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Abstract— The respiratory and heart rates are critical physi-
ological parameters, and conventional contact-based monitoring
techniques may cause discomfort and epidermal damage, being
therefore inadequate for long-term monitoring. Despite recent
advances, accurate contactless vital sign monitoring is still chal-
lenging in practical scenarios, especially in relation to heart rate
estimation. In this work, we propose a comprehensive framework
for vital sign processing in frequency-modulated continuous-
wave radar systems and evaluate its performance with real data
imitating common working conditions in an office environment.
First, to improve the signal-to-noise ratio before estimation,
we propose a novel slow-time phase correlation processing, which
allows early integration of the vital sign energy at nearby range
bins. Subsequently, we present an adaptive nonlinear least
squares framework that explores the harmonic structure existing
in the recovered displacement signal. An additional Kalman filter
stage is designed to select among multiple estimates from different
search regions, thus conferring adaptivity and robustness against
harmonic interference and noise. This approach largely provides
estimates within the predefined error intervals, being capable of
tracking the true breathing and heart rate values even during
continuous small body movements. The final accuracy and root
mean square error values have shown enhanced estimation, out-
performing conventional spectral estimation and other recently
proposed methods in almost all scenarios.

Index Terms— Breathing rate, frequency-modulated
continuous-wave (FMCW), harmonics, heart rate, mm-wave,
radar, random body movements, vital signs.

I. INTRODUCTION

PEOPLE are living longer. Between 2015 and 2050, the
proportion of the world’s population over 60 years will

nearly double and outnumber children under the age of 5 [1].
Due to the rapid aging of the population worldwide, a lot
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of effort is being dedicated to providing efficient and more
accessible healthcare solutions.

In this context, continuous monitoring of vital signs plays
a crucial role in the early detection of conditions that affect
the well-being of a patient. The respiratory and heart rates
are critical physiological parameters, and by continuously
monitoring this information, it is possible to detect drowsi-
ness [2], sleep apnea [3], and even depression [4]. How-
ever, conventional monitoring devices, usually connected by
cables, besides restricting mobility, may cause discomfort and
epidermal damage, being therefore inadequate for long-term
monitoring.

On the other hand, contactless radar-based vital sign mon-
itoring provides several advantages over standard devices.
Unlike cameras, radar signals can penetrate through different
materials and are not affected by skin pigmentation or ambient
light levels [5]. Unlike wearable sensors, radar systems do
not require users to wear or carry any additional equipment.
In addition, radar devices preserve privacy [6] and can be
low power and low cost. These inherent characteristics have
drawn the attention of the research community, and a variety of
radar types are now being used to address different healthcare
applications, including sleep monitoring [7], life detection and
rescue [8], assisted living [9], diagnosis [10], and many others.

Continuous-wave (CW) radars have been extensively
employed for vital sign monitoring [11], [12], [13]. These
devices have the advantages of low transmitted power, sim-
ple hardware structure, and high sensitivity, which explains
their widespread use across various areas. Within this group,
unmodulated CW systems have the simplest architecture but
with the limitation that no distance information in relation to
the target is acquired. In addition, other moving objects may
interfere with the CW radar signal, making it more difficult
to isolate the target information from interfering objects [6].
For being able to estimate the target distance (range), typ-
ical approaches use ultrawideband (UWB) and frequency-
modulated continuous-wave (FMCW) radars. Recently, the
application of millimeter-wave FMCW radars to short-range
vital sign monitoring has been widely investigated [14],
[15], [16]. Such radars benefit from high range resolution
and Doppler sensitivity, yet with simple architecture, which
allows using relatively simple circuits and low-cost analog-
to-digital converters (ADCs) [17]. Furthermore, the mass
production from the automotive industry has resulted in the
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large availability of inexpensive radar modules with increased
capabilities and functionalities [18].

Despite recent advances, accurate vital sign monitoring is
still challenging in practical scenarios, especially in relation
to heart rate estimation. Radar-based vital sign processing
relies on the phase analysis of the backscattered signal, corre-
sponding to the chest wall’s periodic displacement due to the
breathing and heartbeat mechanisms. The recovered displace-
ment signal is usually composed not only of the breathing and
heartbeat fundamental frequencies but also of their associated
harmonics. The challenge stems from the fact that the tiny
heartbeat-induced motion is typically several times smaller
than the one originated from breathing. Therefore, the heart-
beat signal can be easily buried in the background noise or
masked by the higher order harmonics of the breathing signal.
This harmonic interference in the heartbeat signal has been
extensively reported as one of the main issues in radar-based
vital sign monitoring [19], [20], [21], [22], and as discussed
in [23], depending on the signal-to-interference ratio (SIR) and
the specific combination of fundamental breathing/heartbeat
frequencies, most techniques fail to provide robust heart rate
estimation. Furthermore, additional frequency components and
intermodulation products may also be present in the recovered
signal, originated from different sources including radar non-
linearities, phase-demodulation issues [24], and random body
movements from the monitored subject [25]. These interfering
elements tend to be dominant in the neighborhood of the
heartbeat’s fundamental frequency, often preventing detection
and hindering estimation.

In this article, we propose a comprehensive framework
for vital sign processing based on a millimeter-wave FMCW
radar system, and we evaluate its performance using real
data collected while imitating typical working conditions in
an office environment. First, to improve the signal-to-noise
ratio (SNR) before estimation, we propose a novel slow-time
phase correlation processing, which allows for the integration
of displacement signals at nearby range bins, while still
preserving its relevant frequency content. Early integration of
these correlated signals allows useful exploitation of the vital
sign energy, without the need of processing each range bin
independently, as suggested in [26]. Subsequently, we present
an adaptive nonlinear least squares (ANLS) framework that
explores the harmonic structure existing in the recovered
displacement signal. For estimating the breathing rate, we sim-
plify the nonlinear least squares (NLS) algorithm recently
proposed in [27] and [28] and adaptively adjust the search
region over the NLS objective function according to previous
estimates from adjacent processing windows. For the heart rate
estimation, we extend the basic NLS approach, and to avoid
harmonic interference from breathing, we explore the original
idea in [29] by generating multiple heart rate estimates based
on the heartbeat’s own harmonics. However, it is impossible
to know which of these estimates is reliable, and to overcome
this, we designed an additional Kalman filter stage that uses
the gating process (based on its own prediction) to select the
best heart rate estimate, thus avoiding low-SNR, ambiguous
or harmonic-interfered candidates. Due to the efficient NLS
implementation, based on the fast Fourier transform (FFT), the

proposed method can overcome the SNR limitations reported
in [29], without significantly increasing the computational
burden.

The remainder of this article is organized as follows.
In Section II, we introduce the basic operational principle
and system modeling for contactless radar-based vital sign
monitoring using FMCW radars. The signal processing frame-
work is presented in Section III, whereas, in Section IV,
we describe our proposal for robust and accurate breathing
and heartbeat frequency estimation. Finally, Section V presents
some experimental results. In Section VI, the conclusions are
drawn.

A. Notations

Throughout this article, we are adopting the following nota-
tion: lower case boldface for vectors x and upper case boldface
for matrices X . The letter j represents the imaginary unit
(i.e., j = (−1)1/2), with the absolute value and angle operators
given by the symbols |(·)| and � (·). The transpose, conjugate,
and conjugate transpose operators are denoted, respectively,
by the symbols (·)T , (·)∗, and (·)H . The sets of N-dimensional
vectors of complex and real numbers are represented by C

N

and RN . The Euclidean norm of the vector x is denoted
by ||x||. The identity matrix, with size determined from the
context, is denoted by I . For any complex number x , we use
� and � to denote, respectively, the real and the imaginary
parts of x . We are using the acronym “bpm” alternatively as
breaths per minute (breathing rate) or beats per minute (heart
rate). The meaning will be clear from the context.

II. SYSTEM MODELING

Fig. 1 shows the basic operational principle of contactless
radar-based vital sign monitoring. The transmitted FMCW
signal can be written as

xT (t) =
�

AT cos

�
2π fct + π

B

Tp
t2 + φ(t)

�
(1)

where AT is the transmitted power, fc is the operating
frequency (initial frequency of the chirp), B is the pulse
bandwidth, Tp the pulse duration, and φ(t) is the transmitter’s
phase noise (local oscillator). When we breathe, or when the
heart beats, the subtle chest wall motion modulates the FMCW
signal, which is reflected with additional phase information
related to this movement. Ideally, the radar receives a scaled
and shifted version of the transmitted signal given by [18]

xR(t)= α
�

AT cos

�
2π fc(t − td)+π B

Tp
(t − td)

2 + φ(t − td)

�
(2)

where α represents an attenuation coefficient and td = 2r(t)/c
is the range-dependent time delay from a given object at radial
range r(t), with c being the speed of light. The received signal
is mixed with a replica of the transmitted signal, and after
quadrature demodulation, it can be approximated as

xψ(t) = Aψe j(2π fψ t+�θ(t)+�φ(t)) (3)
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Fig. 1. Contactless radar-based vital sign monitoring. Basic operational principle. For simplicity, a single ADC channel is shown.

which represents the beat signal, where Aψ is the beat signal
amplitude, fψ is the beat frequency, and

�θ(t) = 2π fctd + π
B

Tp
t2
d (4)

is the time-varying phase relative to the movement of the
monitored subject. The amplitude terms in (2) and (3) may
vary slightly according to the chest vibration. However, as we
are interested in the phase of the slow-time signal, this
small variation has no implications, and it is often neglected
in the literature [18], [24], [30]. In addition, due to the
range-correlation effect [31], the residual phase noise �φ(t)
in (3) is usually neglected for short-range applications. Fur-
thermore, the term π(B/Tp)t2

d in (4) can also be discarded as
it is negligibly small in practical scenarios [18]. Finally, for
an object at nominal range d0, we have

�θ(t) = 4πr(t)

λc
= 4πd0

λc
+ 4πd(t)

λc
(5)

where λc = 1/ fc is the operating wavelength, and ideally,
d(t) would correspond exclusively to the chest wall movement,
which is assumed to be the superposition of those induced by
breathing and heartbeat. In this case, we can finally write

�θ(t) = 4π(d0 + db(t)+ dh(t))

λc
(6)

with db(t) and dh(t) being the displacements due to breathing
and heartbeat, respectively. These movements involve multiple
patterns of motion, not only from the chest wall surface but
also from the belly, shoulders, and back [32], [33]. Different
models have already been proposed for representing these
signals from simple sinusoidal approximations [29], [34] to
more complicated patterns as described in [35] and [36].
Perfect recovery of the chest wall displacement d(t) would
allow precise estimation of breathing and heartbeat frequencies
by analyzing the periodicity of the signal. However, in practi-
cal applications, besides unavoidable hardware imperfections,
the received radar signal is usually mixed with additional
reflections from the external environment, arising not only
from different body movements of the monitored subject but
also from every object in the radar’s field of view. These inter-
fering signals are usually much stronger than those induced

by the chest wall millimeter displacement, and this makes
accurate recovery and subsequent estimation of the breathing
and heartbeat frequencies a challenging task.

III. VITAL SIGN PROCESSING

Fig. 2 shows the signal processing block diagram of the
proposed solution for contactless vital sign monitoring. For
providing sufficient SNR, while still preserving the update
rate, this processing is commonly performed using overlapped
sliding windows. This strategy leaves sufficient time to acquire
several breathing/heartbeat cycles, revealing (and enhancing)
the periodicity of the movement. Hence, the obtained fre-
quency value from each processing window corresponds to an
average over the window duration. In addition, the frequency
resolution is also improved. In order to provide new estimates
every one or two seconds, large overlaps are usually employed.

The preprocessing block receives the baseband radar signals
as in-phase and quadrature samples (bI [n] and bQ[n]) from
the ADCs. In order to extract the slow-time signal from
the monitored subject at a specific range and angle position,
we use a 2-D discrete Fourier transform (DFT) over the radar
data cube, across the range and angle dimensions. Given
our specific conditions of monitoring, the detector can be
implemented by simply looking for the slow-time signal at
the range/angle bin with greater energy.

Phase demodulation is essentially the process where the
complex samples of the slow-time signal will be combined
with the aim to recover the displacement signal containing the
phase information relative to the chest wall movement over
time. Several techniques have been already proposed for that,
including the complex-signal demodulation (CSD) [37], [38],
[39] and the linear demodulation [4], [40], [41]. As discussed
in [23], [42], and [43], these methods suffer from inter-
modulation products and harmonic interference when applied
at higher operating frequencies. To avoid these issues and
enable precise phase recovery, the arctangent demodulation
(AD) [10], [24], [44] is being used in this work. The recovered
displacement signal can, thus, be obtained as

d̂[n] = λc

4π
· unwrap

�
arctan

��(s[n])

�(s[n])

��
(7)
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Fig. 2. Block diagram of the proposed signal processing chain.

where s[n] represents the samples of the complex slow-time
signal at the target range bin. The unwrap operation is neces-
sary for removing possible phase discontinuities caused by
the bounded image of the arctangent function. Due to the
high sensitivity of mm-wave devices, wrapped phases around
[−π, π] are expected when actual displacements are larger
than λc/4.

Prior to the AD, possible dc offsets must be compensated,
and for this, we use the Levenberg–Marquardt (LM) algorithm,
which provides a maximum likelihood estimate for this prob-
lem [45]. For removing any residual dc values and possible
high-frequency noise components, the recovered displacement
signal is filtered using a bandpass Kaiser window (β = 6.5)
from 0.1 to 3 Hz (6–180 breaths/minute) for the breathing
and 0.5 to 5 Hz (30–300 beats/minute) for the heartbeat.
This corresponds to the physiological range of fundamental
frequencies, including a few possible harmonics. The bandpass
filtered signals d̂b and d̂h will ideally be a good approximation
of the true chest wall motion and can, finally, be used for
frequency estimation. The estimation process is responsible for
detecting the breathing/heartbeat cycles and calculating their
period or, alternatively, for directly estimating the dominant
frequency in which they occur, i.e., the breathing and heart
rates.

A. Slow-Time Phase Correlation

The larger bandwidth of mm-wave devices yields a much
higher range resolution compared to other radar systems
operating at lower frequencies. For instance, if operating at
77 GHz with 4 GHz of bandwidth, the range resolution is
around 4 cm. This improved resolution increases the ability
not only to resolve closely spaced objects but also to filter-out
nearby interference. However, in these conditions, the human
body is an extended target, and its energy may spread across
a few adjacent range bins. Given that belly and back may
also be involved in the respiration/heartbeat movement, vital

sign information may eventually be detected in these additional
range bins.

To exploit this and improve the SNR before estimation,
we propose a novel slow-time phase correlation processing,
which allows for the integration of the vital sign energy of
nearby range bins, while still preserving its relevant frequency
content. For achieving this, we first need to look into the
correlation between displacement signals at adjacent range
bins. By stacking the phase demodulated samples in the
current processing window, we can define d̂d and d̂ i as the
vectors with the recovered displacement signals at the detected
and the i th adjacent range bin, respectively. We can then
calculate the Pearson correlation coefficient, given by

ρ
�
d̂d , d̂ i

� = cov
�
d̂d, d̂ i

�
σd̂d

σd̂ i

(8)

where cov(dd , d i) represents the covariance between these
vectors, with σd d

and σd i
the corresponding standard devi-

ations. If the correlation coefficient exceeds a predetermined
threshold, these displacement signals can be summed up, and
the SNR will improve accordingly. This allows useful exploita-
tion of the energy in nearby range bins, without the need
of processing each one of them independently, as suggested
in [26]. We can, therefore, improve estimation performance
with no additional cost in terms of the computational burden.

Fig. 3 shows the effect of the slow-time phase correlation
processing. The recovered displacement signals at the detected
and its four adjacent are depicted in Fig. 3(a), with the
corresponding calculated values for the correlation coefficient.
We empirically set up a threshold value of 0.8, which,
in this example, allowed the integration of three additional
range bins. Fig. 3(b) shows the original phase-demodulated
signal (at the detected range bin) and the enhanced signal
after processing, where it can be seen how the displacement
amplitude increased. In addition, the periodicity remains the
same, as confirmed by looking into the spectrum in Fig. 3(c),
where it is clear that the main frequency content is preserved.
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Fig. 3. Slow-time phase correlation processing. (a) Phase-demodulated
displacement signals of adjacent range bins. (b) Original phase-demodulated
signal (at the detected range bin) and enhanced signal after processing.
(c) Spectrum of original and enhanced signals. The inset figure shows a zoom
over the heartbeat frequency region. The dashed lines represent the actual
breathing and heartbeat rates associated with this processing window.

The peaks corresponding to breathing and heartbeat (inset
figure) have increased, and their frequencies match the true
values (black dashed lines) associated with this processing
window. For calculating the SNR improvement, we compared
the SNR at the spectral peak location in the original (detected)

displacement to the one in the enhanced signal. In this exam-
ple, the obtained improvements were 3.68 and 5.45 dB for the
breathing and heartbeat signals, respectively. The SNR values
were calculated according to [46].

IV. ADAPTIVE NLS ESTIMATION

Due to the inherent periodic nature of breathing and
heartbeat, any function representing these movements can
eventually be decomposed into Fourier series containing
the fundamental frequencies and their associated harmonics.
Hence, the displacement signal can be modeled as a sum
of harmonically related complex sinusoids, having frequen-
cies that are integer multiples of the fundamental breath-
ing/heartbeat frequency. To exploit this harmonic structure,
in this section, we will use the simple NLS approach recently
proposed for breathing rate estimation in [27] and [28], and
extend it for heart rate estimation. For doing this, we need to
take into consideration the different frequency ranges of these
signals and particularly pay attention to the interference of
breathing harmonics in the heartbeat signal.

A. Basic NLS Framework

The chest wall displacement signal d(t) can, thus, be mod-
eled as a superposition of K sources with Lk harmonically
related complex sinusoids for the kth source, whose fre-
quencies are integer multiples of the fundamental frequency
ωk > 0. The fundamental frequencies are related to the physio-
logical frequencies fk (in Hertz) as ωk = 2π( fk/ fs), where fs

is the slow-time sampling frequency, which is determined by
the time between transmitted frames. In addition, fk = 1/τk ,
where τk is the breathing/heartbeat period. After sampling for
n ∈ {0, . . . , N −1}, the model for the chest wall displacement
signal can be written as [47]

d[n] =
K	

k=1

dk[n] =
K	

k=1

Lk	
l=1

ak,l e
jωkln (9)

where ak,l = Ak,l e jφk,l is the complex amplitude of the lth
harmonic.

Now, let us consider a single source k, and define
dk = [dk[0], . . . , dk[N − 1]]T ∈ CN , the vector consisting of
N consecutive samples of dk[n], which can be expressed as

dk = Zk ak (10)

with ak = [Ak,1e jφk,1, . . . , Ak,Lk e jφk,Lk ]T being the vector
containing the complex amplitudes of the harmonics and the
matrix Zk ∈ CN×Lk having a Vandermonde structure, being
constructed from the Lk complex sinusoidal vectors as

Zk = [z(ωk) z(2ωk), . . . , z(Lkωk)] (11)

with z(ω) = [1 e jω, . . . , e jω(N−1)]T . Using these definitions,
the signal model in (9) can be rewritten as

d =
K	

k=1

Zk ak . (12)

To obtain the NLS estimates, we look for the set of
fundamental frequencies that minimize the difference between
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the recovered displacement signal d̂ and the signal model
in (12). In this way, the NLS optimization problem can be
expressed as

{ω̂k} = arg min{ak },{ωk }










d̂ −

K	
k=1

Zk ak











2

2

. (13)

Assuming that N � 1, and all frequencies in {Zk} are distinct
and well separated, the sources can be treated independently,
and (13) can be approximated by finding the fundamental
frequency of each one of them, i.e.,

ω̂k = arg min
ak ,ωk





d̂ − Zk ak





2

2. (14)

These problems are equivalent when the matrices {Zk} are
orthogonal, which is true asymptotically in N , as long as no
harmonics overlap [47]. Minimizing (14) with respect to the
complex amplitudes ak gives amplitude estimates

âk = �
ZH

k Zk
�−1

ZH
k d̂ (15)

which when inserted in (14) yields

ω̂k = arg max
ωk

d̂
H

Zk
�
ZH

k Zk
�−1

ZH
k d̂. (16)

By the assumption that N � 1, we have ZH
k Zk ≈ N · I Lk ,

and thus,

ω̂k ≈ arg max
ωk

d̂
H

Zk ZH
k d̂

≈ arg max
ωk





ZH
k d̂





2

2. (17)

This resulting cost function can be written as

Lk	
l=1





zH (ωkl)d̂




2

2 (18)

which is the periodogram power spectral density estimate
of d̂, evaluated at and summed over the harmonic fre-
quencies ωkl [47]. Therefore, the NLS estimator can be
efficiently implemented using an FFT algorithm and a lin-
ear grid search over the discrete candidate frequencies
{0, (2π/N), . . . , (2π/N)(N − 1)}.

In this work, we are considering single dominant scatters
for both breathing and heartbeat, i.e., K = 2. In addition, the
signal models presented here are based on complex represen-
tations. As the phase-demodulated displacement signal using
the AD is real, we need to map it into complex numbers.

B. Breathing Rate Estimation

The NLS objective function will exhibit peaks at the fun-
damental frequencies and their associated harmonics. Given
the additive procedure in (18), additional peaks may also
be erroneously generated at lower frequency positions. For
instance, if the true breathing rate is 20 bpm, an additional
peak will be generated at 10 bpm (20 bpm is a harmonic of
10 bpm), and it may have a higher amplitude than the true one
at 20 bpm. To avoid detecting these additional peaks, the NLS
estimator proposed in [27] and [28] uses an initial (coarse)
estimation as a reference for the NLS search region, which
is then limited around this value. Besides eliminating these

eventual strong low-frequency components, this strategy also
reduces the computational effort to perform the grid search.

In [27] and [28], this initial reference estimate is obtained
using a peak detection algorithm applied directly over the
time-domain displacement signal. In this work, we propose
a simpler implementation for that. Given the slow variation
of the breathing rate over time, instead of using an additional
peak detection algorithm for calculating the reference value
for the NLS search region, we can use the last NLS estimate,
calculated from the previous processing window. Fig. 4(a)
illustrates this idea, where fb represents the true breathing
frequency at the current (mth) processing window, and f̂b,m−1

is the previous estimate. For the first processing window,
the search region is initialized over the entire physiological
breathing range. For the subsequent processing windows, the
search region is, thus, limited around the reference value, and it
will adaptively change according to the breathing rate variation
over time. In this way, besides eliminating the additional
processing for calculating a new reference at each processing
window, we also avoid using possible outliers as references
for the current search region.

C. Heart Rate Estimation

The NLS framework does not heavily depend on the white
noise assumption. In fact, when the noise is white, the
NLS estimates can be interpreted as maximum likelihood
estimates [48]. However, the NLS estimation performance
can be affected by the nonlinear objective, with multiple
peaks, and a very sharp global maximum corresponding to
ωk . Hence, finding ωk by a search algorithm requires accurate
initialization [48]. In addition, some of the assumptions made
in Section IV-A may not hold in specific cases, especially
considering heart rate estimation. Particularly, for preserving
the signal stationarity in each processing window, the number
of samples N in d̂ is often small and limited by the coherent
processing interval (CPI). Therefore, it is not always possible
to guarantee that the frequency components in {Zk} are distinct
and well separated. In fact, while breathing estimation is usu-
ally only limited by noise, the spectral region considering the
fundamental frequency of the heartbeat is mainly dominated
by breathing harmonics. In this way, spectral overlaps may
occur, and the heartbeat peak may eventually be masked by
breathing harmonics.

For tackling these limitations and enabling robust heart rate
estimation, we extend the basic NLS approach and propose an
adaptive framework for adjusting the search region over the
NLS objective function. The basic idea is to generate multiple
heart rate estimates based on its fundamental frequency and
associated harmonics. As highlighted in [29], estimation using
the fundamental heartbeat frequency (first harmonic) is mostly
limited by breathing interference, whereas the estimates using
higher order harmonics are only limited by noise. This is
because the fundamental heartbeat frequency “competes” with
still strong third-, fourth-, and fifth-order breathing harmonics.
On the other hand, the second and third heartbeat harmonics,
for instance, share their spectral location with strongly atten-
uated seventh-, eighth-, and ninth-order breathing harmonics.
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Fig. 4. Adaptive NLS framework. (a) Adaptive search region for breathing rate estimation. The search region for the current processing window is defined
around the previous NLS estimate. (b) Multiple search regions for heart rate estimation. In this case, multiple estimates are calculated, and the Kalman filter
stage adaptively selects among them.

The heart rate estimation can, thus, be improved if we look
for its higher order harmonics, far away from the strong
breathing interference. However, as the amplitude of these
harmonics depends on specific characteristics of the breathing
and heartbeat chest wall movements, as well as on many
other processing parameters, one cannot be sure that these
higher order heartbeat harmonics will always be detectable.
Therefore, the conventional estimation based on the heart-
beat’s fundamental frequency is still needed. In this way,
by simultaneously calculating multiple estimates, we increase
the probability of detecting the correct peaks, and the solution
becomes more robust.

The basic NLS approach can easily be extended to provide
multiple estimates by simply segmenting the NLS spectrum
(objective function) into different search regions and perform-
ing independent estimations (by finding the maximum value)
over each of these regions. This can be done considering
that, for a healthy subject at rest, the physiological range of
the heart rate usually goes from 50 to 90 bpm [49]. In this
way, the search region for the fundamental frequency (first
harmonic) can be set up around this range. A second search
region can be defined unambiguously from 100 and up to
180 bpm. Fig. 4(b) illustrates this procedure. An additional
search region can also be defined, looking for the third
heartbeat harmonic, from 150 to 270 bpm. However, as this
third region overlaps with the second one, its estimates can

be ambiguous in some cases (this issue will be handled in
Section IV-D). Due to the efficient FFT-based implementation
of the NLS method, we can overcome the SNR limitations
reported in [29], without increasing the computation burden.
In addition, this “soft” segmentation of the search regions
reduces the computational complexity by only using a single
bandpass filter for heartbeat estimation, in comparison to the
double filtering scheme originally proposed in [29].

D. Kalman Filter Selection

The NLS method described above provides multiple heart
rate estimates for the same processing window. It is, thus,
necessary to come up with a single value for the heart
rate estimation for each CPI. For doing this, we propose
to use the Kalman filter, a recursive Bayesian algorithm
that produces accurate estimates based on noisy or uncertain
measurements. The Kalman filter updates its estimates and
parameters sequentially as new data arrives. Therefore, it is
suitable for real-time processing with the overlapped sliding
windows approach commonly used for vital sign processing.
As we are considering three search regions (three estimates),
we can define the measurement vector as

zh =
�

f̂r1
f̂r2

2

f̂r3

3

�T

(19)
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where f̂r1, f̂r2, and f̂r3 represent the estimates originated from
the first, second, and third search regions, respectively.

The generic state vector has the form

x = 
fh f 	

h f 		
h

�T
(20)

where fh , f 	
h , and f 		

h represent, respectively, the heart rate
and its first and second-order derivatives. From the current
state x̂m,m , at the mth processing window, the predicted state
x̂m+1,m can be calculated using the state transition equation,
defined as

x̂m+1,m =
⎡
⎢⎣1 �t

�t2

2
0 1 �t
0 0 1

⎤
⎥⎦x̂m,m = Fx̂m,m (21)

where F is the state transition matrix, with �t being the
time between each new set of NLS estimates. To describe the
dynamics of the frequency variation over time, we are using
the constant acceleration model, as suggested in [50].

The state vector represents a Gaussian process with mean
x̂m,m and covariance Pm,m . The extrapolated covariance can
be calculated as

Pm+1,m = F Pm,m FT + Q (22)

where Q is related to the process noise uncertainty and can
be modeled as Q = g gT ρ2

a [50], with

g = 
0.5�t2 �t 1

�T
(23)

and ρ2
a representing the process noise. With the observation

matrix

H =
⎡
⎣1 0 0

1 0 0
1 0 0

⎤
⎦ (24)

we can calculate the measurement innovation (error) as

em = zh − H x̂m+1,m (25)

and its associated covariance is given by

Sm = H Pm+1,m HT + R (26)

with R being a diagonal matrix containing the uncertainty in
the NLS estimates for each search region, i.e.,

R =
⎡
⎣σ 2

r1 0 0
0 σ 2

r2 0
0 0 σ 2

r3

⎤
⎦. (27)

The algorithm is initialized with predefined Q and R
matrices and initial state x̂0,0 with covariance P0,0. If at least
one of the NLS estimates is close enough to the predicted
state in (21) (within a predefined gating threshold), we select
from zh the estimate, which minimizes the distance between
the new measurement and the filter prediction. Subsequently,
we can update the state vector as

x̂m+1,m+1 = x̂m+1,m + kmem(z) (28)

where z is the index corresponding to the selected NLS
estimate, with the Kalman gain km being calculated as

km = Pm+1,m hz

Sm(z, z)
(29)

where hT
z is the zth row of H and Sm(z, z) is the zth diagonal

element of Sm . Finally, the associated covariance

Pm+1,m+1 = �
I − km hT

z

�
Pm+1,m (30)

is also calculated in order to be used in the next filter iteration.
If none of the NLS estimates fall within the gate, we treat

all of them as outliers. The Kalman gain is then set to zero,
and the final estimate will only be based on the predicted
state. However, if this condition holds during several adjacent
processing windows, it may indicate that the state estimate
has diverged. In this case, we reset the updated covariance
in (30) to its initial (large) value in order to allow the filter to
reacquire.

The final heart rate estimate f̂h for the mth processing
window is directly obtained from the updated state vector
in (28), and the algorithm runs for each processing window
with the updated state vector, its updated covariance, and a
new set of NLS estimates zh as inputs.

At each iteration, based on its own prediction, the proposed
algorithm selects the best estimate among the three NLS search
regions or can even discard all of them. In this way, we are
exploring the temporal information relative to the evolution of
the heart rate over time. This knowledge is often neglected
by previous approaches that estimate independently at each
processing window. Finally, this procedure provides adaptivity
to different scenarios, by avoiding wrong estimates that could
be originated from harmonic-interfered spectral regions around
the heartbeat fundamental frequency or from low-SNR and
ambiguous detections when estimating using higher order
harmonics at the second and third search regions.

V. EXPERIMENTAL RESULTS

For the experiments, we are using a Texas Instruments
(TI) mm-wave FMCW radar (AWR1642 [51]), operating at
79 GHz with a 4-GHz bandwidth. The radar is configured
for using a single transmitter and four receiver channels. The
total duration of each chirp is 64 μs, with an interframe period
of 10 ms, corresponding to a slow-time sampling frequency
of 100 Hz. For providing sufficient integration time, while
still preserving the update rate, the data are processed using
overlapped sliding windows with a duration of 30 s, with 29 s
of overlap, which results in updated estimates every �t = 1 s.
The NLS search region for breathing estimation was initialized
from 8 to 30 bpm and later reduced to ±2 bpm around the
reference (previous) estimate. For the heart rate estimation,
the search regions were defined as described in Section IV-C.
The number of harmonics for the NLS estimation was defined
as L1 = 5 for breathing and L2 = 3 for the heart rate. The
Kalman filter parameters were initialized as follows: ρa = 2,
σr1 = σr2 = σr3 = 1.5, and P0,0 = 1000I . The initial
state is defined as x̂0,0 = [4 f̂b 0 0]T , where f̂b is the
estimated breathing rate at the first processing window. This
specific heart rate initialization value of 4 f̂b is based on the
human pulse-respiration quotient, which follows a log-normal
distribution centered around four [52], [53].

Fig. 5(a) shows the measurement setup, where five sub-
jects (all male) with different ages (27–36 years), height
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Fig. 5. Vital sign monitoring example. (a) Measurement setup, with the monitored subject seated in front of the radar, at approximately 1 m distance.
(b) Range-angle map. (c) Range-profile. (d) Segment of the slow-time signal (I and Q samples) from the target range bin. (e) Phase-demodulated chest wall
displacement signal. (f) Bandpass-filtered signals for breathing and heartbeat.

(170–192 cm), and weight (60–90 kg) were asked to stay
seated in front of the radar, breathing normally, at approxi-
mately a 1 m distance. The wearable commercial device named
Hexoskin [54] was used as a reference for true breathing and
heart rates. It has two inductance plethysmography sensors
(chest and abdomen) for measuring breathing and a one-lead
electrocardiograph for the heartbeat. This device has already
been extensively validated for vital sign monitoring in different
conditions [55], [56]. The tests emulated different conditions
of movement, which are common to an office work envi-
ronment. The objective was to understand if small random
movements from hands, arms, and shoulders, which are very
close to the chest, could jeopardize estimation. Besides being
static, three other scenarios were emulated: 1) holding a phone
and texting; 2) typing on a keyboard; and 3) controlling a
mouse device (“mousing”).

Fig. 5(b) and (c) shows, respectively, the range-angle map
and the range profile at the output of the preprocessing block.
The energy is mostly concentrated at the detected range bin,
but it also spreads over adjacent range bins due to the high
range resolution. This allows us to add up correlated range
bins for improving the SNR, as described in Section III.
The slow-time signal (I and Q samples) at the target range
bin can be seen in Fig. 5(d). After phase demodulation, the
recovered chest wall displacement is depicted in Fig. 5(e),
with its bandpass-filtered versions for breathing and heartbeat

in Fig. 5(f). The periodic pattern is clearly seen, as well as the
large-amplitude difference between the breathing and heartbeat
signals.

Fig. 6(a) shows the results for a single measurement of
5 min. It compares breathing rate estimates obtained using
the proposed ANLS framework, with the conventional DFT
estimation [15], [18], [43] (commonly used as a benchmark),
and the true values from the reference wearable device. It can
be seen the high correlation between measurements with, most
of the time, both techniques providing radar estimates within
the ±1-bpm error interval. Similarly, Fig. 6(b) compares the
obtained heart rate estimates with the true values from the
reference device for the same measurement of 5 min. In this
case, while the proposed ANLS framework provided most
estimates within the ±2-bpm error interval, the conventional
DFT estimation is highly affected by breathing harmonics,
especially when the breathing frequency is higher.

Fig. 7(a) shows one example of the chest wall displacement
signal under the influence of small random body movements
(“typing” scenario). The corresponding estimation results and
comparison to the reference device are depicted in Fig. 7(b).
This example demonstrates the continuous nature of the
emulated random body movements, which differentiates this
work from previous literature [40], [57], [58], where emulated
movements are short and sparse episodes. These results clearly
show how the conventional DFT estimation is strongly affected
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Fig. 6. Comparison between radar and reference device for a single measurement of 5 min. (a) Estimated breathing rate using conventional DFT estimation and
the proposed ANLS framework, actual values from the reference device, and corresponding 1-bpm error interval. (b) Estimated heart rate using conventional
DFT estimation and the proposed ANLS framework, actual values from the reference device, and corresponding 2-bpm error interval.

by the additional interference, whereas the proposed ANLS
approach can still provide accurate heart rate estimation with
minor performance degradation.

The obtained results are summarized in Table I, which
shows the average accuracy and root mean square error
(RMSE) for each scenario, comparing the proposed solution
with the conventional DFT estimation, and the basic NLS
approach from [28]. The same preprocessing steps (phase
demodulation and bandpass filtering) were used in all cases.
The accuracy is calculated as the percentage of time (in terms
of processed windows) during which the final estimation from
the radar is within a predefined error interval (threshold) in
relation to the reference value. For instance, a 1-bpm accuracy
of 80% means that the magnitude of the error between radar
estimation and the reference device was smaller than 1 bpm
for 80% of the time (processing windows). In this work,
we considered fixed values of 1-bpm accuracy for breathing
and 2-bpm accuracy for the heartbeat. These intervals are
below common values for the threshold of clinical acceptance
[41], [59]. The RMSE is defined as

RMSE =
���� 1

M

M	
i=1

�
f̂i − fi

�2
(31)

where f̂i and fi represent, respectively, the estimated and true
(reference) frequency values (in bpm) in the i th processing
window, and M is the total number of processing windows.

It can be seen how the proposed framework provides
accurate and robust breathing and heart rate estimation in all
conditions, with minor performance loss in the scenarios with
additional movement. The most challenging situation arises
when moving the arms back and forth for controlling the
mouse device. Besides overlapping nearby range bins, this

movement has a similar behavior as the chest wall displace-
ment but with much stronger amplitudes.

In the case of breathing, the proposed solution provided
slightly better performance compared to the conventional DFT
estimation in all scenarios. The reason is that, in the absence
of strong interfering movements, the breathing displacement
signal already dominates the spectrum, and thus, simple DFT
estimation is usually sufficient for accurate performance. In the
case of heart rate estimation, due to the reduced SNR and
the presence of breathing harmonics, the conventional DFT
completely fails to provide accurate estimates. The proposed
solution provided significant improvement over all scenarios,
with the best result in the static case, with 97.6% of accuracy.
The RMSE was strongly reduced in all cases, reaching the
best performance with 0.76 bpm in the static scenario. The
most challenging condition arises when the monitored subjects
were controlling the mouse device with the accuracy reducing
to 81.3% and the RMSE increasing to 2.27 bpm.

Fig. 8(a) shows the Bland–Altman plot considering the
obtained ANLS breathing rate estimates for all measure-
ments and scenarios. The mean bias was only 0.057 bpm,
with 95% upper and lower limits of agreement (LOAs) of
1.1 and −0.99 bpm, respectively. These values are well within
the expected interval for clinical acceptance [60]. Similarly,
Fig. 8(b) shows the Bland–Altman plot considering the ANLS
heart rate estimates for all measurements and scenarios. The
mean bias was only 0.114 bpm with LOAs of 3.14 and
−2.91 bpm. These results show very good agreement between
radar estimates and the reference device, with comparable or
smaller LOAs than recent studies [61], [62], [63], for both
breathing and heart rate estimation.

To better evaluate the impact of the proposed ANLS solution
for heart rate estimation, Fig. 9 shows the percentage of use for
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Fig. 7. Measurement under continuous interference of small random body movements (“typing” scenario). (a) Phase-demodulated chest wall displacement
signal. (b) Estimated heart rate using conventional DFT estimation and the proposed ANLS framework, actual values from the reference device, and
corresponding 2-bpm error interval.

TABLE I

AVERAGE ACCURACY AND RMSE FOR DIFFERENT SCENARIOS AND TECHNIQUES

each of the search regions [as illustrated in Fig. 4(b)]. At each
processing window, the Kalman filter adaptively selects the
best estimate from one of the three search regions. The main
bars show the average utilization of each region considering
all scenarios, whereas the error bars show the maximum
and minimum values obtained in one of the measurements.
Even though, most of the time, the estimate from the first
region (fundamental frequency) is used, estimates from the
second and third regions are used on average in 24.3% and
11.6% of the processing windows, respectively. These values
rise to approximately 44% and 21%, respectively, at specific
measurements. This means that, on average, more than
35% of the time the spectral region around the fundamental
heartbeat frequency is dominated by breathing harmonics or
any other additional interference. It confirms the significance
of providing multiple estimates from different spectral regions
with an additional smart mechanism to select among them.

An additional experiment was also performed at increasing
distances from 1.5 to 2.5, with five measurements while seat-
ing still at each position. The obtained results are summarized
in Table II, which compares the average performance for
heart rate estimation in all scenarios with recently proposed

solutions, validated in similar experimental conditions. It can
be seen that, despite its simple implementation, the proposed
ANLS framework outperforms these methods, resulting in
higher accuracy and smaller RMSE values. In addition, when
considering the scenarios with additional movement (texting,
typing, and “mousing”), the average results show robust per-
formance even during small and continuous body movements.
Furthermore, at longer distances, despite an expected per-
formance degradation, the results are promising with RMSE
values still within thresholds of clinical acceptance [41], [59].

A. Computational Time

To estimate the computational time of the proposed
approach, we processed different measurements several times
and recorded the average processing time considering all
scenarios. Given that we have a new processing window
at every second, we can obtain an estimate of the average
computational time for each iteration (processing window).
We repeated this procedure using the conventional DFT esti-
mation, the simple NLS method, and the complete ANLS
approach. In relation to the conventional DFT estimation, the
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TABLE II

COMPARISON OF HEART RATE ESTIMATION PERFORMANCE CONSIDERING DIFFERENT SOLUTIONS

Fig. 8. Bland–Altman analysis. (a) Breathing estimation, considering all
measurements. (b) Heart rate estimation, considering all measurements.

obtained results show an increase in the computational time
of around 22% and 42% for the simple NLS method and the
complete ANLS framework, respectively.

Fig. 9. Utilization of ANLS estimates from different search regions
considering all measurements.

VI. CONCLUSION

In this article, we presented a complete framework for
vital sign processing using a 79-GHz FMCW device. The
solution is based on a simple but accurate adaptive nonlinear
least squares framework that explores the inherent harmonics
existing in the periodic chest wall displacement signal. In the
case of heart rate estimation, an additional Kalman filter stage
adaptively selects among multiple estimates originated from
different search regions. The solution was evaluated with
real human data collected while imitating common working
conditions in an office environment. Most of the time the radar
provided measurements within the predefined error intervals,
being capable of tracking the reference values even during
continuous small body movements. Due to the similar behavior
to the chest wall movement, the most challenging scenario
resulted from controlling the mouse device with back-and-
forth arms movements. The final accuracy and RMSE values
showed robust and accurate estimation, outperforming conven-
tional spectral estimation and other recently proposed methods
in almost all scenarios.
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The proposed solution has still limitations under moderate
to strong random body movements, especially when this
interference leads to phase demodulation errors by using
the AD. This will be the main direction of future work.
Moving toward a complete solution for vital sign monitoring,
additional investigation is also required to understand the
effects of dynamic scenarios with multiple moving subjects
and multipath reflections.
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