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In this article, we derive a magnetic dipole model for two identical, electrically conducting, and permeable macroscopic spheres
that are exposed to an oscillating homogeneous magnetic field. Our model predicts both amplitude and phase of the induced field
outside the spheres. The description is provided for parallel and transverse excitation relative to the axis through the sphere centers.
This geometric decomposition allows the application of arbitrary excitation field directions. Our approach is based on one dipole
per sphere. The origins of these secondary dipole fields are proposed to be found at positions slightly displaced from the sphere
centers to consider the mutual interaction. This displacement and the resulting phase of the dipole moments strongly depend on
the distance between the spheres as well as on complex-valued first- and second-order response factors, which contain material
properties and the oscillation frequency. We demonstrate the usefulness of our displaced dipole model in terms of efficiency and

accuracy compared to other computationally simple approaches.

Index Terms—Dipole interaction, eddy currents, magnetic dipoles, magnetization, metal spheres.

I. INTRODUCTION

HEN metal objects are exposed to ac magnetic exci-
Wtation fields, secondary magnetic fields in the object’s
neighborhood are induced from either magnetization of the
material or eddy currents. The individual properties of these
secondary response fields are determined by material parame-
ters, excitation frequency, object size, and geometry. Reliable
predictions of this induced ac-behavior are important for many
applications nowadays. One example is the detection of unex-
ploded ordnance: the secondary field of hidden, buried metal
objects is detected and the signals, based on the aforemen-
tioned features, are classified [1]. Two other scenarios, where
knowledge of induced magnetic fields is used, are sorting pro-
cedures [2], [3] or nondestructive testing [4]. Whereas in the
first application, the signals need to be distinguished against
each other from a discrete set of objects, the latter makes
use of anomalies in the spatial conductivity and permeability
distribution of a material and thus measures the deviation from
an expected response [5], [6]. Also in fundamental research
studies, the reaction of objects to magnetic fields is focused,
like the self-assembly behavior [7] or the particle motion in
tissue [8] induced by magnetostatic fields.

Most of such applications share two properties. First, the
recorded signals are used to extract information about the
underlying measured object. Second, it is usually one object
at a time which is excited by an external field, thus making it
possible to neglect the interaction with other objects.

However, in some applications, the magnetic impact of
surrounding items needs to be taken into account either for
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minimizing parasitic effects of the setup environment [9] or to
identify signals emerging from multiple coupled objects [10]
with distances between them often larger than the object’s
dimensions.

Another conceivable application which uses the secondary
magnetic field is the characterization and classification of
ensembles of small objects. In these clusters, the objects have
very small distances from each other. They can even touch
their nearest neighbors. Due to additional degrees of freedom
from the statistical distribution within the packing [11] and
its size, new forward models can help to further study, and
pioneer signal classification from measured responses.

Albeit numerical investigations received some atten-
tion, e.g., a powder of spherical particles in static mag-
netic fields [12], analytic solutions of eddy current- and
magnetization-based fields only exist for geometrically simple
scenarios. Examples are an infinite metal plane or a single
sphere in a homogeneous magnetic field [13].

To approach a forward model that predicts the magnetic
response to external fields for general structures of closely
packed objects, the reduction of the problem to the case of
two interacting spheres is a good point to start because it is
the geometrically least complex scenario that still considers
mutual interaction. Some approaches which model the arising
field strength for two metal spheres already exist. Nevertheless,
these are limited to either static and ac electric fields [14], [15]
or static magnetic fields [16] and thus narrow the range
of extractable object information. For time-varying magnetic
fields, there is not only a spatial field strength distribution
but also a phase relative to the oscillating excitation field
that encodes the secondary field. Computationally simple
approaches model the objects as magnetic dipoles. Typical
dipole models [17], [18], [19] are based on symmetric and
homogeneous magnetization and current distributions [20],
an assumption which is violated when the spheres are close
to each other and multipolar effects arise [21], [22], [23]. One
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Fig. 1. Geometric setting of the simultaneous excitation of two spheres.
(a) Parallel excitation and (b) transverse excitation.

way to take these effects into account is to introduce a spatial
shift of the dipole field origins, as for example, in [14], [16],
and [24].

Finally, a computationally simple model that predicts both
amplitude and phase of static and oscillating secondary mag-
netic fields and at the same time takes care of small sphere
distances is missing. With this work, we aim to provide
additional research for closing this gap. However, this article is
supposed to stay within the realm of classical electrodynamics,
also making some basic assumptions about the problem.

1) We focus on a system of two identical spheres.

2) We neglect any effects of magnetic anisotropy. This is,
of course, an idealized situation and might be violated in
real-world manufactured spheres to some degree, but for
setting up a theoretical model for the problem, it should
be a good point to start.

3) The target environment of our work is at room tem-
perature with frequencies up to the lower MHz regime,
and non-single-domain particles, thus avoiding a regime
where anomalous skin-effects [25], [26], [27] and relax-
ation effects [28], [29], can have significant impacts on
the observed behavior.

This article is structured as follows. In Sectionll, the
theoretical foundation is laid by reviewing the analytic expres-
sions for a sphere in an oscillating homogeneous and in an
oscillating dipole field. Based on these, our proposed displaced
dipole model is motivated and derived for two geometric
cases in SectionlIl. After discussing general features of the
model, we provide a comparison with FEM simulation data in
SectionIV. The work concludes with an evaluation of the new
model, some notes on challenges, and further research ideas.

II. REVIEW OF A SINGLE SPHERE IN
EXTERNAL MAGNETIC FIELDS

We define the following geometric setup: two metal spheres
with radius R, electrical conductivity ¢, and relative perme-
ability u, are placed on the z-axis in a homogeneous magnetic
field By oscillating at frequency f. As shown in Fig. 1, the
homogeneous excitation field can be written as By = Bye;
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Fig. 2. Metal sphere exposed to the field of an oscillating magnetic dipole
on the z-axis, whose moment points either (a) along the z-direction as m
or (b) along the y-direction as m . The oscillating dipole field is placed at
distance d from the sphere center.

with i =z or i =y, where the first case will be called parallel
excitation, as in Fig. 1(a), and the latter transverse excitation,
as in Fig. 1(b). An arbitrary direction of the homogeneous
excitation field can then always be decomposed into these
two cases. To mark the two geometric settings, the lower
indices || and L are used in this article.

We introduce the necessary equations as a foundation for
our model with a short review of the theory of a single sphere
in external magnetic fields, following the work of Grant and
West [30, pp. 492-519].

A. Metal Sphere in a Homogeneous Magnetic Field

When a single sphere is excited by a homogeneous magnetic
field By, as it is shown in Fig. 1 for each of the two spheres, the
secondary magnetic field outside such a sphere at position r
coincides with a magnetic dipole field

Ho
4zr3

with e, the unit direction vector from the sphere center to
the field measurement point r. The origin of this dipole field
coincides with the sphere center. The corresponding dipole
moment is written as

BD(I') =

[3er(er : m) - m] (1)

2w R30!1
Ho

where u( is the magnetic field constant and oy = (X, + jY)) €
C a complex response factor, which depends on material para-
meters and frequency. The time dependence of the oscillations
e/?™" can be ignored and only a relative phase, which is
encoded in the complex value o, needs to be considered.

m —=

By )

B. Metal Sphere in the Field of a Magnetic Dipole

On the contrary to the homogeneous excitation, the same
sphere can also be excited by the field of an oscillating
magnetic dipole moment m = me;, which is placed w.l.o.g.
at (0,0, d), shown in Fig. 2. Similar to the above notation,
m = m) corresponds to i =z and m = m, to i =Y.
For the subsequent derivations and shorter notation, we only
need the y and z components of the secondary field from this
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Fig. 3. Field line distribution of the secondary magnetic field of a sphere, placed in the origin, in the whole yz plane calculated with the equations from [30].
We set (a) m = 1 for a parallel dipole excitation source and (b) m; = 1 for the transverse dipole excitation source at (0,0, 3R) (big arrow). The plots
show the case f o> 1. The origins of the resembling secondary dipole fields are indicated by dots and the lines have a logarithmic scale in brightness and

thickness according to the field strength.

dipole excitation and evaluate these at points (0,0, z). The
field components are then written as

o
_ Homy 81

B:(2) = i 22 3)
=1
for a parallel dipole excitation and as
Lom L ~— h
0m. !
Biy@=-"=2 75 )

=1

for the transverse dipole excitation. The time dependence is
again omitted. Both expressions (3) and (4) are power series,
where the [ = 1 terms are the dipole contributions and the
higher terms are multipole contributions. The factors g; and
h; are defined as

aIRZI-H
8= "in I+1) (5)
and
R21+1 12
=" 6)
di+2 2

The expressions o; = X; + jY; € C are complex response
factors of order /. The first-order factor also appears in (2).

According to [30], they are defined as
$-u+ D) 11 (kR) + kRII’Jr%(kR)

(1/2+1u) 1y 1 (kR) +KRI[ (kR)

)

with k = (j27fo u,110)'?. Iivq2) and I}, ) are the mod-
ified Bessel functions as well as their derivatives w.r.t. the
argument kR.

We finish this section with a look on the geometric field
distribution of the full equations, which are provided by [30]

for any point in the yz plane, not restricted to points (0, 0, z)
as in (3) and (4). This is shown in Fig. 3, where fo > 1.
To focus on the geometric distribution of the fields independent
of the excitation source, we set my = m; = 1. The field
lines reflect the field strength in brightness and linewidth to
a logarithmic scale. Dark and thick lines indicate large field
strengths, whereas bright and thin lines mark regions of weaker
fields.

A main observation is that the multipole secondary field
strongly resembles a dipole field. The origin of this secondary
dipole field is indicated by a dot. It is slightly displaced from
the center of the sphere along the axis which connects the
sphere center and the origin of the oscillating excitation dipole
field. As according to (3) and (4) the lower order multipole
terms scale much stronger with the distance to the sphere
center, we can only see fields which are dominated by the
[ =1 dipole terms. The comparison between the factors of
the power series gives another information which is g =
2(1+(1/1)h;. This means that the secondary field around the
sphere in parallel dipole excitation is much stronger relative to
the transverse case. For example, there is a factor 4 between
the dominating /=1 dipole terms and a factor 3 between the
next higher / =2 multipole terms. From Fig. 3, this difference
in the secondary field strength from dipole excitation between
parallel and transverse case can be qualitatively seen by
comparing the thickness of the shown field lines.

IIT1. PROPOSED DISPLACED DIPOLE MODEL

A. General Procedure

The following argumentation is provided only for the case
of parallel excitation, shown in Fig. 1(a). The steps for
the transverse scenario are analog using (4) instead of (3).
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moment my of Berr origin

Fig. 4. Block diagram of the procedure behind the displaced dipole model for the example of parallel excitation.

Therefore, the corresponding results for the latter scenario are
provided in Section III-D without a fully repeated procedure.

The overall approach is illustrated in Fig. 4, which shows a
block diagram of the individual steps of our model for parallel
excitation. Because of symmetry, it is sufficient to focus on
sphere 1, which we define to be in the coordinate center of
Fig. 1(a). The dipole moment of the upper sphere 2 will be
identical.

First, each of the spheres in the defined setting from
Fig. 1(a), is excited by By, shown in (I). As a consequence,
a secondary magnetic field (1) with its corresponding magnetic
dipole moment (2) is induced for both of the spheres according
to the theory of Section II-A. This can be seen in block (2).
Its origin is the sphere center.

From the fact that our approach assumes the final secondary
field of the individual spheres as an effective dipole field,
which we will call B, each of them is also exposed to
B, of the other sphere, not necessarily with its origin in
the sphere center. This is shown in (3). The induced field from
this excitation can be modeled by (3), which contains the full
power series with all / > 1 terms. The resulting secondary field
from this additional excitation corresponds to (4. The sum of
both secondary fields in (2) and (@) is the total secondary field
of the single sphere, which acts back on the adverse sphere as
an excitation again. But to the best of our knowledge, there
exists no analytic theory that describes the sphere secondary
field due to field terms of order [ > 2, as they appear in (3).
We, therefore, interpret the sum of @ and @ as an effective
dipole field with dipole moment m |, corresponding to (3),
and a field origin that is displaced from the sphere center
by d, corresponding to (6). The result is then used to update
the magnetic moment and the origin of the dipole excitation
field in ). From this point, we repeat everything starting

with () and @) until we achieve convergence in the parame-
ters m and 9.

Considering only the outcome in step (2), superimposing
the two secondary dipole fields of both spheres, and stopping
the procedure, is further referred to as the additive dipole
model (AD). This solution ignores any further mutual inter-
action between the spheres, which would be considered in
steps 3)—(6), and will be used for comparison with the final
model in SectionIV.

Summarizing, the bottom line of our proposed model is to
stay on a formulation of dipoles, i.e., of order / =2 terms. From
this, we expect deviations to the physical reality, as higher-
order terms are neglected. But this error is assumed to be
balanced by the second part of our approach: the displacement
of the dipoles. The complete model is titled the interacting
displaced dipole (IDD) model.

B. Effective Dipole Moments From Mutual Interaction

This section yields the derivation of the effective dipole
moment m . We introduce the surface-to-surface distance a
along the z-axis. A distance a = 0 means touching spheres.
In (3), the parameter d describes the distance between the
oscillating magnetic dipole moment as the excitation source
and the center of the exposed sphere. Introducing a dis-
placement ¢, for the simultaneous excitation of two spheres,
we place the dipole moments at (0,0, J;) for sphere 1 and
at (0,0,2R + a — o)) for sphere 2, such that d = 2R +
a — 0. Positive values of J; describe origins of the secondary
magnetic fields that are closer to each other than the sphere
centers.

We keep the displacement as a yet undefined variable
and assume the following equation to hold at any point on
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the z-axis:
(n) 3
Hom R’ Bya _ _
A T 1+B,,,Z(m|(|" b, s ”,z). (8)
sm(e-ay -

YO ©) O]

This equation, formulated with indices ™ by means of an
iterative fixpoint solution, consists of the following parts.

The left-hand side is the z-component of the effective
secondary dipole field Bef,, which is supposed to model the
response of sphere 1. It is equal to (1) with magnetic dipole
moment m = mje; and a distance between the evaluation
point r = (0, 0, z) and the field origin of z — 5ﬁ"), due to the
proposed displacement, see (3) and (6) in Fig. 4. The first term
on the right-hand side is the z-component of the secondary
dipole field arising from the primary homogeneous excitation
and corresponds to (2) in Fig. 4. Here, we insert (2) into (1)
and evaluate the field at r = (0,0, z), as here, the dipole
field origin is the sphere center. The second term is again the
z-component of the secondary magnetic field (3), which arises
from the excitation due to the secondary magnetic dipole field
Begr, of the adverse sphere 2. This contribution to the final
secondary field of sphere 1 corresponds to (4) in Fig. 4.

Equation (8) is an approximation and the dipole formulation
that we use is only valid far away from the dipole source. Thus,
we solve the equation in the limit z — oo and get

(n—=1)

n _ _27rR3a1 Hom

m

©)

0+ 3
fo 2 (2R Ya— 5{(’*“)

Of all [ > 1 terms, the iteration formula for the dipole
moment only depends on the first order response factor a;.

C. Displacements as Corrections to the Dipole Formulation

This section of this article corresponds to (6) in Fig. 4
and determines the above introduced but yet unspecified
displacement (5|(|"). As we argue that the field of each sphere
can be approximated as a magnetic dipole field, we can use a
technique proposed in [31] for dipole field source localization.
There, a compact formula for the distance between a field
measurement point and the dipole source is presented by solely
using data of the field strength and its spatial derivative at the
field measurement point. The general formula provides the
inversion of (1) w.r.t. r, which in our case is r = (0,0, z).
For our geometric setting, the equation in [31] reduces to

Beit, .2 (2)
0: Befr, .2 (2)
where Z is the distance between the magnetic dipole field
origin and the field measurement point z, as illustrated in
Fig. 5. The z-component B, . of the effective secondary
dipole field in (10) is provided by the right-hand side of (8).
We find 5ﬁ”) =z —2. The localization formula is independent
of the phase of the field. It is, therefore, sufficient to only use
the absolute values |Bes, | - (2)| and |0, Bet, |- (2)], but keep an
additional minus sign in the denominator, that originates from
the derivative of the 1/z’+2, [>1 terms.

t=— (10)
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Fig. 5.
the effective dipole moment m) and is assumed to originate at (0,0, J,
The localization formula yields Z as the distance from the measurement point
at (0,0, z) (marked with a cross) and the field origin.

Localization of the secondary magnetic field origin. The field (h)as
n
)

For large distances z, we find

o )
o)) = lim | z — (1)
700 0. Beir| (mﬁn—l), 5ﬁn—l), Z)‘
which yields
n—1 3y n—1 ~ n—1)\1x n—1
I ‘p(n_l)yz
with
n— 7Z'R30!130 n—1) (n—1
p Y = 12— 3m{" Vg (13)
and
D =g m Y, (14)

The factors gy, are now also equipped with an upper
index, due to their dependence on the displacement of the
previous step via d = 2R +a — 5ﬁ"71), see the definition (5).
We equations now have a set of iteration to find the dipole
moments via (9), as well as the displacement via (12) for

parallel excitation of two identical spheres.

D. Iteration Formulas for Transverse Excitation

For the transverse excitation of two spheres, as shown in
Fig. 1(b), the steps are analog. We only need to take the
y-component of the fields on the z-axis and use

(n) 3
fromy R Boa n=1) sn—1)
- 3= 3 +BL,y<mf 0 ,Z)
A (Z . 5(;1)) 22
L —_——

5.0 ©) )

5)
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instead of (8). The numbers beneath the equation correspond
again to diagram Fig. 4, which can be drawn similarly for the
transverse excitation and the field component Beyr . needs to
be replaced with the y-component Begr |, for the localization
formula (10). The iteration formulas for this case can then be
written as

(n—1)

n 2 R3(Z1 om
m =L g, ROy | a6
Ho 4n (2R ta—o" ))
for the complex-valued dipole moment and
N m{7<"*1>h§"*“m(f*”}
6" = 5 (17)
[y @0
with
R*B 1y, -
yr b= 67520 o+ 3R (18)
0

for the transverse displacement, where the bar on 7"~ means
the complex conjugate. The numerator in (17) looks struc-
turally different compared to the parallel displacement (12).
This is a result from evaluating the corresponding limit (11)
in the transverse scenario, where || is replaced by L.

E. Dipole Displacements in Limit Scenarios

The frequency-dependent behavior of both =
limn_moéﬁ”) and 6, =1imn_>005$1) is shown in Fig. 6, where
we use two spheres of radius R =10 mm, distance ¢ =0.1 mm,
and ¢ =10° S/m. From Fig. 6, the shifts for the low-frequency
limit f — O can be identified as functions of ,.

The signs of the displacements, i.e., ; > 0 and J; < 0
for f — 0, are a result from the static excitation. The
spheres are mostly magnetized, following the excitation field
direction and the origins of the dipoles move to positions
where the magnetization density is strongest. This is exactly
the argumentation in [16], where two spheres are exposed
to a static magnetic field. Another interesting result is that
we find a convergence behavior of the displacements, i.e.,
a maximum absolute shift in the low-frequency case, even if
the permeability is increased further.

The contrary extreme, indicated by values fo > 1, makes
the displacements independent of the relative permeability.
In this case, induced eddy currents are the main source of the
secondary magnetic field instead of magnetization. Note, that
for completeness, Fig. 6 also shows the displacement in the
high-frequency regime, i.e., f > 10 GHz. As effects caused
by magnetic relaxation can start to play a significant role here,
the derived displacement may become less relevant in this
regime. Because this displacement is a core component of
the IDD model and supposed to compensate for the errors
we introduced by neglecting the higher-order terms in (3)
and (4), the whole model may not be able to accurately predict
amplitude and phase for high frequencies.

Fig. 6 also shows that for fo > 1 the signs of the final
displacements are reversed, i.e., dy <0 and J, > 0. Whereas
in [16], the static case is explained, a similar explanation can
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Fig. 6. (a) Parallel displacement lim,_, » 56") and (b) transverse displacement

lim;, o0 53) against oscillation frequency of the excitation field for various
values of relative permeability s ,. The parameters were set to a = 0.1 mm,
R = 10 mm, and ¢ = 10°S/m.

be made for higher frequencies and high values of conduc-
tivity. The difference is the dominance of eddy currents and
the fact that the field from currents counteracts its source of
induction due to Lenz’s law.

We also find a different scaling between both geometric
cases. From Fig. 6, we see that |Jy| ~ 2 - |J, | for the
different combinations of permeability and low frequencies
(f < 10*Hz). This is a direct result from the observation we
made in Section II, which is the stronger secondary field in
the parallel case due to the excitation of an oscillating dipole
field. For static, but electric fields, proposed dipole models
of two spheres show a similar relation between the parallel
and transverse displacement [14]. The predicted displacements
in the limit f — O appear at a maximum of 2%-5% of
the sphere diameter. This is another observation which agrees
with previous models, that are formulated in the magnetostatic
limit [16], which is intrinsically contained by our approach.

FE. Simplified Model Without Displacements

In order to evaluate the effect of the previously derived
displacement we consider a simplified version of (9) and (16)
by setting 6"’ = 0 = 0 Vn € N. This simplified version,
discussed in [17], will be referred to as the interacting dipole
(ID) model with dipole field origins in the sphere centers.
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The ID dipoles can be written as closed expressions after
taking n — oo in (9) and (16) and using the convergence
of the geometric series as

277,'R3 0(1B0
myp = — 3 (19)
#o 1_a1(2R+a)
27Z'R3 0!130
mip = — ol R \3 (20)
#o 1+ 7(2R+a)

As the displacements (12) and (17) additionally depend
on the second-order response factor a», the simplified
ID model (19) and (20) is expected to be less accurate because
it completely omits the second order.

The set of frequencies, at which the shift vanishes

[£er: lim o =0

tells where our proposed IDD model will not provide sig-
nificantly different results compared to the computationally
simpler ID model.

21

IV. COMPUTATIONAL RESULTS
A. Comparison to FEM Data

The model is evaluated and tested by comparison to FEM
simulation data.! For a high reliability all software properties
were calibrated to the case of a single sphere in an oscillating
homogeneous magnetic field, such that the analytically pre-
dicted dipole moment (2) could be reproduced to a maximum
relative error of 0.05% in amplitude and phase. This was done
for all considered parameter combinations. We note that the
FEM simulations are also performed on isotropic materials.

The secondary magnetic field of the spheres is calculated
against the distance a. The measurement setup is illustrated in
Fig. 7(a) for parallel excitation and in Fig. 7(b) for transverse
excitation, respectively. The radius of both spheres is set to
R = 10 mm. Sphere 1 is placed at (0, 0,0) and sphere 2 at
(0,0, 2R+a). For data extraction, we integrate the secondary
field over a fictitious loop with radius R/2=35 mm at position
(0, 1.5R, —R) and normal vector n L By. The resulting
amplitude is then a magnetic flux in the dimension of nWhb.
The distance a is increased starting from ¢ = 0.01 mm =
1/100R to a = 100 mm = 10 R. In addition to FEM data,
we compare the IDD model to the simplified ID model and
the AD model, of which the latter ignores any interaction.
Motivated by preceding experimental work, we set the material
parameters to x4, =73.5 and ¢ =5 -10° S/m. The frequency
is chosen as f =20 kHz, which is a commonly used mode of
operation [2], [3].

The results of the parallel excitation can be seen in Fig. 8.
For large distances a, all models converge to the same values,
matching the simulation data both in amplitude and phase.
This reflects a decreased impact of mutual interaction for
larger distances and comes from the fact that the secondary
field of one sphere over the volume of the other sphere
becomes weaker and more homogeneous. The AD model

'The commercial magnetic simulation software CST Studio Suite®, version
2020, was used.
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Fig. 7. Simulation setup for (a) parallel excitation and (b) transverse
excitation. The sphere-to-sphere distance is a and the distance between the
excitation dipole field origin, marked with a dot, in sphere 2 and the center
of sphere 1 is 2R+a—dj, 1. The induced secondary field is integrated over
the circular loop with normal vector n.

shows, as expected, no dependence of the phase values on the
distance, whereas the amplitude data of this simple model at
least qualitatively follows the FEM data. The range of phases
which is covered in this scenario is approximately 5°.

The ID model already yields an increase in accuracy in
amplitude, coinciding with the results in [17], as well as in
phase. But especially at small distances a difference in phase
of 0.4° remains. This remaining gap is closed by our IDD
model. For small distances, a relative error of 1.3% by the
IDD model yields slightly better accuracy in amplitude data,
compared to the 1.9% which are provided by ID.

The results of the transverse excitation, shown in Fig. 9,
are slightly different from the previous case: first, the range
of covered phase values is only 1.5° and thus smaller than for
parallel excitation. With increasing distance, the phase values
monotonically decrease with distance a on the contrary to
Fig. 8, where the phase increases.

While the ID model predicts more accurate values than
when ignoring any interaction, our new model leads to
improvements, especially in the amplitude data. These are
even more accurate than for parallel excitation. In phase
data though, the IDD model is only able to yield slight
improvements. At small distances, an error of 0.58° remains.
This means that our proposed IDD model in the transverse
case is even a little worse than ID in the parallel case.

To demonstrate that the accuracy in phase data for transverse
excitation depends on the material parameters, we reduce the
conductivity in two steps from ¢ =5 - 10® S/m to a weaker
conductivity ¢ = 10° S/m and to almost non-conductivity
c=10%S /m. For both new materials, the transverse excitation
is again calculated. As the resulting curves look very similar
and only have different scales, we solely show the results of
o =10 S/m in Fig. 10. Comparing IDD between the high-
conductivity case, shown in Fig. 9, and the low-conductivity
case in Fig. 10, we see that the accuracy in phase data for
a — 0 increases from 0.58° to 0.17°. Although the relative
accuracy in phase almost stays the same, absolute phase
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Fig. 8.

Amplitude and phase of flux through the circular loop against surface-to-surface distance a for FEM simulation and model (AD, ID, and IDD) data

of the integrated secondary field for parallel excitation. The parameters were set to u, = 73.5, ¢ = 5- 10°S/m, R = 10mm, and f = 20kHz.
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Fig. 9. Amplitude and phase of flux through the circular loop against surface-to-surface distance a for FEM simulation and model (AD, ID, and IDD) data
of the integrated secondary field for transverse excitation. The parameters were set to u, = 73.5, ¢ = 5- 10°S/m, R = 10mm, and f = 20kHz.

values have more significance, as ground truth FEM data may
not always be available. Also the accuracy in phase values
predicted by the ID model increases compared to the previous
configuration. The same can be said for an almost vanishing
conductivity, which is not shown here, whereas in this case
the range of covered phases contracts around 0. For both of
the additionally tested conductivity values, the accuracy in
amplitude data remains the same.

B. Convergence of the Model

An investigation of the minimum number of iterations steps
that is necessary to reach convergence is performed. This

minimum number is defined as
N, eN:|[iW—i" D <¢ Vu>N (22)

where i is either the amplitude, the phase, or the displace-
ment. We find that N; = O(—log ¢;) for a wide range of

parameters u,, g, and f. As an example of two spheres with
radius R =10 mm at distance ¢ =0.1 mm, we find N; < 25 for
€; = 107'% in all three quantities in both parallel and transverse
excitation.

V. DISCUSSION AND FURTHER WORK

In this article, we use the general assumption that each
of the two identical spheres exhibits an effective dipole-like
secondary field from the homogeneous excitation. The more
similar the overall secondary magnetic field of the spheres in
reality is to a dipole field, the less error is introduced by the
negligence of the / > 1 multipole terms. Whereas this error
in the data is not compensated by the ID and even less by
the AD model, as expected from earlier research [17], [21],
we demonstrated that our IDD model yields better accuracy.
This has been done exemplarily for an oscillating excitation
field, similar to the increase in accuracy that can be achieved
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when induced dipole field origins are shifted in the magneto-
static case [16].

In the case of larger frequencies and highly conductive
materials, currents appear within the spheres and have circular
shape only for parallel excitation but not in its transverse
counterpart [32]. On the one hand, the resulting secondary
field distribution from a transverse excitation dipole moment
turns out to indeed resemble a dipole field outside the sphere,
as we showed in Fig. 3(b), even for induced currents (f o > 1).
On the other hand, the attendance of a second sphere, which
is not present in Fig. 3(b), but in our model, may lead to
additional anomalous skin effects that do not appear for low
frequencies and non-conductive materials. These effects may
make the model accuracy sensitive to the parameter prod-
uct f o, which controls the dominance of induced currents.
From symmetry, these distortions do not change the circular
shape for parallel excitation and therefore keep the assumption
of dipole-like secondary fields. But in the transverse case, this
statement cannot be made without further analysis and current
distortion can turn the actual field less similar to a dipole field
and may explain the observed phase inaccuracy from Fig. 9.
According to this argumentation, we need to take such effects
into account to further improve our model.

Another restriction to be considered is the focus on rel-
atively large particles, i.e., not going below the millimeter
regime. Reducing the sphere diameters to the micrometer
range can make it necessary to view magnetic spheres as
single-domain particles, thus leading to further effects, like
Néel-relaxation [28], [29].

The investigated non-conductive scenario mathematically
coincides with the case of a static excitation field as no currents
will appear. In this case, the phase loses all of its information
and simply approaches O for all sphere distances.

From the different ranges of covered phase values, we also
see that overall effects of mutual interaction for transverse
excitation are not as strong as in the parallel case. This again
fits the two observations: first in Sectionll, that the secondary

field induced from an oscillating dipole field is weaker in the
transverse scenario. Second, in Section III, where the absolute
value of parallel displacement of the dipoles was larger than
the transverse displacement.

An important property of our approach is that other mod-
els, which restrict themselves to the static magnetic case,
like [16], are limit scenarios and intrinsically covered by our
proposition.

Analog to the response factors for full spheres used in this
work, there also exist similar factors for coated spheres and
hollow spheres [33]. The application of our model to these
cases remains future work. Also, batches of more than two
spheres in a homogeneous magnetic field can be modeled
by our approach via iterating over pairs of spheres. In that
case, in each step, the fields acting on one sphere should
be decomposed into parallel and transverse components for
applying the model.

Furthermore, our work can serve as a basis to model more
complex ensembles of metal objects. Making use of available
research results for the secondary response of rotationally
symmetric objects to homogeneous excitations, like small
disks or spheroids [34], [35], our approach may be applicable
to these cases as well. This can enable the modeling of packing
of more commonly used objects. Also, current paths between
objects, as they would appear in clusters of touching objects,
are an additional phenomenon to consider.

VI. CONCLUSION

In this article, we derived the IDD model for the magnetic
response of two identical spheres when simultaneously excited
by an oscillating homogeneous magnetic field. The excitation
was geometrically decomposed into two orthogonal cases,
a parallel and transverse excitation relative to the axis through
the sphere centers. The secondary magnetic field of each
sphere was modeled as a single effective dipole field, which
has two contributions: first, a pure dipole field caused by the
primary homogeneous excitation and second, a multipole field
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caused by the retroactive excitation of the effective dipole field
of the other sphere.

Staying with the formulation on the dipole level, we intro-
duced an error by neglecting higher-order terms in the expres-
sions of the derived secondary magnetic dipole moments.
To compensate for the error made with this simplification,
we proposed a displacement of the origins of the secondary
magnetic dipole fields out of the sphere centers. Both pro-
vided iterative expressions for the dipole moment and the
displacement enabled us to accurately and quickly calculate
the amplitude and phase of the secondary magnetic field of two
spheres. An advantage of this new model is the applicability
on static as well as oscillating magnetic fields and it can be
seen as a first step toward the magnetic response prediction of
geometrically manifold packings of objects, also others than
spheres.

The minimum iteration number to reach convergence up to
an accuracy € turned out to behave as O(—loge) or faster
for a wide range of typical system parameters. It is, there-
fore, a preferable model to predict the magnetic two-sphere
response when FEM simulations are computationally too
expensive and at the same time, a good accuracy with a simple
model is ought to be achieved.

As we set some restrictions on the applicability, e.g., a sys-
tem at room temperature, low frequencies, and not too small
particle sizes, this work mainly serves as a stepping stone
for further research analyzing how the model needs to be
improved to make it applicable in situations exceeding the
assumptions made here.
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