it demonstrated better
performance than AIC and MDL [36] for sinusoidal signals.

To estimate a[p], we need to form a matrix X as

X =


x[0] x[1] · · · x[L−1]

x[1] x[2] · · · x[L]

...
...

. . .
...

x[NVRX−1−L] x[NVRX−L] · · · x[NVRX−2]

.

Then we form a vector h = [x[L] x[L + 1] · · · x[NVRX −

1]]
T. The linear prediction coefficient vector a =

[a[0] a[1] · · · a[L − 1]]
T can be estimated as

a = (XHX)−1XHh. (7)

Fig. 6. Simulation results with seven different approaches for two targets
with identical amplitude as a function of SNR varying from 0 to 40 dB
and difference 1θ varying from 0◦ to 17.5◦ between the AoA of the two
targets from the first simulation. Each SNR and 1θ point is simulated with
1000 trials. (a) PoR: the upper right side of the curves is the PoR region
which is larger than 95%. (b) RMSE: the upper right side of the curves is the
RMSE region which is smaller than 1.5◦.

By using (6), we can extrapolate NETP = NVRX/2 future
values for x. The LS method can enhance the performance
of AoA estimation compared to conventional FFT as demon-
strated in [19]. To compare the performance of ETPNet
and LS + MAP, we consider the following combinations:
ETPNet + FFT, LS + MAP + FFT, ETPNet + FRNet18, and
LS + MAP + FRNet18.

In the first simulation, we simulate the PoR and root-mean-
square error (RMSE) of two targets with identical amplitudes
as a function of SNR and the difference between the AoA of
the two targets, denoted as 1θ = |θ1 − θ0|. The phases of the
two simulated targets are random and uniformly distributed,
while the noise is modeled as white Gaussian noise. The SNR
values range from 0 to 40 dB with a step size of 1 dB, while
1θ varies from 0◦ to 17.5◦, with a step size of 0.5◦. Two
estimated AoA θ̂1 and θ̂0 are considered detected if they lie
within a tolerance band of ±|θ1 −θ0|/2 around the true values,
and if the estimated amplitudes fall within a range of ±50%
from the actual value. Each SNR and 1θ point is simulated
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TABLE I
COMPARISON OF SEVEN DIFFERENT APPROACHES IN THE FIRST SIMULATION RESULT PRESENTED IN FIG. 6. IN THIS SIMULATION, TWO TARGETS

HAVE IDENTICAL AMPLITUDE VARYING FROM 0 TO 40 dB AS A FUNCTION OF SNR AND 1θ . 1θ VARIES FROM 0◦ TO 17.5◦

with Ntr = 1000 trials. The PoR is expressed as

PoR =
ND

Ntr
(8)

where ND is the total number of detections for two targets in
Ntr = 1000 trials. The RMSE is calculated by the following
equation:

RMSE =
1

Ntr

Ntr−1∑
ntr=0

√√√√ 1
M

M−1∑
m=0

(θ̂m,ntr − θm)2 (9)

where θ̂m,ntr is the estimated AoA in each trial and θm is the
actual AoA. They are calculated in degrees (◦) and with M = 2
in this simulation.

Fig. 6(a) and (b) shows the contour plots for the PoR and
the RMSE simulation results using seven different approaches,
respectively. The upper right side of the curves in Fig. 6(a)
represents the PoR region with values greater than 95%.
The upper right side of the curves in Fig. 6(b) represents
the RMSE region with values smaller than 1.5◦. Table I
compares the SNR requirements of seven different approaches
to achieve PoR ≥ 95% and RMSE ≤ 1.5◦ at the theoretical
angular resolution 1θ = 9.55◦ in (1) and 1θ = 6.36◦ in
(2). FFT has the worst performance among the approaches,
while LS + MAP + FFT approach is better than FFT but
worse than ETPNet + FFT. This demonstrates that ETPNet
is superior to LS + MAP. LS + MAP needs to estimate the

number of frequency components or the number of targets M
to work properly. Since the performance of order selection
rules using MAP depends on SNR [36], the performance of
LS + MAP is degraded as SNR decreased. MUSIC approach
also requires prior knowledge for proper operation and can
use an AIC, MDL, or MAP to estimate the number of
frequency components in applications. A significant decline
in the performance of MUSIC is observed with a decrease in
SNR. The deep learning approaches, utilizing FRNet12 and
ETPNet + FRNet18, require 10 dB less SNR to achieve PoR
≥ 95% and 7 dB less SNR to achieve RMSE ≤ 1.5◦ compared
to MUSIC at 1θ = 9.55◦. However, FRNet12 cannot achieve
PoR ≥ 95% and RMSE ≤ 1.5◦ at 1θ = 6.36◦. Compared
to MUSIC at 1θ = 6.36◦, ETPNet + FRNet18 requires
15 dB less SNR for PoR ≥ 95% and 9.5 dB less SNR for
RMSE ≤ 1.5◦. The deep learning approaches using FRNet12
and ETPNet + FRNet18 do not require prior knowledge. The
curves from LS + MAP + FRNet18 and ETPNet + FRNet18
once again confirm that the performance of ETPNet is better
than LS + MAP.

In the second simulation, we again evaluate the PoR and
RMSE of the two targets as a function of SNR and the
difference 1θ between the AoA of the two targets. One target
is fixed with SNR at 20 dB, while the other target’s SNR
varies from 0 to 40 dB. The PoR and RMSE are calculated as
described in the first simulation and each SNR and 1θ point
is simulated with 1000 trials. Fig. 7(a) and (b) depicts the
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TABLE II
COMPARISON OF SEVEN DIFFERENT APPROACHES IN THE SECOND SIMULATION RESULT PRESENTED IN FIG. 7. IN THIS IMULATION, A TARGET IS

FIXED WITH 20 dB AND ANOTHER TARGET HAS VARYING SNR FROM 0 TO 40 dB. 1θ VARIES FROM 0◦ TO 17.5◦

TABLE III
FNR AND RMSE SIMULATION RESULT FROM THE FOURTH SIMULATION.

1000 TRIALS WERE PERFORMED. IN EACH TRIAL, THE NUMBER OF
TARGETS ARE CHOSEN RANDOMLY FROM 1 TO 5. EACH TARGET

HAS ARBITRARY AOA WITH A MINIMUM SEPARATION 1θ =

6.36◦ AND ARBITRARY SNR FROM 0 TO 40 dB

contour plot for the PoR and the RMSE simulation result using
seven different approaches, respectively. Table II provides
the required SNR for each approach in this simulation. FFT
has the worst performance compared to other approaches.
While LS + MAP + FFT performs better than FFT, it is
still outperformed by ETPNet + FFT. None of the FFT
approaches and MUSIC are able to achieve a PoR ≥ 95%
and an RMSE ≤ 1.5◦ for either 1θ = 9.55◦ or 1θ = 6.36◦.
Furthermore, FRNet12 are unable to meet the requirement of
PoR ≥ 95% and RMSE ≤ 1.5◦ for 1θ = 6.36◦. The results
from LS + MAP + FRNet18 and ETPNet + FRNet18 indicate
that ETPNet performs better than LS + MAP.

With the third simulation, we demonstrate the performance
of all approaches using two metrics: false-negative rate (FNR)
and RMSE as functions of SNR. The SNR is varied from 0 to
40 dB with a step size of 1 dB. For each SNR point, 1000 trials
are conducted with each target having the same SNR value.
In each trial, the number of targets M is randomly chosen
from 1 to 5, and AoA of the targets are also chosen randomly,
with a minimum separation between the AoAs determined by
(2), which is 1θ = 6.36◦. A false-negative detection occurs
when the estimated AoA of a target falls outside the range
of its true AoA θ ± |1θ/2|. The RMSE is again calculated
using (9). Fig. 8(a) and (b) shows that the performance of all
approaches depends on the SNR, with the FNR and RMSE
decreasing as the SNR increases. When the SNR ≥ 35 dB,
the performance of LS + MAP + FFT is comparable to ETP-
Net, however, for SNR < 35 dB, ETPNet + FFT demon-
strates better performance. Among the approaches, FRNet12
outperforms FFT, LS + MAP + FFT, ETPNet + FFT, and
MUSIC. At SNR ≥ 15 dB, LS + MAP + FRNet18 is bet-
ter than FRNet12. At high SNR, LS + MAP + FRNet18
approaches ETPNet + FRNet18, but at low SNR, ETPNet +

FRNet18 shows superior performance. This further confirms
that ETPNet is better than LS + MAP.

In the fourth simulation, we again evaluate the performance
of the proposed approaches by measuring the FNR and the
RMSE. This simulation involves 1000 trials, where in each
trial, the number of targets M is randomly selected between
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Fig. 7. Simulation results with seven different approaches for two targets
as a function of SNR and difference 1θ between the AoA of the two targets
from the second simulation. In this simulation, one target is fixed with SNR at
20 dB and another target has varying SNR from 0 to 40 dB. 1θ varies from
0◦ to 17.5◦. Each SNR and 1θ point is simulated with 1000 trials. (a) PoR:
the upper right side of the curve is the PoR region which is larger than 95%.
(b) RMSE: the upper right side of the curve is the RMSE region which is
smaller than 1.5◦.

1 and 5 and each target is assigned with a random SNR from
0 to 40 dB, as well as an arbitrary AoA of the targets. The
minimum separation between the AoA is determined by (2)
which is 1θ = 6.36◦. The FNR and RMSE are calculated
in the same manner as in the third simulation. The results
of all possible approaches are summarized in Table III. It is
evident that the ETPNet + FRNet18 approach yields the best
results with the lowest FNR and RMSE compared to other
approaches.

It is important to note that in the third and fourth simula-
tions, we assume that up to five targets randomly appear in
the simulation scenario, with the same range and velocity but
different AoA. In this case, only one target is visible due to
the overlap of these targets in an RD map. However, when
one to five or more targets randomly appear with differences
in range and velocity, the targets appear as separate objects
in the RD map. Deep learning approaches can easily resolve
their AoAs, as it is similar to determining the AoA for a

Fig. 8. Simulation results with seven different approaches with random
number of targets as a function of SNR varying from 0 to 40 dB from the
third simulation. In each SNR point, 1000 trials are performed with each target
having the same SNR value. In each trial, the number of targets are random
between 1 to 5 and the AoA of the targets are arbitrary with a minimum
separation 1θ = 6.36◦. (a) FNR. (b) RMSE.

single target when no overlapped target is present in the RD
map. If more than five targets appear with the same range and
velocity but different AoA in an RD map, the performance of
the deep learning approach is degraded since it was trained
with a maximum of five targets for NVRX = 12. To recognize
more than five targets, the deep learning approach needs to
be trained with NVRX > 12. For example, the frequency-
representation module in the DeepFreq model was trained with
50 complex inputs and can recognize up to ten targets. The
purpose of the third and fourth simulations is to evaluate the
performance of each approach compared to each other, using
a reasonable metric.

B. Measurements

This section presents seven different measurements to com-
pare the performance between conventional digital beamform-
ing using FFT, LS + MAP + FFT, ETPNet + FFT, MUSIC,
FRNet12, LS + MAP + FRNet18, and cascaded neural
network system with ETPNet + FRNet18 using data from an
FMCW radar with three TX and four RX antennas operating
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Fig. 9. Measurement scenario and RA map results for seven different approaches. (a) Measurement scenario consists of two metal poles placed at a range
of 2.7 m, with a distance of 38 cm between them. The left pole and right pole are placed at angles of 0◦ and 8◦, respectively, and a corner reflector is placed
at a range of 3.4 m and an angle of 16◦ for reference. RA map results are shown for (b) FFT, (c) LS + MAP + FFT, (d) ETPNet + FFT, (e) MUSIC,
(f) FRNet12, (g) LS + MAP + FRNet18, and (h) ETPNet + FRNet18. The results demonstrate that FFT, LS + MAP + FFT, ETPNet + FFT, and MUSIC
methods fail to separate the two targets at the same range, as they merge into a single peak. In contrast, FRNet12, LS + MAP + FRNet18, and ETPNet +

FRNet18 can separate and identify the AoA of the targets. However, the performance of LS + MAP + FRNet18 and ETPNet + FRNet18 is better than that
of FRNet12.

at 77 GHz in a real-world scenario. For all the measurements,
the radar transmits a burst with Np = 32 fast chirps. Each
chirp has a duration of Tsw = 32 µs with a bandwidth of B =

1 GHz and sweeps between 76.5 and 77.5 GHz. The ADC
sampling frequency is 16 MHz and the number of IF samples
is N = 512. The FMCW radar uses DDMA technique with
three TX antennas transmitting simultaneously and the signal
processing follows the chain shown in Fig. 2 [14]. It should
be noted that the training for the deep learning approaches
completely based on simulated data assuming point-targets and
it is independent on the measurement.

The first measurement involved three static targets: two
metal poles and a corner reflector with a radar cross-section
(RCS) of 10.5 dBsm, placed in an anechoic chamber as shown
in Fig. 9(a). The two metal poles were positioned at the same
range of 2.7 m, with a distance of 38 cm between them. The
left pole and the right pole were placed at angles of 0◦ and 8◦,
respectively, while the corner reflector was placed at a range
of 3.4 m and an angle of 16◦ for reference. Using the RA
maps obtained with FFT, LS + MAP + FFT, ETPNet + FFT,
and MUSIC methods, the two targets at the same range were
merged into a single peak, making it impossible to separate
them, as shown in Fig. 9(b)–(e). However, using FRNet12,
LS + MAP + FRNet18, and ETPNet + FRNet18, which
were illustrated in Fig. 9(f)–(h), the two targets could be
identified and separated. FRNet12 was capable of separating
targets with an angular separation 1θ ≈ 9.5◦ since FRNet12
was trained with the theoretical angular resolution followed by
(1). With 1θ < 9.5◦, the performance of FRNet12 decreased.
On the other hand, LS + MAP + FRNet18 and ETPNet +

FRNet18 could identify two targets with 1θ ≈ 8◦, which
matched the estimated angular separation of 1θ = |θ1 −θ0| ≈

arctan(0.38/2.7) ≈ 8◦.

In the second measurement, the setup of the first measure-
ment was modified by moving the right metal pole closer to
the left, resulting in a reduced distance of 31 cm between the
two targets at the same range. The left and right poles were
placed at 0◦ and 6.5◦, respectively, as shown in Fig. 10(a).
The approaches using FFT, LS + MAP + FFT, ETPNet +

FFT, and MUSIC were unable to separate the two targets,
as illustrated in Fig. 10(b)–(e). Although FRNet12 could rec-
ognize the targets, it detects the difference in AoA incorrectly,
with 1θ ≈ 11◦. The disadvantage of FRNet12 is that its
performance decreases when the difference in AoA is less
than the theoretical angular resolution in (1) as observed in
Fig. 10(f). LS + MAP + FRNet18 and ETPNet + FRNet18
could separate the two targets with 1θ ≈ 6.5◦, even when
the right metal pole is moved closer to the left, as shown in
Fig. 10(g) and (h).

The third measurement involved three static targets posi-
tioned at the same range of 2.9 m using three metal poles, with
a distance of 49 cm between each pole and placed at angles
of −2◦, 7.6◦, and 17.6◦. This could be seen in Fig. 11(a).
The FFT, LS + MAP + FFT, ETPNet + FFT, and MUSIC
methods were unsuccessful in separating the three targets,
merging them into a single peak in the RA map. The deep
learning approaches using FRNet12, LS + MAP + FRNet18,
and ETPNet + FRNet18, as shown in Fig. 11(b)–(d), were
able to separate the three targets. ETPNet + FRNet18 outper-
formed LS + MAP + FRNet18, and ETPNet performed better
than LS + MAP since it did not require target estimation.

The fourth measurement adjusted the third measurement
by moving the two right metal poles closer to the left,
with the left and middle poles separated by 38 cm and
the middle and right poles separated by 40 cm. The metal
poles were placed at angles of −2◦, 5.5◦, and 14◦, as shown
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Fig. 10. Measurement scenario modified from the measurement scenario in Fig. 9(a) and RA map results for seven different approaches. (a) Measurement
scenario consists of two metal poles placed at a range of 2.7 m, with a distance of 31 cm between them. The left pole and right pole are placed at angles
of 0◦ and 6.5◦, respectively, and a corner reflector is placed at a range of 3.4 m and an angle of 16◦ for reference. RA map results are shown for (b) FFT,
(c) LS + MAP + FFT, (d) ETPNet + FFT, (e) MUSIC, (f) FRNet12, (g) LS + MAP + FRNet18, and (h) ETPNet + FRNet18. The outcomes reveal that
FFT, LS + MAP + FFT, ETPNet + FFT, and MUSIC methods are unable to distinguish the two targets at the same range as they combine into a single peak.
On the other hand, FRNet12, LS + MAP + FRNet18, and ETPNet + FRNet18 can recognize and separate the AoA of the targets. However, the performance
of LS + MAP + FRNet18 and ETPNet + FRNet18 is superior to that of FRNet12.

Fig. 11. (a) Measurement scenario shows three metal poles at the same range of 2.9 m, separated by a distance of 49 cm and placed at angles of −2◦, 7.6◦,
and 17.6◦. The methods using FFT, LS + MAP + FFT, ETPNet + FFT, and MUSIC fail to separate the three targets, resulting in the merging of the targets
into a single one in the RA map. Other approaches can separate the three targets. RA map results are shown for (b) FRNet12, (c) LS + MAP + FRNet18,
and (d) ETPNet + FRNet18. (e) Measurement scenario shows three metal poles at the same range of 2.9 m, with the left and middle poles separated by
38 cm and the middle and right poles separated by 40 cm, and placed at angles of −2◦, 5.5◦, and 14◦. RA map results are shown for (f) FRNet12, (g) LS +

MAP + FRNet18, and (h) ETPNet + FRNet18. The results show that ETPNet + FRNet18 performs better than both FRNet12 and LS + MAP + FRNet18.

in Fig. 11(e). Compared to Fig. 11(b), although FRNet12
could separate the three targets, the AoA was inaccurate,
with results of −5◦, 5◦, and 17◦. This is because the real
difference in AoA of the targets is smaller than the theoretical
angular resolution in (1), which is 9.55◦. This is illustrated
in Fig. 11(f). Both LS + MAP + FRNet18 and ETPNet +

FRNet18 can accurately separate the three targets with correct
AoA, but ETPNet + FRNet18 performs better than LS +

MAP + FRNet18, as shown in Fig. 11(g) and (h). The
third and fourth measurements demonstrated the performance
of ETPNet and FRNets in detecting three targets at the

same range without the need for estimating the number of
targets.

The fifth and sixth measurements were based on the first
and second measurements, with two targets at the same range.
However, in the fifth and sixth measurements, two targets with
different RCS were investigated. In the fifth measurement,
a corner reflector with an RCS of 10.5 dBsm and a metal pole
was positioned at the same range of 2.9 m, with a distance
of 51 cm between them, and was placed at angles of −10◦

and 0◦. Another target for reference is put at 4 m at an
angle of −5◦. This is depicted in Fig. 12(a). The approaches
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Fig. 12. (a) Measurement scenario involves a corner reflector with RCS of 10.5 dBsm and a metal pole positioned at a distance of 51 cm from each other
and a range of 2.9 m. The corner reflector is located at an angle of −10◦ while the metal pole is at an angle of 0◦. Another metal pole is placed at a range of
4 m and an angle of −5◦ for reference. The methods using FFT, LS + MAP + FFT, ETPNet + FFT, and MUSIC fail to separate the two targets, resulting
in the merging of the targets into a single one in the RA map. Other approaches can separate the three targets. RA map results are shown for (b) FRNet12,
(c) LS + MAP + FRNet18, and (d) ETPNet + FRNet18. (e) Measurement scenario shows the right metal poles is put closer to the left, resulting in a reduced
distance of 35 cm between the targets. The corner reflector and the metal poles were positioned at −10◦ and −3◦, respectively. RA map results are shown for
(f) FRNet12, (g) LS + MAP + FRNet18, and (h) ETPNet + FRNet18. The results demonstrate that ETPNet + FRNet18 outperforms FRNet12 and LS +

MAP + FRNet18 in the measurement scenario with different RCS targets at the same range.

Fig. 13. (a) Measurement scenario in outdoor environment with two corner reflectors placing at the same range at 14 m. The distance between the two
corner reflectors is 33 cm. RA map results are shown for (b) FFT. (c) LS + MAP + FFT. (d) ETPNet + FFT. (e) MUSIC. (f) FRNet12. (g) LS + MAP +

FRNet18. (h) ETPNet + FRNet18. The deep learning approaches FRNet12, LS + MAP + FRNet18, and ETPNet + FRNet18 showed the best estimation
result based on the training model. This measurement demonstrated capability to distinguish between two targets at the same range when the targets were far
away from the radar and have an AoA below the theoretical angular resolution.

using FFT, LS + MAP + FFT, ETPNet + FFT, and MUSIC
cannot separate the two targets at the same range, as they
merge into a single peak. Three approaches using FRNet12,
LS + MAP + FRNet18, and ETPNet + FRNet18 could
identify and separate the target with 1θ ≈ 10◦, as shown
in Fig. 12(b)–(d). While FRNet12 could separate the target
with the correct AoA, the difference in magnitude is hardly
recognized. LS + MAP + FRNet18 and ETPNet + FRNet18
can distinguish the magnitude difference. It should be noted
that while the FRNet12 and ETPNet + FRNet18 were not
specifically trained for amplitude recognition, the extrapolation

technique used in ETPNet does improve the accuracy of the
amplitude. However, it should be acknowledged that the ampli-
tude estimation from ETPNet + FRNet18 was not completely
accurate.

In the sixth measurement, the setup from the fifth measure-
ment was altered by shifting the right metal pole closer to the
left pole, causing the distance between the two targets at the
same range to decrease to 35 cm. The corner reflector and
the right poles were positioned at −10◦ and −3◦, respectively,
as depicted in Fig. 12(e). FRNet12 is able to recognize the
targets, it misidentified the difference in AoA with 1θ ≈ 10◦
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since FRNet12 was trained with 1θ ≈ 9.5◦. This is shown in
Fig. 12(f). LS + MAP + FRNet18 is unable to identify the
metal pole in the RA map under these conditions, as shown
in Fig. 12(g). However, even with the right metal pole moved
closer to the left, ETPNet + FRNet18 is capable of distin-
guishing the two targets with 1θ ≈ 7◦, as demonstrated
in Fig. 12(h). Moreover, ETPNet + FRNet18 is able to
differentiate the magnitude difference though it may not be
completely precise.

The seventh measurement was performed with two static
targets using two corner reflectors with an RCS of 10.5 dBsm
in an outdoor environment with more clutter than an ane-
choic chamber. The two corner reflectors were placed at the
same range of 14 m, with a distance of 33 cm for each.
Using this setup, the estimated angular separation was 1θ ≈

arctan(0.33/14) ≈ 1.35◦. This setup is shown in Fig. 13(a).
Fig. 13(b)–(e) depicts the RA map results using FFT, LS +

MAP + FFT, ETPNet + FFT, and MUSIC, respectively. None
of these approaches could separate the two targets at the same
range. Fig. 13(f)–(h) shows the RA map result using FRNet12,
LS + MAP + FRNet18, and ETPNet + FRNet18, which could
separate the two targets at the same range. However, since the
estimated angular separation was small 1θ ≈ 1.35◦ and less
than the theoretical angular resolution in (1) and (2). The deep
learning approaches showed the best estimation result based on
the training model. FRNet12 provided the AoA result of 11◦

while LS + MAP + FRNet18 and ETPNet + FRNet18 yielded
the AoA result of 6.5◦. This measurement demonstrated the
ability to separate two targets at the same range when the
targets were far away from the radar and their AoA was less
than the theoretical angular resolution.

In a measurement scenarios where there are more than
five targets at the same range and velocity, the perfor-
mance of deep learning approaches decreases. FRNet12 and
ETPNet + FRNet18 can resolve three or four targets accu-
rately, but they are unable to estimate all of the targets in
such scenarios. To enable deep learning approaches to identify
more than five targets at the same range and velocity, the radar
system requires additional virtual receivers (NVRX > 12), and
the deep learning approaches need to be retrained. However,
it is worth noting that if there are more than five targets at
different ranges and velocities in the RD map, FRNet12 and
ETPNet + FRNet18 can easily resolve them. This is because
the process is similar to determining the AoA for a single
target when there are no overlapping targets in the RD map.

V. CONCLUSION

In this article, we have proposed and investigated the use
of deep learning methods for AoA estimation in an FMCW
MIMO radar to enhance the PoR and angular resolution. Our
proposed methods utilize the DDMA technique with three
TX antennas transmitting simultaneously to generate NVRX
processed RD maps, which are then fed into the trained neural
network FRNet12 for AoA estimation. Our simulation and
measurement results show that the deep learning approaches
achieve a PoR of nearly 100% at the theoretical angular
resolution in (1), outperforming conventional beamforming
using FFT. Compared to MUSIC, our approaches require

less SNR and do not require prior knowledge. Furthermore,
we introduce an improved version of FRNet12 using the
ETPNet cascaded with FRNet18, which improves angular
resolution by 33% while maintaining a PoR of nearly 100%
when two targets approach the new theoretical angular resolu-
tion in (2). Our proposed methods demonstrate the significant
potential of deep learning to enhance the accuracy and angular
resolution of AoA estimation in an FMCW MIMO radar.
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