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Abstract— A signal flow graph (SFG) representation of small-
signal responses of nonlinear microwave circuits around a large-
signal operating point is developed using the X-parameters.
It is shown that, unlike the SFGs for linear circuits, negative-
frequency nodes need to be included explicitly. The development
elucidates the circuit-operational meaning of the elusive T-type
small-signal X-parameters, which represent the interaction
between positive- and negative-frequency components. As an
example, such an SFG is used to derive a closed-form expression
of the output power of an amplifier as a function of the load
reflection coefficient. It is then used to plot approximate load-
pull power contours. The result is consistent with the expressions
of the optimum load reflection coefficient derived by Root et al.
(EuMIC 2017) and power contours derived by Peláez-Pérez et al.
(TMTT 2013). SFGs provide an alternative systematic means to
derive closed-form expressions in terms of X-parameters and
gain illuminating insights into the workings of weakly nonlinear
circuits.

Index Terms— Frequency mixing, intermodulation distortion,
polyharmonic distortion model, S-functions, uncertainty propa-
gation, X-parameters.

I. INTRODUCTION

THE wide availability of nonlinear microwave simulators
has greatly facilitated the design of nonlinear circuits.

Such simulators are especially useful for iterative parameter
optimization at the later stages of design. Nevertheless,
analytic or semianalytic design approaches could help in
the initial phase of design. (Semi)analytic results could
provide design insights [1] and reasonable initial guesses for
nonlinear optimization, thereby speeding up its convergence
to a good solution. The celebrated load-pull theory based on
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the dc loadline [2], [3], for example, provided a remarkable
insight into power amplifier (PA) design. In contrast,
numerical simulation results, albeit very valuable, might not
be particularly insightful [1].

As regards linear circuits, various useful closed-form
expressions have been derived in terms of S-parameters.
S-parameters go very well with the signal flow graphs
(SFGs) [4], [5]. SFGs offer a systematic means to derive
closed-form expressions in terms of S-parameters [6], [7], [8]
and are frequently used especially in metrology.

Nonlinear scattering functions and their derivatives [9],
[10] can be regarded as a natural extension of S-parameters.
“X-Parameters”1 [11], [12] is one persuasion that con-
siders only first-order derivatives. Similar frameworks to
X-parameters include “S-functions” [12], [13], [14]. Although
X-parameters can be black-box models of nonlinear devices
and circuits [15], [16], applications of X-parameters toward
analytic design or modeling of nonlinear circuits and devices
have recently made great progress [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27]. Dunsmore [28, p. 427]
described the findings of [22] as “a breakthrough.” This was,
perhaps, an indication of how little we had actually known
about the meaning of X-parameters. Better understanding
could potentially lead to more ideas for design or modeling.
The contribution of this article is to demonstrate how SFGs
can be adapted to the X-parameter framework. SFGs will be
shown to provide an alternative means to derive useful closed-
form expressions, just as in the linear case. More importantly,
SFGs provide an intuitive picture of the operation of weakly
nonlinear circuits, not readily available from purely algebraic
treatment or from nonlinear circuit simulation.

The rest of this article is organized as follows. Section II
briefly describes X-parameters with a single fundamental
tone, together with the notation used in this article (slightly
different from that in [11]) and simplifying assumptions
made. Section III introduces SFGs for weakly nonlinear
circuits operating around a large-signal operating point
(LSOP) [9], [11] and highlights new insights gained
through looking at SFGs. Section IV presents an application
example, in which approximate load-pull power contours
of an amplifier are plotted using a closed-form expression.
The derived expression is shown to be consistent with
predictions by existing theories [20], [22] and could be
useful for making quick estimates. Finally, Section V
summarizes the main results and discusses prospects. In the
Appendix, detailed graphical derivations of some closed-

1“X-Parameters” is a registered trademark of Keysight Technologies, Inc.
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Fig. 1. Time-invariant nonlinear two-port. Ap,k and Bp,k are, respectively,
the incoming and outgoing pseudotraveling-wave phasors at port p at the kth
harmonic. Zs is the signal source impedance, and ZL is the load impedance.

form expressions are given. Also, an SFG-based explanation
is given of why the output impedance of a nonlinear
amplifier depends on the load impedance. How load-dependent
X-parameters [11], [15] could be accommodated to SFGs is
also discussed.

II. X-PARAMETERS WITH ONE FUNDAMENTAL TONE

Let us consider a time-invariant nonlinear two-port (see
Fig. 1). In the following, we will consider only a single
fundamental tone, ω0 (>0), and mainly the first two harmonics
(ω0 and 2ω0) to avoid complication. We will not explicitly
consider the dc response functions, X (dc)(·) [11].

In a large-signal periodic steady state, which comprises
large-signal stimuli and large-signal responses, the outgoing
pseudotraveling-wave [29], [30] phasor, Bp,k , at physical
port p with a harmonic number k can be written using
a phase-normalized nonlinear scattering function (or B-type
X-parameter [31]) X (B)

p,k (·) as follows [11]:

Bp,k = X (B)
p,k

(
|A1,1|, A1,28

−2, A2,18
−1, A2,28

−2)8k (1)

where Aq,l are the incoming pseudotraveling-wave phasors at
physical port q with a harmonic number l, and

8 ≜ e j ̸ A1,1 (2)

is the so-called twiddle factor [12]. “≜” in (2) denotes equality
by definition. The 2-tuples {p, k} and {q, l} can be regarded
as logical port indices.

Following the convention in [11], phasors in this article are
root mean square (rms) phasors. In the time domain, A1,1, for
example, can be written as

A1,1(t) =
√

2|A1,1| cos
(
ω0t + ̸ A1,1

)
=

√
2Re

(
A1,1e jω0t)

=
A1,1e jω0t

+ A∗

1,1e− jω0t

√
2

(3)

where A1,1 is the phasor at time t = 0, and A∗

1,1 is its
complex conjugate. Equation (3) indicates that a sinusoidal
signal is composed of the positive-frequency component
A1,1e jω0t and the negative-frequency component A∗

1,1e j (−ω0)t

[10], [12], [32], [33], as shown in Fig. 2.
Suppose now that port 1 of the two-port (see Fig. 1) is driven

by a signal source with a signal-source impedance Zs that is
equal to the reference resistance2 Rref (>0), which typically is
50 �. Suppose further that the load impedance ZL , too, equals

2In this article, we will consider only positive real reference impedances
to avoid possible confusion [30]. We also assume, for simplicity, that Rref is
independent of frequency and is common to all ports.

Fig. 2. Visualization of A1,1(t) in (3) on the complex plane. A1,1 and A∗

1,1
are rms phasors at t = 0.

Rref. Then, the source and load reflection coefficients at the
kth harmonic

0s,k =
Zs,k − Rref

Zs,k + Rref
(4)

0L ,k =
ZL ,k − Rref

ZL ,k + Rref
(5)

become 0. This makes A1,2 = A2,1 = A2,2 = 0. We hereafter
assume for simplicity that X-parameters are to be obtained at
such LSOPs (the “load-independence” assumption3 [19], [20])
by using a suitable nonlinear network analyzer or a nonlinear
microwave simulator. Then, (1) becomes a function of A1,1
alone as follows:

BLSOP
p,k (A1,1) = X (B)

p,k

(
|A1,1|

)
8k . (6)

Now, if, for example, the values of Zs,k and/or ZL ,k deviate
from Rref, Aq,l = 0 ((q, l) ̸= (1, 1)) and Bp,k = BLSOP

p,k
will no longer hold.4 If the nonlinearity of the two-port is
weak at a given LSOP, a small deviation from the LSOP can
be approximated by linearizing X (B)

p,k (·) by first-order Taylor
expansion around the LSOP as follows [11, Sec. 5.2.2]:

Bp,k ≃ BLSOP
p,k +

∑
q,l

[
∂ X (B)

p,k

∂(Aq,l8−l)

∣∣∣∣∣
LSOP

aq,l8
k−l

+
∂ X (B)

p,k

∂(Aq,l8−l)∗

∣∣∣∣∣
LSOP

a∗

q,l8
k+l

]
(7)

where the derivatives are Wirtinger derivatives [22], [34], and

aq,l ≜ Aq,l − ALSOP
q,l (8)

is the small deviation of Aq,l from the LSOP value ALSOP
q,l

(ALSOP
1,1 ̸= 0 and ALSOP

q,l = 0 for (q, l) ̸= (1, 1)). The
presence of the second term of (8) is essential, especially when
ALSOP

q,l ̸= 0 (considered in Appendix C). If it did not exist,
(7) would not be a Taylor expansion. Equation (7) can be

3The load-independence assumption is made here just to make the example
that follows simple. It is not a requirement for the following development.

4An implicit simplifying assumption made here is that the value of A1,1
remains constant when Zs,1 deviates from Rref, and therefore, the first term
of (7) is not affected by the deviation via (6). However, normally, A1,1 will
be affected by the change in Zs,1 according to (15) and (4) if Pavs is fixed,
thereby shifting the LSOP itself. The assumption has been made to introduce
the concept using a one-port as an example in Section III.
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Fig. 3. SFG (right) of a linear one-port (left).

written in terms of the S-type and T-type small-signal X-
parameters [31] as follows:

Bp,k ≃ BLSOP
p,k

+

∑
q,l

[
X (S)

p,k;q,laq,l8
k−l

+ X (T )

p,k;q,la
∗

q,l8
k+l
]

(9)

X (S)

p,k;q,l ≜
∂ X (B)

p,k

∂(Aq,l8−l)

∣∣∣∣∣
LSOP

(10)

X (T )

p,k;q,l ≜
∂ X (B)

p,k

∂(Aq,l8−l)∗

∣∣∣∣∣
LSOP

. (11)

At the small-signal limit (|A1,1| → 0), the S-type
X-parameters at ω0 reduce to S-parameters (X (S)

p,1;q,1 → Sp,q ),
and the LSOP term of (9) and the T-type X-parameters
disappear (BLSOP

p,k → 0 and X (T )

p,k;q,l → 0) [11]. Since a∗

q,l

in (9) represents a negative-frequency (−lω0) component,
X (T )

p,k;q,l can be understood as a scattering coefficient from
−lω0 to +kω0 [12]. Taking the complex conjugate of (9),

X (S)∗

p,k;q,l and X (T )∗

p,k;q,l will represent scattering coefficients from
−lω0 to −kω0 and from +lω0 to −kω0, respectively. Equation
(9) can be rewritten as

Bp,k ≃ BLSOP
p,k + bp,k (12)

where

bp,k ≜
∑
q,l

[
X (S)

p,k;q,laq,l8
k−l

+ X (T )

p,k;q,la
∗

q,l8
k+l
]

(13)

is the first-order deviation of Bp,k from the LSOP value given
by (6).

III. SFG FOR NONLINEAR CIRCUIT AROUND LSOP

A. From S-Parameters to Small-Signal X-Parameters
The simplest SFG is that for a linear one-port, as shown in

Fig. 3. The SFG has but one branch, and associated with it
is the S-parameter S11. The small-signal wave phasors a1 and
b1 are related to each other by the linear relationship

b1 = S11a1. (14)

In what follows, we will consider the progression from the
SFG for a linear one-port (see Fig. 3) to an SFG for a nonlinear
one-port or two-port operating near an LSOP, assuming, for
simplicity, that ̸ A1,1 = 0, and hence 8 = 1 [see (2)]. Here,
we will temporarily forget about the first term of (9) and focus
on the linear relationship (13).

Fig. 4(a) shows the first step of the progression, in which
the S11 in Fig. 3 is replaced by X (S)

1,1;1,1, and harmonic indices
are introduced to the wave phasors. The next step, shown
in Fig. 4(b), is the critical step, in which the graph
for the negative frequency has been added. The negative-
frequency graph need not to be considered explicitly in

Fig. 4. Progression to a one-port SFG around an LSOP, not including the
contribution from LSOP terms. (a) S-parameter in Fig. 3 is replaced by an
S-type X-parameter, and harmonic indices are introduced to wave phasors.
(b) Complex-conjugate (negative-frequency) graph is added. (c) Branches
connecting positive- and negative-frequency graphs are added.

Fig. 5. Nodes and branches involving harmonic number 2 are added to the
SFG in Fig. 4(c). Added S-type X-parameters are shown in blue and T-type
X-parameters are shown in red.

the linear case (see Fig. 3) because it is just the complex
conjugate of the positive-frequency graph and provides no
extra information. However, the presence of a∗

q,l in (13)
suggests that the negative-frequency graph is needed here
[35], [36]. The third step is shown in Fig. 4(c), in which
the branches corresponding to X (T )

1,1;1,1 and X (T )∗

1,1;1,1 are added.
Fig. 4(c) visualizes (13) and its complex conjugate for
k = 1 and l = 1. The origin of these branches could
be inferred from their role of connecting positive- and
negative-frequency nodes as follows. Since the one-port
under consideration is nonlinear and is operating in a large-
signal condition, second-harmonic components, proportional
to e± j2ω0t , are being generated, typically leading to BLSOP

1,2 ̸= 0
and BLSOP∗

1,2 ̸= 0. Then, frequency mixing can take
place between these e± j2ω0t and the incoming fundamental
frequency components, e∓ jω0t (corresponding to a∗

1,1 and a1,1),
thereby producing outgoing e± jω0t (corresponding to b1,1
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TABLE I
INPUT AND OUTPUT FREQUENCIES OF T-TYPE X-PARAMETERS

TABLE II
INPUT AND OUTPUT FREQUENCIES OF S-TYPE X-PARAMETERS

Fig. 6. SFG of a nonlinear two-port around an LSOP, not including the
contribution from LSOP terms. The harmonic number is limited to 1.

and b∗

1,1). The branches associated with X (T )

1,1;1,1 and X (T )∗

1,1;1,1
represent part of these implicit frequency mixing processes.
In this sense, although only harmonic number 1 appears in
Fig. 4(c), effects of the second harmonic are included in it to
some extent. The implication is that single-tone X-parameters
include information about two-tone intermodulation distortion
(at the limit of ω1 → ω0), which is usually studied using
two closely spaced tones, ω0 and ω1. This might be a reason
why the existing analytic work that used as few as three
X-parameters [one large-signal parameter and two small-signal
parameters as in (18)] with k = l = 1 [17], [18], [19], [20],
[21], [22] worked so well.

Fig. 5 shows how nodes and branches involving harmonic
number 2 can be added. Explicit frequency upconversion and
downconversion branches can now be seen. Input and output
frequencies of the eight T-type X-parameters that appear in
Fig. 5 are summarized in Table I. In general, the implicit input
frequency of X (T )

p,k;q,l is (k+l)ω0. For the sake of completeness,
a similar table is presented for the S-type X-parameters (see
Table II). X (S)

p,2;q,1 in Table II is related to harmonic distortion,
whereas X (S)

p,1;q,2 is related to intermodulation distortion. The
SFG in Fig. 5 might already look too complicated, but it should
at least give an idea of what is happening around an LSOP of

Fig. 7. Simulated small-signal transmission coefficients X (T )
2,k;1,l versus the

input available power Pavs of a 2-GHz PA (two-stage BJT amplifier) model
“RF_PA_CKT” built into ADS at 2 GHz. The slope of X (T )

2,k;1,l is given by
(k + l) when Pavs is sufficiently small.

Fig. 8. Measured small-signal transmission coefficients X (T )
2,k;1,l versus the

input available power Pavs of an amplifier (Mini-Circuits ZFL-11AD+) at
1.8 GHz. Its IP1dB is about −14 dBm.

a nonlinear device. Generalization to higher-order harmonics
should be obvious. Henceforth, we will limit the harmonic
number that we consider to 1 for simplicity unless otherwise
stated.

Another generalization over Fig. 4(c) is the addition of
physical ports. For instance, Fig. 6 shows an SFG for a two-
port. It should be clear from Figs. 5 and 6 that each logical port
contributes four nodes. Alternatively, a∗

q,l could be understood
to be associated with a logical port {q, −l} (l > 0) [37]. If a
harmonic index is allowed to assume a positive or a negative
value, then each logical port will contribute to two nodes. This
interpretation is more consistent with the linear case.

Fig. 7 shows, in connection with Table I, |X (T )

2,k;1,l | of a
2-GHz PA (two-stage BJT amplifier) model “RF_PA_CKT,”
built into Keysight ADS [31], as a function of the input
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Fig. 9. (a) Nonlinear one-port driven by a signal source. The source
impedance Zs is assumed to be linear and Re(Zs) > 0. (b) Corresponding
SFG, not including the contribution from LSOP terms. Only X-parameters
having harmonic number 1 are considered. Shown in red is the indirect path
leading off from a1,1 to b1,1.

available power, Pavs. In general, a plot of |X (T )

p,k;q,l | (in dB)
versus |A1,1| (in dBm) tends to exhibit a slope of (k + l) at
low input power levels because X (T )

p,k;q,l is implicitly fueled
by the generation of the (k + l)th harmonic due to the

(k + l)th-order nonlinearity. X (T )

p,k;q,l is related to the
(k + 2l)th-order intermodulation distortion (see the second

term of (13) and Table I). Fig. 8 shows |X (T )

2,k;1,l | of an amplifier
(Mini-Circuits ZFL-11AD+), measured with Agilent N5245A.
Although the dynamic range of measurement is much more
limited than that of numerical simulation (see Fig. 7), the
observed slopes are reasonably close to the expected values.
Measured |X (T )

p,k;q,l | in the literature [9], [11] also exhibited
such behavior.

B. Incorporating the LSOP Terms
We now consider how to incorporate into an SFG the first

term of (9), which makes (9) an affine relationship rather than a
linear one. First, consider a one-port driven by a signal source,
as shown in Fig. 9(a). How to incorporate a signal source
to an SFG is known [6], [8], and the corresponding SFG is
shown in Fig. 9(b), which is further progression from Fig. 4(c).
The source reflection coefficient, 0s,1, at the fundamental
frequency is given by (4) with k = 1. The Rref-referenced
pseudotraveling-wave phasor from the source can be written
as [8, p. 19]

Bs,1 =

√
Pavs

√(
1 − 0s,10

∗

s,1

)
(1 − 0s,1)

1 − 0∗

s,1
(15)

where Pavs is the available power of the signal source. From
Fig. 9(b), a1,1 is given by

a1,1 = Bs,1 + 0s,1b1,1. (16)

Incidentally, note that Fig. 9(b) lucidly visualizes the known
puzzling fact that the small-signal input reflection coefficient,
0in = b1,1/a1,1 in this case, of a nonlinear network is,
in general, not equal to X (S)

1,1;1,1 but depends on the “impedance
at your back” [Zs in Fig. 9(a)]. This is because X (S)

1,1;1,1 is
not the only path that leads off from a1,1 to b1,1. The other
path is a1,1 → b∗

1,1 → a∗

1,1 → b1,1, involving X (T )∗

1,1;1,1, 0∗

s,1,
and X (T )

1,1;1,1, as shown in red in Fig. 9(b) (see Appendix B
for further discussion). There will be more paths if higher
harmonic numbers are taken into consideration.

Fig. 10. (a) Amplifier driven by a signal source with Zs = Rref, which
makes a1,1 = a∗

1,1 = 0 in Fig. 6. The load is assumed to be linear. (b) SFG
for port 2 of the amplifier around an LSOP. Shown in red are the sources
representing the LSOP. (c) Reduced SFG.

Recall at this juncture that a voltage source is a nonlinear
circuit element [38]. In this sense, nonlinearity has already
been incorporated into the SFG in Fig. 9(b). Comparison of
the two affine equations (9) and (16) suggests that the first
term of (9) should appear in an SFG as a source node that
leads to the Bp,k node via a unity-gain branch.

Let us consider the amplifier shown in Fig. 10(a) as an
example. The source impedance is Zs = Rref, and from
(4) and (8), a1,1 = a∗

1,1 = 0. The amplifier can, therefore,
be regarded as a nonlinear one-port as long as its output
port is concerned (see Fig. 6). The SFG for the output port
of the amplifier is shown in Fig. 10(b). Unlike the ordinary
source nodes (Bs,1 and B∗

s,1 in Fig. 9(b)), which flow into
“a” (incoming wave) nodes, BLSOP

2,1 and BLSOP∗

2,1 flow into “B”
(outgoing wave) nodes. The usual graph reduction rules [6], [7]
can now be applied to the SFG. The result of eliminating B∗

2,1,
a2,1, and a∗

2,1 is shown in Fig. 10(c). The derivation is given in
Appendix A. The output wave phasor, B2,1(|A1,1|, 0L ,1, 0

∗

L ,1),
therefore, is given by

B2,1 =

(
1 − X (S)∗

2,1;2,10
∗

L ,1

)
BLSOP

2,1 + X (T )

2,1;2,10
∗

L ,1 BLSOP∗

2,1∣∣∣1 − X (S)

2,1;2,10L ,1

∣∣∣2 −

∣∣∣X (T )

2,1;2,10L ,1

∣∣∣2 (17)

where 0L ,1 and BLSOP
2,1 are given by (5) and (6), respectively.

Here, we have, in effect, eliminated a2,1 and a∗

2,1 from the
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Fig. 11. Output power contours of an amplifier obtained from (20) (red
dotted) and from load-pull simulation (blue solid) with the harmonic order
set to 7. Contours are drawn at the same power levels in red and blue.
The red circular dot is the optimum load reflection coefficient predicted
by [22, eq. (10)] and (20). The input (available) power from the source is
Pavs = −40 dBm, which is a small-signal operating condition.

Fig. 12. Same as Fig. 11 except that Pavs = −16.5 dBm, which
equals IP1dB.

well-known equation [19], [20], [22] [from (9)]

B2,1 = BLSOP
2,1 + X (S)

2,1;2,1a2,1 + X (T )

2,1;2,1a∗

2,1. (18)

This is in contrast to the analytic treatment in [19], [20], and
[22], in which a2,1 and a∗

2,1 were retained. In our treatment,
a2,1 can be found from Fig. 10(b) by

a2,1 = 0L ,1 B2,1. (19)

IV. APPROXIMATE LOAD-PULL POWER CONTOURS

In this section, we show load-pull power contours of an
amplifier as a means of checking the logical correctness of
(17) and the SFG theory that lead to it. Note, however, that the
numerical accuracy offered by load-independent X-parameters
that we use in the following examples for simplicity is known

Fig. 13. Load-pull power contours of an amplifier ZFL-11AD+ plotted by
using (20) of this article (blue) and [20, eqs. (6)–(18)] (red). The input power
is Pavs = −16 dBm.

Fig. 14. Measured load-pull power contours of an amplifier ZFL-11AD+

and approximate contours (in blue, same as in Fig. 13) plotted by using (20).
The diamond-looking crosses are the measurement points. The input power is
Pavs = −16 dBm. The large red-filled diamond is the interpolated peak power
point from measurement. The blue downward triangle is the theoretically
predicted peak power point.

to be limited to a small region on a Smith chart [21] (around
the origin in our case). The accuracy could be improved,
for example, by shifting the region of good accuracy to a
region of interest (e.g., high output power) by making a clever
choice of load impedance [20], [24] (although this does not
enlarge the region of good accuracy), by making X-parameters
load-dependent [11], [15] (at the cost of long measurement
time), by considering higher-order derivatives [39], [40],
and/or by using more sophisticated extrapolation than Taylor
expansion [41]. However, since pursuing numerical accuracy
is not the purpose of this article, we just use load-independent
X-parameters with a fixed load impedance of 50 � in the
following.
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Fig. 15. Step-by-step derivation of the SFG in Fig. 10(c). (a) Redrawn version of the SFG in Fig. 10(b). (b) a2,1 and a∗

2,1 have been duplicated. (c) Bottom a2,1
and top a∗

2,1 have been eliminated. (d) Self-loops have been eliminated. (e) a2,1 and a∗

2,1 have been eliminated. (f) B∗

2,1 has been split, where B∗′

2,1 + B∗′′

2,1 = B∗

2,1.
(g) B∗′′

2,1 has been eliminated. (h) Self-loop has been eliminated. (i) B∗′

2,1 has been eliminated. This leads to the SFG in Fig. 10(c).

|B2,1|
2 gives the power presented to the load by the

amplifier, but part of it will be reflected by the load according
to (19) unless 0L ,1 = 0. The power absorbed by the load,
therefore, is given by

PL,1
(
|A1,1|, 0L ,1, 0

∗

L ,1

)
= |B2,1|

2
− |a2,1|

2

= |B2,1|
2(1 − 0L ,10

∗

L ,1

)
. (20)

Contrary to its appearance, (20) includes effects of the
second harmonic to a degree, as explained in Section III-A.
Equation (20) can easily be evaluated using (17) on a
0L ,1-plane Smith chart to plot power contours.

We first compare load-pull power contours obtained from
(20) with those from harmonic-balance simulation (see
Figs. 11 and 12). We use an amplifier model “RF_PA_CKT”
built into ADS [31]. Its small-signal gain is about 29.5 dB,
and the input 1-dB gain compression point (IP1dB) with a
50-� load is about −16.5 dBm. The available power of the
signal source is set to Pavs = {−40, −16.5} dBm with the
source impedance being Zs = Rref = 50 �. X-parameters
are “measured” at these input power levels with ZL =

Rref = 50 �, and then, load-pull simulation is performed. The
contours in Figs. 11 and 12 are drawn at the same power levels
for the closed-form approximation (in red) and simulation
(in blue). Fig. 11 shows the small-signal case (BLSOP

2,1 → 0,
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X (S)

2,1;2,1 → S22, and X (T )

2,1;2,1 → 0 [11]), and the optimum load
impedance is given simply by 0L ,1 = X (S)∗

2,1;2,1 = S∗

22 [22].
In the large-signal case (see Fig. 12), the red and blue contours
almost overlap near the origin, whereas they tend to separate
far from the origin. This is because a2,1 and b2,1 go to
0 at the origin, whereas the assumption that (19) is small
becomes invalid as 0L ,1 moves farther from the origin. The
predicted optimum load reflection coefficient (red circular
dot) is consistent with the prediction by Root et al. [22]
and is reasonably close to the simulated optimum point. The
prediction could, therefore, be useful for establishing a quick
initial design [21].

Next, we use measured X-parameters of the amplifier
ZFL-11AD+ and compare load-pull contours given by (20)
and those from analytic equations (6)–(18) of [20]. The small-
signal gain of ZFL-11AD+ is about 11 dB. Since the two sets
of equations are derived from the same theoretical starting
point (18) with the same set of X-parameters, the resulting
two sets of contours are expected to agree with each other.
Fig. 13 shows that this is indeed the case. The level of accuracy
offered by equations derived using SFGs is the same as that
offered by equations derived algebraically. Our result (20) for
the power absorbed by the load as a function of 0L ,1 is much
simpler than (6)–(18) of [20] and might be easier to use.

Finally, Fig. 14 compares measured load-pull power
contours with approximate load-pull contours from (20). The
measurement was made with an Agilent N5245A network
analyzer and a Maury MT982AL02 passive load-pull tuner.
The agreement is reasonable near the origin.

V. CONCLUSION AND PROSPECTS

We showed, in X-parameter parlance, how to draw SFGs
for weakly nonlinear microwave circuits operating around an
LSOP. The differences between such SFGs from those for
linear circuits are that: 1) the negative-frequency graph needs
to be drawn explicitly [see Fig. 4(b)]; 2) branches associated
with X (T )

p,k;q,l and X (T )∗

p,k;q,l connect the positive- and negative-
frequency graphs [see Fig. 4(c)]; and 3) the first term of
(9), representing the LSOP, and its complex conjugate need
to be included as source nodes [see Fig. 10(b)]. We also
pointed out that X (T )

p,k;q,l and X (T )∗

p,k;q,l could be understood
as representing implicit frequency mixing processes, related
to intermodulation distortion. The highest frequency involved
in such a process is not kω0 or lω0 but (k + l)ω0 (see
Table I). SFGs thus drawn can be treated in the same way
as ordinary SFGs and can, in principle, be used to derive
closed-form expressions in terms of X-parameters by using
the known techniques [4], [5], [6], [7], [8]. Although SFGs
can easily get very complicated, branches associated with very
small magnitudes of X-parameters could be pruned before
attempting any derivation. Table I and Fig. 7 suggest that
X (T )

p,k;q,l involving the third or fourth harmonic (k+l ≥ 3) could
be candidates for pruning. A measurement-based decision of
which X-parameters to drop (i.e., model order reduction) is
described in [14]. Computational aspects of SFGs were studied
in [42]. Even when no attempt is made to derive expressions,
SFGs offer revealing insights into small-signal responses of
weakly nonlinear circuits operating around an LSOP.

As an application example, we derived the output power
expression [see (20)] of an amplifier (see Fig. 10) as a function
of the load reflection coefficient 0L ,1 and used it to plot

approximate load-pull power contours (see Figs. 11–14). The
approximation was accurate near the center of an Rref-centered
Smith chart, but it tended to deteriorate far from the center
because of the small-signal assumption of a2,1 and a∗

2,1 in
Fig. 10(b). This was a known limitation of load-independent
X-parameters. If the optimum load reflection coefficient turns
out to lie far from the center of the Smith chart, the region
of validity can and should be shifted by choosing a different
value of load impedance that defines the LSOP [19], [20], [24].
In this load-dependent case, the LSOP term of (9) becomes
dependent on A2,1 (or on 0L ,1 via A2,1 = 0L ,1 B2,1 [11], [15],
[16], [23]) as follows:

BLSOP
p,k (A1,1, A2,1) = X (B)

p,k

(
|A1,1|, A2,18

−2)8k . (21)

SFGs should remain valid in such load-dependent cases too
(see Appendix C).

Apart from amplifiers, waveform shaping [43] for oscilla-
tors [44] might also be a possible situation where analysis
using SFGs could turn out useful. Given the fact that both
positive and negative frequencies appear in an SFG for
X-parameters, it could also be interesting to apply SFGs to
such circuits as complex filters, which have different responses
for positive and negative frequencies.

Other possible application areas of SFGs include metrology,
especially uncertainty analysis for S-parameter measurement
considering weak nonlinearity of passive test fixtures
[45], [46], electronic calibration kits [28], or VNA receivers
[47], [48]. For example, to account for VNA receiver
nonlinearity, its source-dependent X-parameters should be
measured in advance. When measuring the S-parameters of
a device under test, the power that enters the VNA receiver
needs to be measured as well [49]. Using these data, analytic
uncertainty propagation could be carried out with the help of
an SFG.

APPENDIX

A. Derivation of the SFG in Fig. 10(c)
Fig. 15 illustrates step-by-step derivation of the SFG shown

in Fig. 10(c) by topological manipulation [6], [7]. A redrawn
version of the SFG in Fig. 10(b) is shown in Fig. 15(a).
Starless (positive-frequency) nodes are on the left-hand side,
and starred (negative-frequency) nodes are on the right-hand
side. Notice its resemblance to an SFG for a linear two-
port with source and load terminations. S-type X-parameters
connect nodes on the same side like reflection coefficients,
and T-type X-parameters connect nodes on opposite sides
like transmission coefficients. The rest of Fig. 15 should be
self-explanatory.

B. Small-Signal Output Reflection Coefficient of Amplifier
To look further at the implication of Fig. 10(b) or Fig. 15(a),

let us transform the SFG as shown in Fig. 16(a) using (12).
Note that

b2,1 = B2,1 − BLSOP
2.1 (22)

and, from (19),

a2,1 = 0L ,1 BLSOP
2,1 + 0L ,1b2,1. (23)

A plot of b2,1 using (22) and (17) is shown in Fig. 17 in red
for |0L,1| = 0.1 and ̸ 0L,1 swept between ±180◦. It shows an
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Fig. 16. (a) B2,1 and B∗

2,1 in Fig. 15(a) have been split by using (12).
(b) Source nodes BLSOP

2.1 and BLSOP∗

2.1 have been absorbed into 0L,1,eff and
0∗

L,1,eff, respectively.

Fig. 17. Red dotted line shows b2,1 plotted using (22) and (17) with
|0L,1| = 0.1 and ̸ 0L,1 swept between ±180◦. The X-parameters are
those of “RF_PA_CKT” at Pavs = −18 dBm. Shown in blue is the
harmonic-balance simulation result. This figure corresponds to the middle
left plot of Fig. 3.18 of [11], which shows much smaller values of |b2,1|.

ellipse as it should [11]. A harmonic-balance simulation result
is also shown in Fig. 17. The discrepancy between the analytic
result (red) and the simulation result (blue) is presumably due
to the facts that X-parameters involving harmonic numbers
greater than 1 are not taken into consideration in (17), and
that (9) is only a first-order Taylor expansion at the LSOP.
The results actually agree better if |0L,1| or the input power,
Pavs, is reduced.

Let us introduce, using (22) and (23), an effective load
reflection coefficient, 0L,1,eff, around the LSOP as follows:

0L,1,eff ≜
a2,1

b2,1
= 0L,1

(
1 +

BLSOP
2,1

b2,1

)
. (24)

The magnitude of 0L,1,eff may very well (and usually does)
exceed unity (|0L,1,eff| → ∞ at the LSOP) even if the load is
passive (|0L,1| ≤ 1) because the second term of (24) is not a
property of the load. By using 0L,1,eff, we can reduce the SFG
in Fig. 16(a) to the one shown in Fig. 16(b). If we define the

Fig. 18. Red dotted line shows the small-signal output reflection coefficient,
0out,1,ss, of “RF_PA_CKT,” plotted using (25) with |0L,1| = 0.1 and ̸ 0L,1
swept between ±180◦. The X-parameters are the same as in Fig. 17. The
unicursal double circle shown in blue is the harmonic-balance simulation
result. This figure corresponds to the bottom plot of Fig. 3.18 of [11].

small-signal output reflection coefficient of the amplifier (see
Fig. 10(a)) around the LSOP by 0out,1,ss ≜ b2,1/a2,1, it can be
written in terms of X-parameters, by inspection of Fig. 16(b),
as

0out,1,ss = X (S)

2,1;2,1 +
X (T )

2,1;2,10
∗

L,1,eff X (T )∗

2,1;2,1

1 − X (S)∗

2,1;2,10
∗

L,1,eff

. (25)

The second term of (25) represents the effect of third-order
intermodulation (see Section III-A). Eqaution (25) actually
depends on 0∗

L,1, which is a property of the load, via (17),
(22), and (24). This dependence on 0∗

L,1 implies that “the
output reflection coefficient is not an intrinsic property of the
nonlinear amplifier under large-signal drive” [11, p. 71]. A plot
of 0out,1,ss for |0L,1| = 0.1 and ̸ 0L,1 swept between ±180◦ is
shown in Fig. 18 in red. The fact that it does not show a single
point indicates that 0out,1,ss depends on ̸ 0L,1. The simulation
result in blue exhibits a unicursal double circle. Again, the
results will agree better if |0L,1| or Pavs is reduced, and then,
the double circle will look like a single circle.

Recently, a superconductive arbitrary waveform synthesizer
(a nonlinear one-port network) was characterized using
X-parameters [50]. Its “simplified” SFG was shown
[50, Fig. 5], in which T-type X-parameters were not
incorporated. Its output impedance was estimated using the
following approximate formula [50, eq. (7)]:

Zout ≈ Rref
1 + X (S)

1,1;1,1

1 − X (S)

1,1;1,1

. (26)

This is equivalent to taking only the first term of (25) (with
all port indices renumbered to 1). A better estimate might be
obtained by using

Zout = Rref
1 + 0out,1,ss

1 − 0out,1,ss
. (27)
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Fig. 19. Load-dependent X-parameter version of the SFG in Fig. 10(b).
8 = 1 is assumed.

C. SFGs for Load-Dependent X-Parameters

The SFG theory developed in this article assumed that
the load impedance ZLSOP

L,1 that defines the LSOP, at which
X-parameters are to be measured, is equal to the reference
resistance Rref. The assumption led to ALSOP

q,l = 0 in (8)
for (q, l) ̸= (1, 1). The theory should be applicable as-
is to load-dependent X-parameters, provided that Rref (or,
more generally, the reference impedance Zref) is shifted
correspondingly so that 0L ,k = 0 holds at the LSOP [see (5)].
However, the use of complex reference impedances can
be confusing and error-prone [30], [51]. Alternatively, the
standard 50-�-referenced load-dependent X-parameters can be
accommodated as follows.

The first term of (7) becomes

BLSOP
p,k

(
A1,1, 0

LSOP
L,1

)
= X (B)

p,k

(
|A1,1|, 0

LSOP
L,1

)
8k (28)

where 0LSOP
L,1 is the load reflection coefficient (at the

fundamental tone, ω0) that establishes the LSOP. Since,
generally, 0LSOP

L,1 ̸= 0 in the load-dependent case,
ALSOP

2,1 ≜ 0LSOP
L,1 BLSOP

2,1 = 0 no longer holds in (8). Then,
nonzero ALSOP

2,1 must be incorporated into (18) (with 8 revived)
as follows [11, Sec. 5.3]:

B2,1 = BLSOP
2,1 + X (S)

2,1;2,1

(
A2,1 − ALSOP

2,1

)
+ X (T )

2,1;2,1

(
A∗

2,1 − ALSOP∗

2,1

)
82. (29)

The right-hand side can be written as follows:

B2,1 = BLSOP,ldep
2,1 + X (S)

2,1;2,1 A2,1 + X (T )

2,1;2,1 A∗

2,18
2 (30)

where

BLSOP,ldep
2,1 ≜ BLSOP

2,1 − X (S)

2,1;2,1 ALSOP
2,1

− X (T )

2,1;2,1 ALSOP∗

2,1 82 (31)

is the constant source term for a given LSOP, just as the
first term of (9) in the load-independent case. Comparison
of (18) and (30) suggests that the load-dependent counterpart
of Fig. 10(b) is as shown in Fig. 19. Thus, the load-
dependent version of (17) is obtained by the simple

substitution BLSOP
2,1 → BLSOP,ldep

2,1 . Equation (7) can then

Fig. 20. Same as Fig. 12, except that the red contours are plotted using
X-parameters obtained with a load impedance of ZLSOP

L,1 = 65 − j15 �.

be rewritten as follows:

Bp,k ≃ BLSOP,ldep
p,k +

∑
q,l

[
∂ X (B)

p,k

∂(Aq,l8−l)

∣∣∣∣∣
LSOP

Aq,l8
k−l

+
∂ X (B)

p,k

∂(Aq,l8−l)∗

∣∣∣∣∣
LSOP

A∗

q,l8
k+l

]
(32)

Equation (32) might not look quite like a Taylor expansion
around the LSOP, but it is because of the second and the third
terms of (31).

Fig. 20 shows load-pull power contours from harmonic-
balance simulation (blue, same as in Fig. 12) and those (red)
from (20) with X-parameters obtained with a load impedance
of ZLSOP

L,1 = 65 − j15 � (at the peak output power). The
agreement is better around the ZLSOP

L,1 than in Fig. 12.
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