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A Comparative Analysis of Numerical Inverse
Laplace Transform Methods for Electromagnetic

Transient Analysis
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Abstract— Nowadays, transient analysis of electromagnetic
systems is widely adopted as a virtual prototyping tool in the
design of electrical and electronic devices. Time domain (TD)
methods for the solutions of Maxwell’s equations represent
the most obvious approach to tackling this type of problem.
Frequency domain (FD) analysis techniques are also commonly
used to return the TD response through the inverse Fourier
transform. This approach suffers from the need to compute the
frequency response over a wide frequency range that has to be
finely sampled to avoid aberrations in the inverse transform.
A valuable alternative is represented by the numerical inversion
of the Laplace transform (NILT) that conjugates the capability
to return the TD responses with the possibility to adopt complex
frequency models that are free of most of the issues of TD
techniques. The aim of this work is to perform a comparative
analysis of two of the most popular methods for the computation
of the numerical inverse Laplace transform, known as the NILT,
and fast inversion of the Laplace transform (FILT), clarifying
the issues and limitations behind these methods and pointing out
possible solutions.

Index Terms— Electromagnetic transient analysis, numerical
inverse Laplace transform (LT).

I. INTRODUCTION

TRANSIENT analysis of electromagnetic problems is an
important task in the design of electrical and electronic

systems. Indeed, it allows clarifying physical phenomena
such as losses and dispersion that significantly affect system
performances on a short time scale [1]. Time domain (TD)
solutions of Maxwell’s equations have been widely used in
the modeling of transmission lines and interconnects [2], [3],
[4], [5], [6], antennas [7], grounding systems [8], and printed
circuit boards (PCBs) performance analysis [9].

Several methods have been proposed to solve Maxwell’s
equations in the TD, in differential and integral forms.
Among them, the most popular ones are the finite difference
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TD (FDTD) method [10], [11], the TD finite element
method (TDFEM) [12], the TD integral equations method
(TDIEM) [13], the partial element equivalent circuit (PEEC)
method [14]. TD methods have some indisputable advantages
over the corresponding frequency domain (FD) counterparts.
The most significant one relies on the fact that they allow
characterizing an electrical system in a broadband frequency
range with just one run, without the need to repeat the
computation for different frequency samples, as required
by FD techniques. Then, they also allow easy modeling
of nonlinear materials or the incorporation of nonlinear
devices, while this is not possible, or at least it is not so
straightforward when using FD methods that assume the
superposition principle is applicable [15]. On the other hand,
FD techniques are easier to be implemented, they do not have
any stability issues, and they allow easy modeling of dispersive
materials.

An alternative to both pure TD and FD methods is
represented by the Laplace transform (LT) method. While the
forward LT can be carried out easily and Maxwell’s equations
can be transformed in a straightforward way, the inverse LT
is more challenging and a closed form is possible only in
relatively simple cases. In general, it has to be computed
numerically by properly choosing the Bromwich contour and
exploiting Cauchy’s theorem. This work aims to compare the
two methods for the numerical computation of the inverse LT
which have found application in electromagnetic modeling,
namely the numerical inversion of the LT method (NILT) [16],
and Fast Inversion of the LT (FILT) method [17], addressing
their pros and cons.

The NILT method has been proposed for the first time
in the 70s’ [16] and has been applied mostly to high-speed
interconnect modeling [18]. It has received a renewed interest
more recently thanks to some improvements [19], [20] that
have been proposed to overcome its limitations. Furthermore,
it has been adopted in the framework of the PEEC method [14]
thus making it possible to use NILT to solve general 3-D EM
problems [21], [22], [23].

The FILT method has been introduced in [17] relying on
an expansion of the kernel of the inverse LT different from
that used in NILT. It has been applied to the transient analysis
of frequency-dependent media [24] and plasmonic systems in
the framework of the FDTD method [25], [26], [27] and the
boundary element method [28]. Recently, it has been employed
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for the TD evaluation of the specific energy loss for pulse
incidence on lossy media [29].

The common feature of NILT and FILT techniques is that
they both provide the time-domain response at a time sample
independently of another one; therefore, they are well suited
for performing parallel computations, resulting in a significant
reduction of processing time. Furthermore, the time samples
can be arbitrarily chosen, thus making it possible to select
them adaptively. Finally, the TD response obtained through
these techniques is not affected by the accumulation error that
occurs using time-stepping methods.

This work is organized as follows: Section II summarizes
the NILT and FILT approaches, pointing out their distinctive
features, pros, and cons. Section III illustrates how the NILT
can be used along with the PEEC method and how underflow
issues may arise for electrically large problems. Section IV
presents the use of NILT and FILT approaches for the transient
analysis of multiconductor transmission lines (MTLs). The
observations in Sections III and IV are corroborated by the
numerical tests presented in Section V for two pertinent case
studies. The conclusions and future works are outlined in
Section VI.

II. COMPLEX FD TECHNIQUES OF INVERSE LT

The LT is a powerful analytical tool for the solution of linear
systems of differential equations, allowing the elimination of
one or more variables and moving in a transformed domain
of a complex variable s. The transformed system is usually
easier to handle. In EM modeling and circuit theory often
the suppressed variable is the time t . This permits avoiding
simple and partial derivatives that are a constituent part of the
TD model.

Applying the LT methods to linear time-invariant EM
systems results in an algebraic system of equations

A(s)X(s) = U(s) (1)

being A(s) the characteristic matrix of the system, X(s) the
unknowns vector and U(s) the vector containing the sources
acting in the system. The TD solution x(t) of (1) requires
computing the inverse LT of X(s) [30] that in general reads

x(t) =
1

j2π

∫ γ+ j∞

γ− j∞
X(s)estd s (2)

where the complex exponential est is the kernel of the inverse
transformation.

The analytical solution is possible only for a limited set
of cases including RLC time-invariant circuits [15], [31] of
reduced size. In general, the integral in (2) has to be performed
in the complex plane and this requires considerable analytical
efforts that could lead to closed-form solutions only for a
restricted class of functions. Fortunately, many approximation
algorithms widely used in engineering modeling applications
have been proposed in the last century. Among them,
we remind the Weeks [32] method, the Dubner and Abate [33]
method, the Stehfest [34] method (widely used in groundwater
flow and petroleum reservoir applications) and the Durbin [35]
method. A detailed comparison and description of all the

approximate Laplace inverse transform methods were provided
by Davies and Martin [36]. As pointed out in [37], it is
difficult to recommend just one inversion method, since the
performance is strictly dependent on the function type and,
hence, on the application.

In the field of TD EM modeling and circuit simulation,
there are two methods that have shown the best compromise
between computational efficiency and accuracy.

1) The NILT method was proposed by Nakhla et al. [16]
and is based on the Padé approximation of the kernel in
(2);

2) The method proposed by Hosono [17], more recently
referred to as the Fast Inverse LT (FILT) method,
is based on the approximation of the kernel in (2) by
a trigonometric hyperbolic function.

Although these two methods are suitable for both EM and
circuit modeling areas, the former has become more popular in
TD circuit analysis and the latter in the transient EM modeling
of antennas and microwave devices.

Moreover, the NILT/FILT techniques represent a valid alter-
native to the well-established inverse fast Fourier transform
(IFFT) method. Indeed, in order to restore aberrations-free TD
results starting from an FD (s = jω) discrete representation of
the system (1), it is required to compute the system response
solution over a pertinent frequency range using an appropriate
number of frequency samples on the imaginary axis of the
complex plane. These requirements often lead to significant
computational efforts. On the contrary, NILT/FILT techniques
return the TD response by taking advantage of Cauchy’s
theorem that requires computing the response only on the
singularities of the kernel. This implies that a reduced number
of computations need to be performed in the complex plane.

A. TD Simulation via NILT

As mentioned before, the NILT technique is based on the
approximation of the exponential kernel in (2) through its Padé
approximant [38], leading to

xN ,M(t) =
1

j2π t

∫ γ+ j∞

γ− j∞
X
( z

t

)
EN ,M(z)d z (3)

being

EN ,M(z) =
PN (z)
QM(z)

=

M∑
i=1

Ki

z − zi
(4)

where PN (z) and QM(z) are polynomials of order N and M ,
respectively; zi and Ki denote the poles and residues of the
rational function PN (z)/QM(z). The choice M = N + 2 has
been shown to guarantee the solution stability [19]. In (3) the
change of variables z = st is assumed.

The evaluation of the integral in (3) is performed through
Cauchy’s residues theorem applied to a path in the right-hand
half-plane. It leads to

xN ,M(t) = −
1
t

M/2∑
i=1

2Re[Ki X(s)]s= zi
t

(5)

where M is assumed to be an even integer.
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Fig. 1. Example of poles pattern employed in the NILT method (M = 12).

It is clear from (5) that, for each time sample t , it is required
a number of M/2 evaluations of X(s) on the complex plane,
over known points defined by the Padé poles. An illustrative
pole trajectory on the complex plane is depicted in Fig. 1,
considering a time interval [1], [2], [3], [4], [5] ns and
assuming M = 12.

Generally speaking, all the techniques to compute the
inverse LT are affected by a progressive loss of accuracy
occurring with the time increasing. This is also the case with
the NILT and FILT methods. The NILT approximation error
ϵN = x(t) − xN ,M(t) is reported in [19] and given by the
following equation:

ϵN = 9N ,M
d N+M+1

dt N+M+1 x(t)
∣∣∣∣
t=0

t N+M+1
+O

(
t N+M+2) (6)

where

9N ,M =
(−1)M M !N !

(M + N )! · (M + N + 1)!
. (7)

The Padé approximation of the exponential function in terms
of the rational function of order N/M matches the first
(N + M + 1) terms of its Taylor-series expansion. As a
result, higher values of M and N lead to better accuracy
in TD. Unfortunately, it is not feasible to employ arbitrarily
large values of M without that rounding errors in the residues
Ki affect significantly the solution. This issue is easily
explained through a simple example regarding the NILT-
based computation of the function f (t) = sin(ωt), with
ω = 6.28 · 109 rad/s. In Fig. 2 it is shown that employing
M = 24 for the inverse transform guarantees a good accuracy
until to 6 ns but is not enough for larger times.

In order to preserve the accuracy over the entire time
window, an option is to increase further the number of terms
in the summation (5) choosing M = 28, but round errors in
the high Padé residues blow up the solution (in this case the
NILT results are scaled by a 10−11 factor). Hence, for this
example, the choice is limited to values M < 28. Obviously,
this is valid for general inverse LTs: every inversion has its
expansion limit when approached through the Padé method.

Fig. 2. NILT-based computation of the sin function.

B. TD Simulation via FILT

Following the procedure introduced by Hosono [17], the
inversion integral in (2) is approximated as:

xap(t) =
1

j2π

∫ γ+ j∞

γ− j∞
X(s)Eap(st, α)d s (8)

by the introduction of the approximate inversion kernel

Eap(st, α) =
aα

2 cosh(α − st)
(9)

being α a parameter that has to be properly chosen.
Introducing (9) in (8), it is possible to obtain as follows:

xap(t) ≃
eα

t

K∑
n=1

Xn (10)

where

Xn = (−1)nIm[X(s)]s= α+ j (n−0.5)π

t
(11)

and K is the truncation number of the series.
The FILT approximation error ϵF = |x(t) − xap(t)| is given

by the following equation:

ϵF =
∣∣e−2αx(3t) − e−4αx(5t) + e−6αx(7t) − · · ·

∣∣. (12)

Hence, if |x(t)| ≤ EeLt for t > 0, we have

ϵF = O
(
|x(t)|e−2(α−Lt)) (13)

being L a constant and E a finite vector [39]. In conclusion,
the error is of exponential order with α. Nevertheless, the
parameter α cannot be chosen arbitrarily large, because the
numerical evaluation of the terms Xn(α, t) in (10) leads to
overflow in finite precision. Consequentially, also in this case,
the error keeps growing with time. For this reason, very often it
is useful to speed up the convergence of the truncated series by
applying the Euler transformation presented in [17] and [28].
This results in adding a few additional terms to the original
series, for the purpose of limiting K as much as possible for
the convergence. Thus, (10) becomes

xap(t) ≃
eα

t

 K∑
n=1

Xn +

p∑
q=1

2−(p+1) Ap,qXK+q

 (14)
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Fig. 3. Example of complex samples pattern employed in FILT (α = 3,
K = 10).

Fig. 4. FILT-based computation of the sin function for two settings of the
parameters.

where p is the number of terms of the Euler transformation
and

Ap,p = 1, Ap,q−1 = Ap,q +
(p + 1)!

q!(p + 1 − q)!
. (15)

It is clear from (11) that the state vector variables must be
sampled, for each t , on K +q different points on the complex
plane, which share all the same real part α/t . Fig. 3 shows the
first ten complex points per time sample over which the state
vector has to be evaluated assuming α = 3. The trajectory
is considered in the time interval [1], [2], [3], [4], [5] ns for
illustrative purposes.

With the aim of clarification, the example regarding
the FILT computation of the sin function employed in
Section II-A is here reconsidered. In particular, in Fig. 4
it is evident that contrary to NILT, employing the parameters
combination: (K = 20, α = 2) it is possible to reproduce
satisfactorily the exact sin waveform in the overall time
window. Unfortunately, it is also confirmed that it is not
possible to choose α arbitrarily large (here α = 5 is
chosen) to reduce the approximation error in (13) as much as
possible.

Fig. 5. Comparison of the sin function computed using the NILT (M = 24)
and the FILT (K = 12, α = 2) techniques.

The sin inverse transforms in Fig. 5 complete the
comparison of the two methods. The waveform is computed
utilizing 12 terms for NILT (M = 24) and for FILT
(K = 12, α = 2). It is evident that by fixing the number of
terms for each series, the convergence is more easily reached
by NILT when treating this kind of waveform (this is true also
for typical circuit waveforms).

In conclusion, if long transients have to be evaluated, the
FILT technique permits a successful evaluation in the overall
time window (no matter how large it is), at the cost of an
increase in the computational burden. If shorter transients are
needed, employing NILT guarantees a faster convergence and,
hence, a significant saving in computational costs.

It is just the case to observe that the two techniques can be
combined to solve the same problem, exploiting the advantages
of both of them.

III. COMPLEX FD PEEC MODELS FOR THE ACCURATE
TD SIMULATION OF FAR-APART STRUCTURES

The PEEC method is an integral equations method that
is able to provide equivalent circuits of EM problems
which can be analyzed in both the time and FDs [14].
The equivalent circuit is built through the definition of
the partial elements, describing the elementary (or partial)
electromagnetic interactions related to the EM model. After
that, an appropriate 3-D discretization (mesh) of the structure
under analysis is carried out. The continuously increasing
complexity of modern electronic devices requires more and
more full-wave descriptions of the EM phenomena related
to the operation of the interconnects. Thus, it is desirable to
include the propagation factors inside the model in order to
reach a high degree of accuracy. Obviously, in the modeling of
radiating devices, the full-wave representation is mandatory,
especially when the EM response of two or more separated
far-apart structures is needed.

In the standard PEEC formulation, the partial induc-
tance [40] describes the magnetic interaction between the
currents flowing in elementary volumes of the mesh. The
full-wave partial inductance between two volumes Vm , Vn is
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defined in the Laplace domain as follows [14]:

L pm,n (s) =
µ0

4π

1
Sm Sn

∫
Vm

∫
Vn

ûm · ûn
e−sτ

|rm − rn|
dVndVm (16)

where ûm , ûn are the normal unit vectors associated with
the cross sections Sm and Sn , rm and rn are the observation
points in the two volumes over which the integration has to
be performed and τ = |rm − rn|/c0 is the time delay in the
background medium characterized by a propagation speed c0.
Similarly, the electric interactions between the charges on two
elementary surfaces Aℓ, Am of the mesh are described by
the coefficient of potential defined, in the Laplace domain,
as follows:

Pℓ,m(s) =
1

4πε0

1
Aℓ Am

∫
Aℓ

∫
Am

e−sτ

|rℓ − rm |
dAmdAℓ. (17)

The exponential e−sτ in (16) and (17) accounts for the
propagation delay due to the finite value of the speech of light
in the background medium.

The enforcement of Kirchhoff laws to the PEEC equivalent
circuit leads to the following equations in the modified nodal
analysis (MNA) form [41]:[

sP−1
+ Yle A

AT
−
(
Z + sLp

) ] ·

[
8

I

]
=

[
Is

−Vs

]
. (18)

The unknowns in (18) are represented by the node potentials
8(s), and the branch currents I(s). Besides the partial elements
matrices P(s), Lp(s), the circuit model entails the incidence
matrix A, the lumped elements matrix Yle(s) and the self
impedance matrix Z(s). Is(s), Vs(s) are the impressed node
currents and branch voltages, respectively.

It is evident that the PEEC MNA representation (18),
expressed in the Laplace domain, is of the form (1). Hence,
the transient response of PEEC models can be recovered
from the complex FD using the techniques presented in
Sections II-A and II-B.

A. Minimum Delay Extraction for the Modeling of Separated
Structures

In general, the TD response evaluated on a victim device
due to a source located far away from it has to satisfy the
causality principle [42] and, thus, it cannot occur before the
minimum time delay td defined as follows:

td =
dmin

c
(19)

being dmin the minimum distance between the interacting
objects and c the phase velocity in the background medium
where they are located. If td is too large (from tens to
hundreds of ns) the approximate inverse transform solution
of the far-away part of the system computed using NILT and
FILT methods will be affected by a significant error unless
a countermeasure is taken. To this purpose, the Bromwich
integral in (2) can be recast through the introduction of the
delay exponential term estd

x(t) =
1

j2π

∫ γ+ j∞

γ− j∞
X(s)estd est′d s (20)

with t ′
= t − td > 0. It is then possible to apply the inversion

techniques to the Bromwich integral considering the delayed
kernel est′ . The NILT expression (5) becomes

xN ,M(t) = −
1
t ′

M/2∑
i=1

2Re
[
Ki X(s)estd

]
s= zi

t ′
(21)

while, the FILT expression (14) can be rewritten as follows:

xap(t) ≃
eα

t ′

 K∑
n=1

X′

n +

p∑
q=1

2−(p+1) Ap,qX′

K+q

 (22)

where

X′

h = (−1)nIm
[
X(s)estd

]
s= α+ j (h−0.5)π

t ′
(23)

being h a generic index representing n or q. In conclusion,
the effective inversion time is t ′ < t , and the inaccuracies
introduced by long simulation times are dramatically reduced.

B. Underflow Issues in Complex FD PEEC Models
(Far-Field Problems)

When the techniques already described are applied in
modeling separate distant structures, it is necessary to be
careful in the numerical evaluation of the delayed partial
elements on the complex plane, especially if the distance
between the objects is significant. Let us focus on a
single generic partial element describing an interaction
(magnetic/electric) between two mesh elements, each located
on a different object. Their interaction assuming a center-
to-center (CC) propagation delay [14] can be written in the
complex FD as follows:

Hm,n(s) = H 0
m,ne−sτm,n (24)

where H 0
m,n describes the static interaction and

τm,n =
RCC

m,n

c0
≃

dmin

c0
(25)

is the propagation time delay in the background medium
between the two elements, being RCC

m,n their CC distance
and c0 the background medium (free-space for the standard
PEEC method) phase velocity. The expression (24) has to be
evaluated on different sets of points over the complex plane
for each value of t ′, using both the NILT and FILT techniques.
The argument of the exponential can be written as follows:

sτm,n ≃
z
t ′

dmin

c0
(26)

where z is a complex number that depends on the technique
employed. For sufficiently large values of dmin and small
values of t ′, it is very likely that the exponential e−sτm,n

reaches an underflow condition if the absolute value of its
argument exceeds a fixed value Kmax. This value can be
easily found through the knowledge of the smallest positive
normalized floating-point number in IEEE double precision.
Hence, in order to avoid the underflow of all the “far away”
partial elements in the PEEC system, the following condition
should apply:

Re(z) <
Kmaxt ′c0

dmin
. (27)
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Fig. 6. Absolute value of the complex exponential computed for different
distances between two elementary volumes using NILT (M = 20, lines with
markers) and FILT (adaptive α, lines without markers).

Obviously, the latter condition is more severe at the first
computation times, if the distance dmin between the two
elements is significant. The FILT method uses a set of poles
whose real part is highly adjustable in this sense. Indeed,
for each computation time t ′, it is sufficient to enforce the
condition

α <
Kmaxt ′c0

dmin
(28)

still being able to maintain a reasonable accuracy at the first
computation points. On the contrary, when employing the
NILT method, the only way to modify the real part of the
Padé poles at the first time samples t ′ is to reduce the order
M . Unfortunately, also using small values for M does not
avoid the underflow condition if the structures are very far-
apart. To better explain the underflow issues, Fig. 6 represents
the behavior of the absolute value of the delay exponential
function in (24) for two far-apart elementary volumes, when
computed over the FILT points on the complex plane and
over the Padé poles having a maximum real part, assuming
M = 20. The exponential analysis is carried out considering
the distances: 10, 20, 40 m, and varying the quantity
t ′

= t − td . It is clear that, for any of the three distances, the
delay exponential reaches the underflow condition for a larger
time interval when it is computed over the Padé poles rather
than using the FILT complex points. When this case occurs, for
sufficiently small values of t ′, the partial elements describing
the mutual interactions between two or more far-away volumes
or surfaces become zero, compromising the accuracy of the
computation. In Fig. 7, it is shown that using small values of
order M , e.g., M = 4 for the NILT technique, the time interval
where condition (28) is not matched and the underflow occurs
is reduced, but is still present for the considered distances.

In this regard, despite the small values of the complex
exponential in Figs. 6 and 7, it is important to point out that,
in expressions (21) and (23), a compensation factor of the same
order of magnitude as the complex exponential is introduced
in the final solution due to the exponential term estd . Hence,
this observation further confirms the importance to avoid the
underflow condition.

Fig. 7. Absolute value of the complex exponential computed for different
distances between two elementary volumes using NILT (M = 4, lines with
markers) and FILT (adaptive α, lines without markers).

TABLE I
NILT VERSUS FILT: A SUMMARY

Finally, to resume the advantages and the limitations of the
two techniques discussed in Sections II and III, a summary
is reported in Table I where, for different scenarios for
distances and transient duration, the most suited technique is
recommended.

IV. COMPLEX FD MODELS FOR
ELECTRICALLY LONG MTLS

Approximate Inverse LT techniques have been widely
used for the TD characterization of transmission line (TL)
structures [20], [43]. Recently, an extension of the NILT
method including nonlinear circuits has been proposed in [44].

Neglecting incident EM fields effects, the equations of
MTLs composed by n conductors in the Laplace domain can
be cast in a standard state-space form as follows [45]:

d
d x

X̂(x, s) = Â(s)X̂(x, s) (29)

where x is the line abscissa and

X̂(x, s) =

[
V̂(x, s)
Î(x, s)

]
(30)

is the state vector containing the n line voltages and currents.
The state matrix Â(s) reads

Â(s) =

[
0 −Ẑ(s)

−Ŷ(s) 0

]
(31)

where Z(s) = R(s) + sL(s) and Y(s) = G(s) + sC(s).
It is well known that the end voltages and currents can be
related by the so-called chain parameters matrix 8̂(L, s) as
follows [45]:[

V̂(L, s)
Î(L, s)

]
= 8̂(L, s) ·

[
V̂(0, s)
Î(0, s))

]
(32)
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where the 2n × 2n chain parameters matrix 8̂(L, s) is

8̂(L, s) = eÂ(s)L
=

∞∑
k=0

Lk

k!

[
Â(s)

]k
. (33)

Pertinent boundary conditions need to be enforced at the line
ends x = 0,L. Assuming linear time-invariant terminations,
they read[

V̂(0, s)
V̂(L, s)

]
=

[
V̂s0(s)
V̂sL(s)

]
−

[
Ẑ0 0
0 ẐL

][
Î(0, s)
Î(L, s)

]
(34)

where V̂s0(s), V̂sL(s), Ẑ0, and ẐL are the multiport Thevenin
sources and impedances of the circuits connected to the MTL
at x = 0 and x = L, respectively. The resulting problem
described by (32) and (34) is well-posed for the end voltages
and currents V̂(0, s), Î(0, s)), V̂(L, s), Î(L, s).

The transient port voltages and currents can be obtained
through the application of inverse LT techniques to (32) and
(34), upon the evaluation of the chain parameters matrix over
appropriate points of the complex plane, depending on the
chosen inverse transform technique.

The exponential of a matrix has been studied in depth
for many years and can be computed in several different
ways. Among the others, methods involving approximation
theory, differential equations, matrix eigenvalues, and matrix
characteristic polynomials have been proposed [46], behaving
differently in terms of computational stability and efficiency.

In order to better illustrate the problems that may arise in
computing (33) in (32), we consider, without loss of generality,
the case of perfect conductors (R = 0) in a homogeneous lossy
dielectric medium. The chain parameters submatrices can then
be expressed in a closed form as follows [45]:

8̂11 = cosh
[
γ̂ (s)L

]
In (35a)

8̂12 = − sinh
[
γ̂ (s)L

]
Ẑc (35b)

8̂21 = − sinh
[
γ̂ (s)L

][
Ẑc
]−1

(35c)

8̂22 = cosh
[
γ̂ (s)L

]
In (35d)

where In is the n × n identity matrix and Ẑc is the
characteristic impedance matrix defined as follows:

Ẑc =
s

γ̂ (s)
L (36)

[
Ẑc
]−1

=
γ̂ (s)
sµε

C. (37)

The coefficient γ̂ (s) = (sµσ + s2µε)1/2 is the propagation
constant in the Laplace domain assuming known the electrical
conductivity σ , the magnetic permeability µ, and the dielectric
permittivity ε of the surrounding medium.

When the physical length of the lines is large (L > 10 m),
the TD computation of the electric quantities in z = 0 can
be very challenging. Indeed, the behavior of the complex
hyperbolic functions in (35a) evaluated on the complex plane
plays a crucial role. To explain this, we consider the generic
complex point s = z/t , where t is the time evaluation value
and z is a complex point that depends on the technique adopted
to perform the inverse LT. In the limit of vanishing losses, the

Fig. 8. Absolute value of the complex hyperbolic cosine computed for
different line lengths (lossless medium) using NILT (M = 24, lines with
markers) and FILT (adaptive α, lines without markers).

propagation constant can be written as γ (z/t) ≃ (z/t)(µε)1/2

and, hence, the hyperbolic cosine function becomes

fc

( z
t

)
=

1
2

(
e

zL
ct + e−

zL
ct

)
(38)

being c = 1/(µε)1/2 the propagation speed in the
homogeneous dielectric medium. The function fc(s) reaches
an underflow or an overflow condition if the absolute value
of the exponential arguments exceeds the value K − or K +,
respectively. This value can be found from the knowledge
of the smallest and largest positive normalized floating-point
number in IEEE double precision. Hence, to avoid a data loss,
it is necessary that the following inequality is satisfied for each
value of t :

Re(z) < min
[

K +tc
L

,
K −tc
L

]
. (39)

The condition (39) becomes more severe as t and c approach
smaller values if the line length L is significant. The FILT
method is more flexible in this sense since it is easy to enforce
the condition

α < min
[

K +tc
L

,
K −tc
L

]
(40)

providing an accurate TD solution at the initial computational
points t . The same holds for the hyperbolic sinusoidal
function.

Employing the NILT technique, the only way to try to
satisfy the inequality (39) is to reduce as much as possible
the Padé expansion number M , but unfortunately, with very
small values of M it is not possible to match (39) when t is
small. Hence, the TD computation of the MTL transients at
z = 0, where the port quantities are not negligible even at the
first instants, becomes very difficult.

In Fig. 8 it is shown the trend of the absolute value of
function fc(s) when evaluated over the Padé poles assuming
M = 24 and when computed over the FILT complex points
complying with (40). The behavior is plotted for two values
of the length of the line, L = 20 m, and L = 40 m.

It is evident that using the NILT method, significant
portions of the time computational window are compromised,
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TABLE II
NILT VERSUS FILT: A SUMMARY FOR MTLS

TABLE III
GEOMETRIC FEATURES OF THE TWO DIPOLES SYSTEM

as pointed out in Fig. 8. As expected, the time interval
where the overflow occurs increases with the length of the
line. On the contrary, the adaptive choice of α in the FILT
technique allows outperforming the NILT method avoiding the
overflow condition also for small values of t . This guarantees
an accurate computation of the port transient voltages and
currents at z = 0, even at the beginning of the computational
time window. On the other hand, if the line length is
intermediate (tens of meters) and the traveling signals are
smooth enough, the reconstruction of far-end signals could
be more convenient using NILT, for the convergence reasons
explained in Section II .

To summarize the NILT and FILT features in TD MTLs
modeling, a short resume is described in Table II.

V. NUMERICAL VALIDATION

A. Transmitting and Receiving Dipole Pair

To illustrate the concepts discussed in Section III, the two
dipoles sketched in Fig. 9 are considered, whose geometric
features are described in Table III. Precisely, the TD receiver
voltage response is computed first considering the near-field
interaction between the dipoles, and, subsequently, the receiver
dipole is moved away from the transmitting dipole, in its far-
field. For illustrative purposes, the transmitting dipole is driven
by a voltage source in series to a resistor and we consider
the receiver terminated on a load resistor. The signal source
considered has a trapezoidal waveform with rising and falling
times τr = 3.2 ns and width τw = 9.5 ns so that the spectrum
is significant until fmax ≃ 1 GHz. Taking this frequency as a
reference, the dipoles are half-wave long. It is known that the
transition from the near-field region to the far-field Fraunhofer
region of the transmitter occurs at distances r such that [47]

r ≥ R f =
2D2

λ
(41)

where r is the radial distance measured from the center of the
transmitting dipole, D = 2ℓ is its maximum physical length,
and λ = c0/ fmax is the wavelength in the free space at the
maximum frequency of interest / fmax.

1) Near Field Analysis: In the near-field analysis, the
distance between the two dipoles d is set as d = R f /2. The
TD receiver voltage is computed through the inverse transform

Fig. 9. Two dipole system.

Fig. 10. Receiver near field voltage response in the case of 50 � terminations
(example V-A).

techniques and compared to the results of a time-stepping
reference solver [48] adopting the backward differentiation
scheme of the second order (BD2). Fig. 10 shows the receiver
voltage response assuming 50 � terminations for both ports.
In this case, the transient is quite long-lasting (more than
20 ns). The FILT solution is obtained by choosing K = 20 and
p = 8 in (22) so that it is observed a good match between the
FILT solution and the reference solution throughout the time
window. For the Padé expansion-based inverse transform, the
modified NILT technique (NILT2) [19] has been employed,
to achieve a higher degree of accuracy. It is clear from Fig. 10
that the maximum exploitable expansion order, in this case,
is M = 8, while larger orders cause the result to explode
because of rounding errors in the residues Ki that impact
significantly the solution. In general, employing NILT2, this
behavior is observed for relatively small values of M , because
terms of the type: K 3

i , K 2
i are involved in the summation.

Hence, it is not possible to achieve better accuracy using
more terms in the series. For this reason, in this case, the
recommended method is FILT, because it allows adjusting the
accuracy by choosing the optimal number of series terms.
The latter becomes an important feature when dealing with
long-lasting transients.

Fig. 11 shows the receiver voltage response assuming 1 k�

termination for the two ports, where it is evident that the
transient is more time-limited compared to the previous case.
In this case, employing NILT2 with order M = 4 (two
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Fig. 11. Receiver near field voltage response in the case of 1 k� terminations
(example V-A).

TABLE IV
NILT VERSUS FILT: RELATIVE ERROR FOR THE

NEAR FIELD SHORT TRANSIENT EXAMPLE

series terms) ensures a very good accuracy over the entire
time window, while for FILT the same accuracy is reached
considering K = 10 and p = 5 in (22) for a total of 15 series
terms. Hence, in this case, employing the NILT technique
is more convenient in terms of computational efforts since
a smaller number of system evaluations on the complex plane
is sufficient to represent the response for each time sample
compared to the FILT method. In particular, the cpu simulation
time running NILT was 43.4 s, while it was 163.3 s for FILT,
considering the same number of computation points for the
two techniques.

For completeness, the NILT2 and FILT relative errors at
four different time points are compared in Table IV, assuming
the same number of series terms (M = 4 for NILT2,
K = 2 for FILT). It is seen that NILT2 outperforms FILT in
terms of convergence. This confirms that employing NILT for
moderately short transients offers the opportunity to minimize
the computational burden.

2) Far-Field Analysis: In the far-field analysis, the receiver
dipole is moved away from the transmitter to a distance
d = 20 m. In this configuration, the minimum propagation
time delay between the two structures is td = 66.67 ns. The
computation of the receiver voltage starts at a time td = r/c0.
The port terminations are assumed 50 �.

As already explained, because of the underflow issues,
the delayed PEEC model becomes inaccurate at the first
computation time samples, when computed over the Padé
poles using NILT. This is clear by observing a zoom of
the receiver voltage response in Fig. 12, in which the NILT
response is zero also after the propagation delay td between
the two dipoles.

Fig. 12. Zoom of the receiver far-field voltage response at the initial instants
(example V-A).

Fig. 13. Coefficients of potential matrix pattern at the initial instants
computed over the Padé poles.

Fig. 13 shows the pattern of the coefficients of the potential
matrix P(s), computed at one of the first computation instants
(where the response is still wrongly zero) over the Padé poles.
It is known that the coefficients of the potential matrix are
full [14], but, when computed for small values of t ′, the
underflow issue causes the coefficients of potential describing
the mutual interactions to be zero, resulting in null off-
diagonal blocks. The same behavior is observed in the partial
inductances matrix Lp(s).

In the FILT series, with reference to (22), the K and p
parameters have been set as K = 20 and p = 8. For the
choice of parameter α, the adaptive criterion (28) has been
adopted.

Since the source is piecewise linear (PWL), all the global
responses are conveniently obtained, for each port, through the
superposition of delayed versions of a unique ramp response.
When the receiver voltage is computed, the wrong null initial
portion affects considerably the final result. This is evident in
Fig. 14, where a satisfactory agreement is observed between
the FILT results and the reference time-stepping solution
BD2, while the NILT results, obtained with M = 20, are
inadequate.
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Fig. 14. Receiver far-field voltage response with 50 � terminations
(example V-A).

Fig. 15. Cable cross section geometry.

TABLE V
GEOMETRIC FEATURES OF THE THREE WIRES CABLE

B. Three-Phase Cable

In Section IV, it has been pointed out that the TD modeling
of MTLs through inverse LT techniques is feasible and easy to
implement since the formulation is closely connected to the
classic FD representation in terms of per-unit-length (p.u.l.)
parameters. In the second example, a three-phase cable is
considered. Its cross section is represented in Fig. 15. It is
assumed that the shield is a perfectly conducting cylinder,
filled with a uniform dielectric material characterized by a
dielectric relative permittivity εr = 3.0. The line length is
assumed as L = 10 m, which is a standard value employed
in motor drive systems applications. The cable geometrical
quantities are summarized in Table V.

The cable can be modeled as a six ports MTL system. The
p.u.l. inductances matrix of the MTL model is analytically
known [45], exhibiting diagonal elements Ls

Ls =
µ0

2π
ln
(

r2
s − d2

i

rsrw

)
(42)

Fig. 16. Near-end voltage response (example V-B).

and off-diagonal elements Lm

Lm =
µ0

2π
ln

(
di

rs

√
d2

i + r4
s − 2d2

i r2
s cos θ

d2
i + d4

i − 2d4
i cos θ

)
. (43)

Since the conductors are placed in a homogeneous dielectric
medium, the per-unit-length capacitance matrix is easily
obtained as follows:

C = µ0εL−1. (44)

The same holds for the per-unit-length conductance matrix

G = σµ0 L−1 (45)

being σ the equivalent dc conductivity of the dielectric
material.

For example purposes, only one conductor is fed at one end
through a 19 � voltage source, while the other five ports are
terminated on 19 � passive loads. The voltage waveform is
chosen as a double exponential pulse

vs = e−αt
− e−βt (46)

with α = 20 ps and β = 33 ps. The near-end crosstalk voltage
induced in one of the victim lines is shown in Fig. 16. The
focus should be put on the NILT solution behavior in the rising
portion of the signal, shown in detail in Fig. 17, where it is
evident that the results are unavailable for a significant part of
the rising edge. The reason resides in the fact that the chain
matrix reaches an overflow condition due to the very large
real part of the Padé poles at the beginning of the analysis,
e.g., at the first time samples. The converse is true for the FILT
results, where, as described in the previous section, an adaptive
choice of the real part of the FILT complex points permits an
accurate representation at the early times.

For completeness, In Fig. 18 the far-end voltage response
is sketched. In this example, M = 24 (12 terms in the NILT
series) was found to be the minimum NILT expansion number
that guarantees an acceptable accuracy. For the same purpose,
FILT analysis is performed by adopting K = 12 and p = 8 in
(14), for a total number of 20 evaluations per time sample of
the MTL system. As a consequence of the chosen number of
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Fig. 17. Rising front of the near-end voltage response (example V-B).

Fig. 18. Far-end voltage response (example V-B).

series terms, the simulation CPU time for the NILT technique
was 2.67 s, while for FILT was 3.78 s, suggesting that if
only the far-end responses are needed the NILT technique is
the most convenient since it reaches an acceptable accuracy
with a lower computational effort. On the contrary, for the
computation of the near-end responses the FILT technique
becomes necessary, since, due to its flexibility, it provides
accurate results also at early times without losing important
data. To combine the benefits offered by each technique,
should not be excluded the possibility to combine the two
approaches using FILT to support NILT where it is not able
to provide data.

VI. CONCLUSION

Well-known numerical techniques can solve Maxwell’s
equations in the TD. Despite their robustness, they have some
limitations primarily related to their stability and the modeling
of dispersive media. A possible alternative is represented
by the NILT that returns the TD responses inheriting the
advantages of the complex frequency modeling. This work has
presented a comparative analysis of two of the most popular
methods for the computation of the numerical inverse LT,

known as the NILT and FILT. Issues and limitations behind
these two methods have been addressed and the possible
solutions pointed out. Two numerical tests have been presented
to corroborate the pros and cons of the two methods.
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