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Abstract— Quantitative reconstruction of dielectric properties
has enabled a wealth of biomedical applications. Although
traditional microwave imaging and microwave-induced ther-
moacoustic tomography (MITAT) techniques have been widely
explored for quantitative reconstruction, it is still highly chal-
lenging for them to deal with biological samples with high
permittivity and conductivity. This work leverages deep-learning-
enabled MITAT (DL-MITAT) approach to quantitatively recon-
struct dielectric properties of biological samples with high quality.
We construct a new network structure to separately reconstruct
the permittivity and conductivity. By simulation and experimental
testing, we demonstrate that the DL-MITAT technique is able
to reliably reconstruct inhomogeneous biological samples with
tumor, muscle, and fat. The experimental reconstruction error is
only 5%. The network exhibits excellent generalization capability
in terms of sample’s geometry. This work provides a useful
paradigm and alternative way for quantitative reconstruction
of dielectric properties and paves the way toward practical
applications.

Index Terms— Deep learning (DL), dielectric property recon-
struction, microwave imaging, microwave-induced thermoa-
coustic tomography (MITAT), quantitative reconstruction.

I. INTRODUCTION

QUANTITATIVE reconstruction of the dielectric proper-
ties of samples via electromagnetic imaging techniques

is of paramount significance for a plethora of disciplines
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], among which the biomedical applications have
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attracted tremendous attention and research activities. Breast
cancer diagnosis is the most extensively explored area [6],
[7], [8], [9], [10], which is enabled by the obvious dielectric
contrast between malignant and healthy tissues. Similarly, the
detection of brain tumor and brain hemorrhage have also
been demonstrated [11], [12]. Because the dielectric property
of blood is dependent on the concentration of glucose, it is
possible to noninvasively determine the blood glucose level
by microwave detection techniques [13]. Microwave imaging
can also be employed to quantitatively retrieve dielectric
property of biological tissue, such as bone health evaluation
[14], leg imaging [15], breast tumor detection [16], and head
imaging [17].

Microwave imaging technology has been well developed
to accurately and quantitatively reconstruct the constitutive
parameters, i.e., both the permittivity and conductivity distrib-
ution of the samples via the inverse scattering-based inversion
methods [15], [16], [17], [19]. However, inverse scattering-
based inversion methods encounter some challenges owing to
the intrinsic ill-posedness and nonlinearity. The nonlinearity
with respect to the unknown constitutive parameters is due to
multiple scattering effects inside the domain of interest. When
dealing with strong scatterers (those with high dielectric con-
trasts against the background and/or electrically large dimen-
sions), multiple scattering effects are significantly remarkable
and the corresponding nonlinearity is increased remarkably.
Consequently, one major drawback of the current quantitative
microwave imaging techniques is that samples bearing high
permittivity and contrast (e.g., skins, breast glandular tissues,
muscles, and tumors) are challenging to be faithfully recon-
structed due to high nonlinearity [20], [21], [22], [23], [24],
[25], [26], [27]. This issue inhibits many potential applications
of the quantitative inversion via microwave imaging.

Microwave-induced thermoacoustic tomography (MITAT)
has exhibited intriguing advantages for biomedical applica-
tions, such as cancer detection [6], [7], [8], brain hemorrhage
imaging [12], [29], foreign object detection [30], surgery
guidance [31], and so on. MITAT essentially leverages the
dielectric contrast in a biological sample and recovers an
image, referred to as thermoacoustic (TA) image, of the
sample’s microwave power absorption distribution [32], [33].
MITAT can also be applied to quantitatively reconstruct
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permittivity and conductivity distributions in a sample [2],
[3], [4], which are directly related to the power absorption
distribution [34]. However, the quality and accuracy of the
reconstructed dielectric property still need to be improved,
especially for inhomogeneous biological samples [35]. In addi-
tion, the previous works demand the permittivity distribution
as a priori knowledge (only the conductivity can be recovered),
which is not practical in reality.

Deep learning (DL) has been extensively applied in diver-
sified disciplines in science and engineering in the past five
years [36], [37]. This work investigates a DL-enabled MITAT
(DL-MITAT) approach to perform high-quality quantitative
reconstruction of dielectric properties. The contribution of the
work could be summarized as follows.

1) A new network structure called double-branch residual
U-Net (DBResU-Net) is proposed to implement the
DL-MITAT. Quantitative reconstruction of the dielectric
properties of some heterogeneous biological samples
with fat, muscle, and tumor is used to evaluate the
proposed technique. We carry out both microwave and
acoustic simulations to efficiently establish the training
sets. The physical transformation is implemented via the
back-projection (BP) algorithm from collected acoustic
signal data to the preliminary TA image or distribution
information, which is taken as the input of the network.

2) The proposed DBResU-Net is composed of a cascaded
coarse network and a fine-tuning model to fulfill the
high-quality imaging from the preliminary results of
the BP to the output of permittivity and conductivity.
This can significantly improve the reconstruction accu-
racy compared to traditional MITAT methods. The two
branches in the fine-tuning model can separately yield
outputs of the permittivity and conductivity, which is
beyond the capability of traditional MITAT techniques.

3) Simulation testing results reveal reliable quantitative
reconstruction, even if when handling testing samples
with shapes different from those in the training sets. The
presented experimental results based on some fabricated
inhomogeneous phantoms demonstrate that this method
is able to obtain high-quality reconstruction results and
less than 5% error in the value of the dielectric prop-
erties. Experimental testing results using mismatched
samples are also discussed.

Compared to our previous work on DL-MITAT [9], this
work is fundamentally different in terms of four aspects.
First, this work conducts quantitative reconstruction that is
much more challenging than the qualitative reconstruction
in [9]. Second, to achieve quantitative inversion of complex
permittivity, there is a big distinction between the utilized
network structures. The network in [9] is a domain transform
network that uses original data as the input and finally gets an
output image. In contrast, the current network does not need to
do physical domain transfer, i.e., both the input and output of
the network are the physically constitutive images. In addition,
the current network has a double-branch structure to yield
two output images and the loss function is dependent on both
the output images. Third, building the training sets in this

work involves both microwave and acoustic simulations, while
only acoustic simulation is needed in [9]. This can largely
guarantee the accuracy of the quantitative reconstruction in this
work, especially for complicated biological samples. Fourth,
Zhang et al. [9] mainly investigate the image reconstruction
using sparse data, while the current work uses complete data.
Last but not least, Zhang et al. [9] only investigate the detec-
tion of a simple target, i.e., a round breast tumor. However,
the current work deals with a much more difficult task to
reconstruct the 2-D dielectric property distribution maps of
complicated inhomogeneous samples.

This work provides an alternative way for quantitative
reconstruction of biological samples’ dielectric properties and
is meaningful for many related biomedical detection and
imaging applications.

II. RATIONALE

A. Fundamentals of MITAT

The well-established MITAT theorem suggests that time-
domain TA pressure signals p(

⇀
r , t) can be described as [32],

[38], [39], [40]
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resents the specific absorption rate (SAR) [34], U0 is the
spatial region, in which SAR or A(
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arbitrary spatial location in U0, β (K−1) denotes the thermal
expansion coefficient, ρ (kg · m−3) denotes the mass den-
sity, Cp (J · K−1 · kg−1) denotes the specific heat capacity,
c (m · s−1) denotes the speed of sound, and σ (S · m−1)
denotes the conductivity.

In practical MITAT systems, the time-domain acoustic
pressure signal p(

⇀
r , t) stemming from a sample is received

by ultrasound transducers at different locations
⇀
r . The BP

algorithm aims to inverse (1) from the measured p(
⇀
r , t) and

reconstruct A(
⇀
r ), which reveals the spatial distribution of SAR

and is referred to as a TA image. If all the transducers are
located on a sphere, A(

⇀
r ) can be solved as [32]
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where r is the radius of the scanning sphere and W represents
the spherical surface, on which p(

⇀
r , t) is recorded.

As suggested by (1) and the definition of S(
⇀
r , t), the

recovered TA image A(
⇀
r ) directly contains the distribution

information of σ . As suggested by Maxwell’s equations ∇ ×
⇀

E = − jωμ
⇀

H and ∇ × ⇀

H = jω(ε − jσ/ω)
⇀

E , the electric

field
⇀

E in a sample is dependent on both ε and σ , which
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means that A(
⇀
r ) can reveal information of the distribution of

both ε and σ . Due to the complexity of electromagnetic wave
propagation and attenuation in an inhomogeneous sample, the
relationship between A(

⇀
r ) and ε and σ is an implicit function.

This implies that ε and σ cannot be extracted from A(
⇀
r ) via

a simple explicit way. Accordingly, we take advantage of DL
to quantitatively reconstruct ε and σ .

As seen from (1), the generated TA signal p(
⇀
r , t) is pro-

portional to S(
⇀
r , t). Thus, for biological samples with roughly

the same mass density, the higher the loss or conductivity, the
stronger the generated TA signal signal-to-noise ratio (SNR)
from the sample [7]. For samples bearing weak microwave
losses that generate TA signals with low SNR, they are likely
to be missed or exhibit low quality in the reconstructed image.
Thus, the proposed DL-MITAT technique for quantitative
reconstruction of dielectric properties is suitable for high-loss
samples rather than low-loss or lossless samples.

B. Structure of Applied Network

U-Net, based on fully convolutional network, is one of
the most widely used DL models in the field of biomedical
imaging [41]. Its architecture can be considered as a con-
tracting path (or an encoder network) to encode the input
image into feature representations and a symmetric expan-
sion path (or a decoder network) to semantically project
the features learned by the encoder into pixel space to get
precise localization. Compared to the traditional U-Net, the
residual U-Net (ResU-Net) establishes a skip connection to
add the input data to the output data, which makes the network
converge faster and more robust [42]. ResU-Net has been
proven to be effective in medical imaging [43], [44] and image
segmentation [45].

In this work, we modify the ResU-Net into DBResU-Net
to better fit the current problem of reconstructing both of
permittivity and conductivity, which is quite different from
that used in [9]. The architecture of DBResU-Net is shown in
Fig. 1. It consists of a coarse model and a fine-tuning model.
Different from the traditional ResU-Net, after the last encoder
layer, we split the network into two branches in order to
separately convolute the features into two outputs. The coarse
model is shown in Fig. 1(a), which learns general features of
the input image. The two branches after it form the fine-tuning
model, as shown in Fig. 1(b). It projects the features extracted
by the coarse model into two different spaces to get two
outputs, namely, the permittivity and conductivity. Since both
the permittivity and conductivity are reconstructed from the TA
image, we first take the coarse model to extract the common
features shared by both the permittivity and conductivity.
In light of the fact that the permittivity and conductivity
distributions are usually different from each other, the double
branches in the fine-tuning model are suitable for separately
reconstruct the features of these two dielectric properties.

C. Framework of DL-MITAT Reconstruction Method

The framework of the DL-MITAT technique for recon-
structing the permittivity and conductivity is shown in Fig. 2.

It mainly contains three sections, i.e., data construction, train-
ing, and testing.

In this work, we construct the training sets via microwave
and acoustic simulations, which is much more time-efficient
and cost-effective than using experimental approaches [46].
We apply CST microwave studio software to perform
microwave simulations to get the SAR in the sample. The
dielectric property distributions serve as the ground truth
(GT) data. We subsequently utilize the k-Wave MATLAB
Toolbox [47] to carry out the TA simulations based on the
obtained SAR to acquire the acoustic signals detected by
transducers. The obtained acoustic signals are used to get an
image by the conventional BP algorithm, which is applied as
the input data of the DBResU-Net. The input data exhibit
SAR distribution in the sample, and using such an input
data can be considered as embedding the physics of MITAT
into the DL-MITAT technique to improve the performance.
It should be noted that the previous DL-MITAT work [9] uses
approximate SAR distribution in the acoustic simulations for
the data construction, i.e., no microwave simulation is needed.
This way is acceptable for the relatively simpler target in [9]
(a round tumor in fatty tissue), but not suitable for the current
work that deals with a complicated inhomogeneous biological
sample. Thus, we take the CST software to obtain the accurate
SAR in the sample to enhance the accuracy of the quantitative
reconstruction at the cost of more computation time.

Detailed procedure of the data construction is shown in
Fig. 2(a) and described as follows.

Step 1: We first need to configure the CST numerical
microwave simulation. The setup of the CST simulation is
similar to the corresponding practical experimental environ-
ment. Two dielectric parameters including permittivity and
conductivity as well as one acoustic parameter, mass density,
are needed in the simulations, each of which is set to be a 3-D
distribution map with a size of Dx × Dy × Dz . The sample has
a size of Cx × Cy× Cz , which is smaller than Dx × Dy× Dz .
We construct Nt different samples by varying some parameters
to do Nt sets of CST simulations. Detailed parameters for
different samples are described in Section III.

Step 2: We then conduct Nt sets k-Wave simulations.
To speed up the simulations, we simplify the problems to 2-D,
which means that both the sample and simulation environment
are 2-D. The initial pressure map (proportional to SAR) with
a size of Cx × Cy is calculated. We set the microwave pulse
the same as that to be utilized in experiments. Two acoustic
parameters including the speed of sound and mass density
are needed in the simulations, each of which is set to be a
2-D distribution map with a size of Dx ×Dy . We deploy an
M-element circular transducer array enclosing the sample to
receive the generated acoustic signals. The simulation results
are time-domain TA signals with a size of M ×L × Nt , with L
denoting the number of time points. It should be noted that the
Dx × Dy domain can be theoretically set to a nonrectangular
shape, e.g., a circle just enclosing the transducer array, but
setting an overall circular simulation domain in CST and
k-Wave is not convenient.

Step 3: We filter the simulated time-domain acoustic sig-
nals by the properties of realistic transducers. We add white
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Fig. 1. Structure of the proposed DBResU-Net. (a) Coarse model. (b) Fine model.

Fig. 2. Framework of the entire procedure of the proposed DBResU-Net-based DL-MITAT technique for the reconstruction of permittivity and conductivity.
(a) Data construction section. (b) Training section. (c) Testing section.

Gaussian noise to the signals to improve the similarity between
the simulated and experimental signals. We apply the con-
ventional BP algorithm to reconstruct Nt images (size of
Cx × Cy) of the sample based on a homogeneous lossless
acoustic environment.

The training phase is given in Fig. 2(b). The BP images
are treated as the input data to the DL network. By this
manner, the physics of the MITAT framework is automatically
embedded into the network. The GT data are the corresponding
permittivity and conductivity of the sample with a size of
Cx × Cy , which is the same as the dielectric parameter of

the sample used in the CST simulations. We train the network
by iteratively minimizing the loss function given by

Loss = αmse(y1, z1) + βmse(y2, z2) (3)

mse(yi , zi ) = 1

B

B∑
l=1

(
y(l)

i − z(l)
i

)2
(4)

where y(l)
i and z(l)

i , respectively, denote the GT data and the
output data, with i = 1 for permittivity and i = 2 for
conductivity. l denotes the lth data and B denotes the batch
size for each training. α and β are, respectively, the weights
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TABLE I

SETUP OF NETWORK TRAINING

Fig. 3. Schematic of the inhomogeneous breast phantom.

of mse error for permittivity and conductivity. The setup of
the training is given in Table I [48]. We employ PyTorch
framework to do the network training on a PC with a NVIDIA
RTX A6000 GPU card. During the training process, the
parameters in the DBResU-Net are iteratively optimized. With
sufficient training of the network, the output will be in high
agreement with the GT data. We name the final version as
a trained DBResU-Net and its output as the reconstructed
permittivity and conductivity.

In the testing phase shown in Fig. 2(c), the testing data
refer to the time-domain TA pressure signals obtained by either
simulation or experiment, which has a size of M × L. We then
perform BP algorithm to obtain a testing set image with a size
of Cx× Cy and feed this image to the trained network. Finally,
we obtain the reconstructed permittivity and conductivity map
with a size of Cx × Cy .

III. TESTING BY SIMULATIONS

A. Construction of Training Sets

To verify the performance of our proposed DBResU-Net-
based DL-MITAT method for quantitative reconstruction of
permittivity and conductivity, we first perform simulation test-
ing using a breast phantom. The main advantage of simulation
is that the GT of permittivity and conductivity is exactly
known and reconstruction errors can be accurately calculated.
The schematic of the 2-D breast phantom is displayed in Fig. 3,
which is a square-shaped inhomogeneous phantom composed
of fat, muscle, and tumor. The breast phantom is immersed in a
background acoustic coupling liquid with a speed of sound of
1460 m/s and a density of 960 kg/m3. Dimensions of the entire

TABLE II

ACOUSTIC PARAMETERS OF THE SAMPLE

TABLE III

DIELECTRIC PARAMETERS OF THE SAMPLE

k-Wave simulation region and imaging region are, respectively,
set to be 280 × 280 pixels (Dx = Dy = 280) and 80 ×
80 pixels (Cx = Cy = 80) with a pixel size of 0.5 × 0.5 mm.
In k-Wave TA simulations, in total, M = 180 transducers are
used and located on a 63-mm-radius circle around the breast
phantom.

We construct 3000 training sets with different breast phan-
toms, with 2700 for training and 300 for validation. Specifi-
cally, we vary the top and bottom of the trapezoidal muscle
from 2 to 10 mm, the distance between the boundary of muscle
and the boundary of the breast fat from 2 to 10 mm, the
diameter of the tumor from 6 to 10 mm, and the location
of the tumor. The acoustic and dielectric parameters used for
the breast phantom in CST and k-Wave simulations are shown
in Tables II and III [49]. Due to the complex composition of
muscles in human breasts, the dielectric parameters of muscles
have big variation ranges. Hence, in order to make our network
more robust, we vary the permittivity and conductivity of mus-
cle when constructing the training sets, where the permittivity
of muscle varies from 49 to 57, and the conductivity varies
from 2.1 to 2.5 S/m. The permittivity 73 and conductivity
2.7 S/m of tumor are not varied in the training sets.

In order to mimic measured signal, we add Gaussian while
noises to the simulated raw signals with 20-dB SNR. This is a
common manner to improve the accordance between simulated
and experimental data [9]. Meanwhile, since the transducers
used in practical experiments are not ideal, we filter the signals
using a specifically designed filter function, which contains the
frequency response characteristics of the transducers.

B. Testing Results

We train the network by using the loss function defined
in (3) by setting α = β = 0.5.

We compare the performance of the DBResU-Net with two
other networks. One is the conventional ResU-Net (named as
2 ind. ResU-Net), where we individually train two indepen-
dent ResU-Net for permittivity and conductivity, respectively.
These two ResU-Net have the same structure and share the
same Cx × Cy BP input images, while use different GTs (one
is permittivity and the other is conductivity). The other one
is also a conventional ResU-Net with the input and output
channel set to be 2, one channel for permittivity and the other



LUO et al.: QUANTITATIVE RECONSTRUCTION OF DIELECTRIC PROPERTIES BASED ON DL-MITAT 2657

Fig. 4. Simulation testing results of phantoms with different muscle shapes and dielectric properties (labeled in the leftmost column). GT denotes the ground
truth.

for conductivity. This means that both sizes of the input data
and output data are Cx × Cy × 2. Similarly, the applied GT for
this network also has a size of Cx × Cy × 2, with the first layer
being permittivity and the second layer being conductivity.

The final reconstructed images of permittivity and conduc-
tivity are shown in Fig. 4. The GT and the images recon-
structed by the conventional BP algorithm are also provided
for comparison. We demonstrate the simulation results of four
phantoms with different tissue dielectric properties and shapes.
From the reconstructed images of the simulation results,
we can see that the shapes of the muscles and tumor are
reconstructed with high fidelity. The values of the permittivity
and conductivity are also reliably recovered.

To quantitatively evaluate the performance of the network,
we adopt the normalized percentage error (δ) defined by

δ = 100% × 1

Cx Cy

Cx∑
k=1

Cy∑
n=1

|Y [k, n] − Z [k, n]|
|Y [k, n]| (5)

where Y denotes the GT data, Z denotes the reconstructed
data, and m and n are, respectively, the row and column
indices of a pixel in the data. The mean normalized percentage
errors of the 300 validation results are calculated and shown
in Table IV, where δε and δσ denote the normalized percentage
errors of permittivity and conductivity, respectively. It is
obvious that the designed DBResU-Net renders the lowest
quantitative reconstruction error.

We then test the effect of number of training sets by using
2000 and 1000, both containing 300 for validation. It is
found that the reconstruction quality declines as the number
of training sets decreases. The calculated errors are tabulated
in Table IV. The 3.3% and 4.1% errors of the DBResU-
Net method are much better than the previous works

TABLE IV

NORMALIZED PERCENTAGE ERROR OF SIMULATION TESTING

on MITAT-based quantitative reconstruction of dielectric
properties [35].

C. Mismatch Between Training Sets and Testing Data

We then interrogate the generalization of the network
applying some testing samples embracing features that are
not covered by the training sets, which are also named as
mismatched cases. The same training sets as those built in
Section III-A are used.

First, we vary the shape of the tumor and muscles, as show-
cased in the first three rows in Fig. 5. It is seen that the
reconstruction results are still very good even if we use an
elliptical tumor and ring-shaped muscles.

Second, we further set the dielectric properties of the tumor
to be higher than (the fourth row in Fig. 5) or lower than (the
fifth row in Fig. 5) the ranges of those in the training sets.
Although the geometries of the tumor can still be faithfully
reconstructed, the values of its dielectric properties are not
properly recovered. To be more specific, the reconstructed
permittivity and conductivity of the tumor remain to be 75 and
2.7 S/m, respectively, for both the tested cases (the fourth and
fifth rows in Fig. 5), which are almost identical to those in
the training sets. Accordingly, the current network is robust in
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Fig. 5. Study of network generalization ability by simulations using samples with mismatched geometries or dielectric property values. The permittivity and
conductivity of all muscles in this figure are, respectively, 53 and 2.4 S/m. The dielectric parameters of the tumors are labeled in the leftmost column.

dealing with mismatched geometries in the samples, whereas
the proposed method roughly reconstructs the mismatched
constitutive parameters of dielectric properties, in spite of
some deviations. Since variation range of the dielectric prop-
erties of targeted samples in many application scenarios is
known (such as biomedical imaging, foreign body detection,
or nondestructive testing), this issue may not be problematic
for practical applications.

Third, we interrogate a sample with only one piece of
muscle (the sixth row in Fig. 5) and another sample only has a
tumor (the last row in Fig. 5). The quantitative reconstruction
results of the former case are still very good with negligible
artifacts, but the recovered images of the latter case are
marred with obvious artifacts around the tumor. Such finding
is probably attributed to the fact that the latter sample has a
bigger difference from the samples in the training sets than
the former sample.

Fig. 6. Schematic of the experimental system.

IV. TESTING BY EX-VIVO EXPERIMENTS

A. Experimental Setup

Ex-vivo experiments are then performed to test the proposed
DBResU-Net for reconstructing permittivity and conductivity.
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Fig. 7. Ex-vivo experimental testing results using a sample with two strip-shaped porcine muscles and a tumor phantom. (a) Photograph of the sample.
(b)–(d) Permittivity reconstructed by different networks. (e) Image obtained by the BP algorithm. (f)–(h) Conductivity reconstructed by different networks.

Fig. 8. Ex-vivo experimental testing results using a sample with two strip-shaped beef muscles and a tumor phantom. (a) Photograph of the sample. (b)–(d)
Permittivity reconstructed by different networks. (e) Image obtained by the BP algorithm. (f)–(h) Conductivity reconstructed by different networks.

Four 40 × 40 × 8 mm inhomogeneous samples are fabricated
and tested. Porcine fat, porcine muscle, beef muscle, and tumor
phantoms are used in the samples. We embed a cylindrical
tumor-mimicking phantom, 10 mm in diameter and 8 mm
high, into each sample. The tumor-mimicking phantom is
made of 83.7% deionized water, 1.2% agarose, and 15.1% salt
by weight. Its permittivity and conductivity are, respectively,
73 and 2.74 S/m at 2.45 GHz, which are similar to those of the
real human breast tumors [7], [10], [16]. The permittivity and
conductivity of the porcine muscle at 2.45 GHz are measured
by a coaxial probe (Keysight, N1501A), which are 53 and
2.2 S/m, respectively. The permittivity and conductivity of the
beef muscle at 2.45 GHz are 50 and 2.5 S/m, respectively.

Schematic experimental system is shown in Fig. 6. The sam-
ple immersed in coupling liquid is radiated by a rectangular
microwave waveguide antenna (WR430) beneath the tank. The

antenna is fed through a coaxial cable by a microwave source
pumping 2.45 GHz pulsed signals. The peak power during the
microwave pulses is 20 kW.

We deploy a 2.25-MHz ultrasound transducer to measure
the stimulated TA signals from the sample. The transducer is
scanned around the sample at 180 discrete locations with a step
of 2◦ and a scanning radius of 63 mm. The detected acoustic
signals are subsequently amplified by a 59-dB preamplifier
and recorded by a data acquisition card (PXI-5922, National
Instruments) with the sampling rate of 15 MHz. Then, the
signals are filtered by a bandpass filter to increase the SNR.

B. Testing Results

The training sets for the experimental testing are the same
as those in Section III-A. We perform two sets of experiments
by samples with two strip-shaped muscles. The sample in
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Fig. 9. Ex-vivo experimental testing results using a sample with one strip-shaped porcine muscles and a tumor phantom. (a) Photograph of the sample.
(b)–(d) Permittivity reconstructed by different networks. (e) Image obtained by the BP algorithm. (f)–(h) Conductivity reconstructed by different networks.

Fig. 7(a) uses porcine muscle and the one in Fig. 8(a) uses
beef muscle. Beef muscle generally has a higher conductivity
while a lower permittivity compared with the porcine muscle.

The experimental testing results for the first sample are
provided in Fig. 7. Compared to the other two networks, our
proposed DBResU-Net can result in more accurate recon-
struction in terms of both shape and value of permittivity
and conductivity of the muscles and tumor. It is notable that
the permittivity reconstructed by the 2 ind. ResU-Net is only
64 for the tumor-mimicking phantom, which is obviously
smaller than the actual value. In contrast, the DBResU-Net
can render a tumor permittivity value of 72, very close to
the actual value of 73. The reconstructed permittivity of the
porcine muscle is about 51 (on the left of the tumor) and 52
(on the right of the tumor), which have very good accuracy.
The reconstructed conductivity of the tumor is around 2.7 S/m,
showing high agreement to the actual value. The reconstructed
conductivity of the muscle is 2.1 (on the left of the tumor)
and 2.0 (on the right of the tumor) S/m, which almost reach
the actual value of 2.2 S/m. Meanwhile, in the reconstructed
images by DBResU-Net, the boundaries of different tissues
are clearer than the other two networks, and the profiles
of permittivity and conductivity are more continuous. For
the testing results given in Fig. 8, similar performance can
be observed. These experimental results undoubtedly prove
that the DBResU-Net-based DL-MITAT technique can reliably
reconstruct quantitative permittivity and conductivity distribu-
tions. Table V summarizes the reconstruction errors of tumor
dielectric properties in this work and a previous work [35],
showing the advantage of the proposed method.

It is seen that parts of the muscle near the boundary of
the sample are not well recovered. This is mainly because
the radiated microwave fields at these locations are not strong
enough, which leads to low SNR in the generated acoustic
signals and low image quality. It should also be noted that
the dielectric properties of fat are recovered with lower

TABLE V

NORMALIZED PERCENTAGE ERROR OF EXPERIMENTAL TESTING

quantitative accuracy than the muscle and tumor. This is
because the fat has much lower power absorption than the
muscle and tumor and generates much weaker acoustic signals,
as suggested in Table III.

C. Mismatch Between Training Sets and Testing Data

Next, we investigate two cases, where the testing data are
inconsistent with the training sets in terms of shape of muscle,
i.e., mismatched cases. We study two kinds of mismatches.
The first sample in Fig. 9(a) has only one piece of muscle,
similar to that in the sixth row in Fig. 5. The second sample
in Fig. 10(a) has no muscle, similar to that the last row in
Fig. 5. The applied training sets for this section remain the
same as those established in Section III-A.

For the first case, the reconstructed results are showcased in
Fig. 9. The obtained permittivity and conductivity profiles by
the DBResU-Net still have good resemblance to the sample
in Fig. 9(a), despite that the training sets and testing data are
mismatched. The recovered permittivity and conductivity are,
respectively, about 71 and 2.7 S/m for the tumor-mimicking
phantom and 50 and 2.3 S/m for the beef muscle, implying
high resemblance to the actual values. The results by the other
two networks have lower accuracy in the shape and values of
the muscle and tumor phantom. Meanwhile, the reconstructed
image by DBResU-Net has a more accurate shape as well as
boundary than the other two networks.



LUO et al.: QUANTITATIVE RECONSTRUCTION OF DIELECTRIC PROPERTIES BASED ON DL-MITAT 2661

Fig. 10. Ex-vivo experimental testing results using a sample only with a tumor phantom. (a) Photograph of the sample. (b)–(d) Permittivity reconstructed
by different networks. (e) Image obtained by the BP algorithm. (f)–(h) Conductivity reconstructed by different networks.

For the second case, where the sample does not have muscle,
the reconstructed conductivity values by the three networks are
all about 2.5 S/m for the tumor-mimicking phantom, while
the reconstructed permittivity by DBResU-Net is 67, which is
more accurate than that of the other two networks. However,
the overall reconstruction quality is not as good as that of
the first case in Fig. 9. This implies that a larger mismatch
between the training sets and experimental testing data further
deteriorates the quality of the reconstructed results.

D. Future Works

The DL-MITAT method for quantitative reconstruction of
the permittivity and conductivity can be further improved in
several aspects. First, it is interesting to employ magnetic
fields to irradiate the sample, which may be capable of detect-
ing biological tissues in a different way [50], [51]. Second,
extending the applied 2-D framework to 3-D environment is
very meaningful for practical applications [52]. The network
needs to be revised to accommodate 3-D samples and imaging
domain. It is expected that much more time and computer
resources are demanded to build the training sets and train
the network. Third, improving the quality of the input BP
images may enhance the performance of the DL-MITAT
[53]. Last, exploring new neural networks and testing the
effectiveness in improving the image quality are also very
meaningful [54].

V. CONCLUSION

This work proposes to apply the DL-based MITAT method
to achieve quantitative reconstruction of biological dielectric
properties. A new network called DBResU-Net composed of a
coarse model and fine-tuning model is designed to implement
the DL-MITAT technique. The input of the network is the
preliminary TA images obtained by the physical normalization
via the BP algorithm from collected acoustic waves data
to the preliminary TA image or distribution information.

Consequently, the proposed DBResU-Net is used to build
the relationship between the preliminary TA image and the
final permittivity and conductivity by the use of two branches
in the output. We take advantage of numerical simulations
to efficiently build the training sets. Based on the simu-
lation testing results, it is proven the effectiveness of the
proposed technique and present quantitative error analysis.
Besides, it is found that this network has good generalization
ability and stability when dealing with mismatched sample
shapes. We further perform two experiments employing breast-
mimicking biological samples. The testing results show high
quality in quantitative reconstruction in terms of both shape
and value of the dielectric properties, and two more samples
with mismatched features from the training sets are studied.
The obtained results demonstrate that the DBResU-Net is
still robust in dealing with moderately mismatched cases
in experiments. This work presents an alternative approach
for quantitative reconstruction of dielectric properties and
is meaningful for many biomedical imaging, detection, and
nondestructive testing applications.
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